Applications of chitosan as a polymer carrier for increasing the drugs’ bioavailability
- 作者: Ustinova T.M.1, Vengerovich N.G.1,2, Glinko D.K.1
-
隶属关系:
- State Scientific Research and Test Institute of Military Medicine, Ministry for Defense of the Russian Federation
- Saint Petersburg State Chemical Pharmaceutical University of the Ministry of Health of the Russian Federation
- 期: 卷 3, 编号 4 (2021)
- 页面: 10-19
- 栏目: Pharmaceutical Sciences
- URL: https://journals.rcsi.science/PharmForm/article/view/100734
- DOI: https://doi.org/10.17816/phf100734
- ID: 100734
如何引用文章
全文:
详细
Oral drug delivery is a dynamic research area, yet associated with multiple issues in its using: enzymatic degradation, hydrolysis, low permeability of intestinal epithelium. The review presents a research papers’ analysis on the development of targeted drug delivery using a biodegradable polymer chitosan. Chitosan application, singly or in composites, is suitable for various drug delivery systems. Upon oral delivery, chitosan serves as a mucoadhesive polymer with controlled and targeted release. During the last five years, various approaches to the delivery of insulin and other drugs had been reported in literature. The main technological strategy for insulin delivery was its protection against intestinal pH, as well as increasing of permeability via transcellular and/or paracellular pathways. It is observed that application of the biopolymer and its derivatives has a controlled absorption profile. In publications on the drugs delivery, most of the research is focused on development and modification of methods for their producing. According to the presented experimental data, there were obtained particles with well-defined spherical shapes and microparticles’ capacity of 85–97%. A number of research articles provide data on the chitosan application as a mucoadhesive coating for various nano- or microparticles. It was also noted that application of chitosan microparticles contributed to diminishing adverse side effects.
作者简介
Tatiana Ustinova
State Scientific Research and Test Institute of Military Medicine, Ministry for Defense of the Russian Federation
编辑信件的主要联系方式.
Email: gniiivm_15@mil.ru
ORCID iD: 0000-0001-9579-9190
SPIN 代码: 7247-4663
Scopus 作者 ID: 57196118429
Ph.D. in biology senior researcher of the Research Department
俄罗斯联邦, Saint PetersburgNikolai Vengerovich
State Scientific Research and Test Institute of Military Medicine, Ministry for Defense of the Russian Federation; Saint Petersburg State Chemical Pharmaceutical University of the Ministry of Health of the Russian Federation
Email: nikolai.vengerovich@pharminnotech.com
ORCID iD: 0000-0003-3219-341X
SPIN 代码: 6690-9649
Scopus 作者 ID: 55639823300
Researcher ID: U-3467-2019
http://eco.pharminnotech.com/sotrudniki-kafedry/vengerovic-nikolaj-georgievic
Doctor of Medical Science, Deputy Head of Department; Professor of the Industrial Ecology Department
俄罗斯联邦, Saint Petersburg; Saint PetersburgDmitriy Glinko
State Scientific Research and Test Institute of Military Medicine, Ministry for Defense of the Russian Federation
Email: gniiivm_15@mil.ru
ORCID iD: 0000-0003-4296-1179
Researcher, State Scientific Research Testing Institute
俄罗斯联邦, Saint Petersburg参考
- Ramenskaja G. V., Shohin I. E., Kulunich Ju. I. The biopharmaceutical classification of medicinal substances. Review. Sechenovskij vestnik = Sechenov Medical Journal. 2011;1(3),2(4):57-59. (In Russ.).
- U.S. Food & Drug Adminфistration. 2022. URL: https://www.fda.gov
- Gupta S., Kesarla R., Omrl A. Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. ISRN Pharm. 2013 Dec 26;2013:848043. https://doi.org/10.1155/2013/848043
- Ghadi R., Dand N. BCS class IV drugs: Highly notorious candidates for formulation development. Journal of Controlled Release. 248. https://doi.org/10.1016/j.jconrel.2017.01.014
- Shekhawat P. B., Pokharkar V. B. Understanding peroral absorption: regulatory aspects and contemporary approaches to tackling solubility hurdles. Acta Pharmaceutica Sinica B. 2017;7(3):260-280. https://doi.org/10.10/j.apsb.2016.09.005
- Bianchera A., Bettini R. Polysaccharide nanoparticles for oral controlled drug delivery: the role of drug-polymer and interpolymer interactions. Expert Opin Drug Deliv. 2020 Oct;17(10):1345-1359. https://doi.org/10.1080/17425247.2020.1789585
- Iacob A. T., Lupascu F. G., Apotrosoaei M. Recent Biomedical Approaches for Chitosan Based Materials as Drug Delivery Nanocarriers. Pharmaceutics. 2021 Apr 20;13(4):587. https://doi.org/10.3390/pharmaceutics13040587
- Lang X., Wang T., Sun M., et al. Advanced and applications of chitosan-based nanomatetias as oral delivery carries: A review. Int J Biol Macromol. 2020 Jul 1;154:433-445. https://doi.org/10.1016/j.ijbiomac.2020.03.148
- Russo E., Selmin F., Baldassari S. A focus on mucoadhesive polymers and their application in bucal dosage forms. Journal of drug delivery Science and Technology. 2016;32,Part B:113-125. 10.1016/j.jddst.2015.06.016' target='_blank'>https://doi.org/doi: 10.1016/j.jddst.2015.06.016
- Vimal Y. K., Gupta A. B., Kumar R., et al. Mucoadhesive polymers: Meance of improving the mucoadhesive properties of drug delivery systems. J Chem Pharm Res. 2010;2: 418-432.
