Glucans and heteroglycans of fungi and their potential in cancer immunotherapy

Cover Page

Cite item

Full Text

Abstract

The present review is devoted to the oncostatic properties of glucans and heteroglycans produced by higher fungi. These are the most pharmacologically promising substances, since they are produced in large quantities both by artificially grown mycelium and fruiting bodies, do not require complex purification methods, are devoid of toxicity, and, having a complex (immune-mediated and direct) effect on tumors, do not require any complex fractionation procedures. The diversity of β-glucans produced by fungi is shown, the main types of these macromolecules are considered (according to the structural features of the macromolecule, the linear and branched forms of β-glucans are distinguished, first of all). Heteroglycans, a more diverse but less studied group of fungal compounds, have also been characterized. The effects of fungal β-glucans and heteroglycans on immune and cancer cells described in the literature are considered. The long and branched chains of these biopolymers, as well as peptides and lipids covalently bound to them, have fragments that are complementary to the binding sites of the surface receptors of the animal cell and thus act as their agonists or antagonists. They are recognized by the receptors of antigen-representing cells of the immune system as pathogen-associated molecular patterns, what leads to the activation of the cytotoxic component of the immune system; to reduce their tolerogenic and immunosuppressive signaling. Prospects for further study of fungal glucans and heteroglycans are outlined.

About the authors

Ivan V. Zmitrovich

Komarov Botanical Institute of the Russian Academy of Sciences

Author for correspondence.
Email: iv_zmitrovich@mail.ru
ORCID iD: 0000-0002-3927-2527
SPIN-code: 4155-3190
Scopus Author ID: 56521442400
ResearcherId: I-1523-2013
https://binran.ru/sotrudniki/4926/

D.Sc. in Biology, Leading Researcher, Laboratory of Systematics and Geography of the Fungi

Russian Federation, Saint Petersburg

Vladimir V. Perelygin

Saint Petersburg State Chemical and Pharmaceutical University

Email: vladimir.pereligin@pharminnotech.com
ORCID iD: 0000-0002-0999-5644
SPIN-code: 3128-7451
Scopus Author ID: 13105602000
ResearcherId: AAV-6556-2020

Doctor of Medicine (MD), Professor, Head of the Industrial Ecology Department

Russian Federation, Saint Petersburg

Mikhail V. Zharikov

Saint Petersburg State Chemical and Pharmaceutical University

Email: zharikov.mihail@pharminnotech.com
ORCID iD: 0000-0003-0720-501X
SPIN-code: 7818-7228
ResearcherId: AAS-9156-2021

Director of the Department of Industrial Ecology

Russian Federation, Saint Petersburg

References

  1. Peintner U., Pöder R., Pümpel T. The iceman’s fungi. Mycological Research. 1998. V. 102. P. 1153–1162.
  2. Wasser S. P., Weis A. L. Medicinal properties of substances occurring in higher basidiomycetes mushrooms: current perspectives (review). International Journal of Medicinal Mushrooms. 1999. V. 1. P. 31–62.
  3. Wasson V. P., Wasson R. G. Mushrooms, Russia and history. Panteon Books, N.Y., 1957.
  4. Gregory F. J., Healy E. M., Agersborg H. P. et al. Studies on antitumor substances produced by Basidiomycetes. Mycologia. 1966. V. 58. Р. 80–90.
  5. Komatsu N., Okubo S., Kikumoto S. et al. Host-mediated antitumor action of schizophyllan, a glucan produced by Schizophyllum commune. Gann. 1969. V. 60 (2). Р. 133–144.
  6. Ikekawa T., Ikeda Y., Yoshioka Y. et al. Antitumor polysaccharides of Flammulina velutipes 2. The structure of EA-3 and further purification of EA-5. J. Pharmacobiol. Dyn. 1982. V. 5. P. 576–581.
  7. Ikekawa T., Saitoh H., Feng W. et al. Antitumor activity of extracts and polysaccharides. Chemical and Pharmaceutical Bulletin. (Tokyo). 1992. V. 40. P. 1954–1957.
  8. Ikekawa T., Uehara N., Maeda Y. et al. Antitumor activity of aqueous extracts of edible mushrooms. Cancer Research. 1969. V. 29. P. 734–735.
  9. Mizuno T. Development of antitumor polysaccharides from mushroom fungi. Foods and Food Ingredients Journal of Japan. 1996. V. 167. P. 69–85.
  10. Mizuno T., Ando M., Sugie R. et al. Antitumor activity of some polysaccharides isolated from an edible mushroom, ningyotake, the fruiting body and the cultured mycelium of Polyporus confluens. Bioscience. Biotechnology. Biochemistry. 1992. V. 56. P. 34–41.
  11. Mizuno T., Morimoto M., Minato K.I. et al. Polysaccharides from Agaricus blazei stimulate lymphocyte T-cell subsets in mice. Bioscience. Biotechnology. Biochemistry. 1998. V. 62. P. 434–437.
  12. Mizuno T., Ohsawa K., Hagiwara N. et al. Fractionation and characterization of antitumor polysaccharides from Maitake, Grifola frondosa. Agricultural and Biological Chemistry. 1986. V. 50. P. 1679–1688.
  13. Mizuno T., Yeohlui P. Kinoshita T. et al. Antitumor activity and chemical modification of polysaccharides from Niohshimeji mushroom, Tricholoma giganteum. Bioscience. Biotechnology. Biochemistry. 1996. V. 60. P. 30–33.
  14. Mizuno T., Zhuang C., Abe K. et al. Antitumor and hypoglycemic activities of polysaccharides from the sclerotia and mycelia of Inonotus obliquus (Pers.: Fr.) Pil. (Aphyllophoromycetidae). International Journal of Medicinal Mushrooms. 1999. V. 1. P. 301–316.
  15. Chichara G., Hamuro J., Maeda Y. Y. et al. Fractionation and purification of the polysaccharides with marked antitumor activity, especially lentinan, from Lentinus edodes. Cancer Research. 1970. V. 30. P. 2776–2781.
  16. Tsukagoshi S., Hashimoto Y., Fujii G. et al. Krestin (PSK). Cancer Treatment Reviews. 1984. V. 11. P. 31–55.
  17. Hyde K. D., Xu J., Rapior S. et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity. 2019. V. 97. P. 1–136. doi: 10.1007/s13225-019-00430-9
  18. Balandaykin M. E., Zmitrovich I. V. Review on Chaga medicinal mushroom, Inonotus obliquus (higher Basidiomycetes): realm of medicinal applications and approaches on estimating its resource potential. International Journal of Medicinal Mushrooms. 2015. V. 17 (2). P. 95–104. doi: 10.1615/intjmedmushrooms.v17.i2.10
  19. Wasser S. P. Medicinal mushrooms in human