- Liu L., Yao W., Rao Y., et al.pH-responsive carriers for oral drug delivery: challenges and opportunities of current platforms. Drug deliv. 2017 Nov;24(1):569-581. https://doi.org/10.1080/107175544.2017.1279238
- Lucio D., Oharriz M. Chitosan: strategies to increase and modulate drug release rate. In: Shalaby E. A., ed. Biological Activities and Application of Marine Polysaccharides. Croatia: InTechOpen, 2017. 326 p. https://doi.org/10.5772/65714
- Mukhopadhyay P. Chakraborty S., Bhattacharya S., et al. PH-Sensitive Chitosan/AlginateCore-Shell Nanoparticles for E_cient and Safe Oral Insulin Delivery. Int. J. Biol. Macromol. 2015;72:640-648. https://doi.org/10.1016/j.ijbiomac.2014.08.040
- Pereira De Sousa I., Moser T., Steiner C., et al. Insulin Loaded Mucus Permeating Nanoparticles: Addressing the Surface Characteristics as Feature to ImproveMucus Permeation. Int. J. Pharm. 2016;500:236-244. https://doi.org/10.1016/j.ijpham.2016.01.022
- He Z., Santos J. L., Tian H., et al. Scalable Fabrication of Size-Controlled Chitosan Nanoparticles for Oral Delivery of Insulin. Biomaterials. 2017;130:28-41. https://doi.org/10.1016/j.biomaterials.2017.03.028
- Al-Remawi M., Elsayed A., Maghrabi I, et al. Chitosan/Lecithin Liposomal Nanovesicles as an Oral Insulin Delivery System. Pharm. Dev. Technol. 2017;22:390-398. https://doi.org/10.1018/10837450.2016.1213745
- Sahoo P., Leong K. H., Nyamathulla S., et al. Optimization of PH-Responsive Carboxymethylated Iota-Carrageenan/Chitosan Nanoparticles for Oral Insulin Delivery Using Response Surface Methodology. React. Funct. Polym. 2017;119:145-155. https://doi.org/10/1016/j.rectfunctpolym.2017.08.014
- Chen T., Li S., Zhu W., et al. Self-Assembly PH-Sensitive Chitosan/Alginate Coated Polyelectrolyte Complexes for Oral Delivery of Insulin. J. Microencapsul. 2019;36:96-107. https://doi.org/10.1080.02652048.2019.1604846
- Wong C. Y., Al-Salami H., Dass C. R. Formulation and Characterisation of Insulin-Loaded Chitosan Nanoparticles Capable of Inducing Glucose Uptake in Skeletal Muscle Cells in Vitro. J. Drug Deliv. Sci. Technol. 2020;57:101738. https://doi.org/10.1016/j.jddst.2020.101738
- Meneguin A. B., Silvestre A. L. P, Sposito L., et al. The role of polysaccharides from natural resources to design oral insulin micro- and nanoparticles intended for the treatment of Diabetes mellitus: A review. Carbohydr Polym. 2021 Mar 15;256:117504. https://doi.org/10.1016/j.carbpol.2020.117504
- Maciel V. B. V, Yoshida C. M. P, Pereira S.M.S.S, et al. Electrostatic Self-Assembled Chitosan-Pectin Nano- and Microparticles for Insulin Delivery. Molecules. 2017 Oct 12;22(10):1707. https://doi.org/10.3390/molecules22101707
- Yang Y., Liu Y., Chen S., et al. Carboxymethyl β-cyclodextrin grafted carboxymethyl chitosan hydrogel-based microparticles for oral insulin delivery. Carbohydr Polym. 2020 Oct 15;246:116617. https://doi.org/10.1016/j.carbpol.2020.116617
- Grigoras A. G. Polymer-lipid hybrid systems used as carriers for insulin delivery. Nanomedicine. 2017 Nov;13(8):2425-2437. https://doi.org/10.1016/j.nanj.2017.08.005
- Aafar M. H. M, Hamid K. A. Chitosan-Coated Alginate Nanoparticles Enhanced Absorption Profile of Insulin Via Oral Administration. Curr Drug Deliv. 2019;16(7):672-686. https://doi.org/10.2174/1567201816666190620110748
- Mumuni M. A., Kenechukwu F. C., Ernest O. C., et al. Surface-modified mucoadhesive microparticles as a controlled release system for oral delivery of insulin. Heliyon. 2019 Sep 12;5(9):e02366. https://doi.org/10.1016/j.heliyon.2019.e02366
- Lopedota A., Cutrignelli A., Laquintana V., et al. Spray Dried Chitosan Microparticles for Intravesical Delivery of Celecoxib: Preparation and Characterization. Pharm Res. 2016 Sep;33(9):2195-208. https://doi.org/10.1007/S11095-016-1956-7
- Szekalska M., Sosnowska K., Zakrzeska A., et al. The Influence of Chitosan Cross-linking on the Properties of Alginate Microparticles with Metformin Hydrochloride-In Vitro and In Vivo Evaluation. Molecules. 2017 Jan 22;22(1):182. https://doi.org/10.3390/molecules22010182
- Wang F., Yang S., Hua D., et al. A novel preparation method of paclitaxcel-loaded folate-modified chitosan microparticles and in vitro evaluation. J Biomater Sci Polym Ed. 2016;27(3):276-89. https://doi.org/10.1080/09205063.2015.1121366
- Iurciuc-Tincu C. E., Atanase L. I., Ochiuz L., et al. Curcumin-loaded polysaccharides-based complex particles obtained by polyelectrolyte complexation and ionic gelation. I-Particles obtaining and characterization. Int J Biol Macromol. 2020 Mar 15;147:629-642. https://doi.org/10.1016/j.ijbiomac.2019.12.247
- Correa R. F., Colucci, G., Halla, N., et al. Development of Chitosan Microspheres through a Green Dual Crosslinking Strategy Based on Tripolyphosphate and Vanillin. Molecules. 2021;26:2325. https://doi.org/10.3390/molecules26082325
- Galdioli Pella M. C., Simao A. R., Lima-Tenorio M. K., et al. Chitosan hybrid microgels for oral drug delivery. Carbohydr Polym. 2020 Jul 1;239:116236 https://doi.org/10.1016/j.carbpol.2020.116236
- Ganesh M., Ubaidulla U., Rathanam G., et al. Chitosan-telmisartan polymeric cocrystal for improving oral absorption: in vitro and in vivo evalution. In J Biol Macromol. 2019 Jun 15;131:879-885. https://doi.org/10.1016/j.ijbiomac.2019.03.141
- Liu M., Zhong X., Yang Z. Chitosan functionalized nanocochleates for enhanced oral absorption of cyclosporine A. Sci Rep. 2017 Jan 23;7:41322. https://doi.org/10.1038/srep41322
- Rashedi J., Ghorbanihaghjo A., Asgharzadeh M., et al. Chitosan and quercetin: potential hand in hand encountering tumors in oral delivery system. Curr Pharm Des. 2019:25(28):3074-3086. https://doi.org/10.2147/1381612825666190829144508
- Pyo Y. C., Tran P., Kim D. H., et al. Chitosan-coated nanostructured lipid carriers of fenofibrate with enhanced oral bioavailability and efficacy. Colloids Surf B Biointerfaces. 2020 Dec;196:111331. https://doi.org/10.1016/j.colsurfb.2020.111331
- Dankyi B. O., Amponsah S. K., Allotey-Babington G. L., et al. Chitosan-Coated Hydroxypropylmethyl Cellulose Microparticles of Levodopa (and Carbidopa): In Vitro and Rat Model Kinetic Characteristics. Curr Ther Res Clin Exp. 2020 Nov 3;93:100612. https://doi.org/10.1016/j.curtheres.2020.100612
- Zhu B., Hou T., He H.Calcium-binding casein phosphopeptides-loaded chitosan oligosaccharides core-shell microparticles for controlled calcium delivery: Fabrication, characterization, and in vivo release studies. Int J Biol Macromol. 2020 Jul 1;154:1347-1355. https://doi.org/10.1016/j.ijbiomac.2019.11.014
- Aranaz I., Paños I., Peniche C., et al. Chitosan Spray-Dried Microparticles for Controlled Delivery of Venlafaxine Hydrochloride. Molecules. 2017 Nov 15;22(11):1980. https://doi.org/10.3390/molecules.22111980
补充文件
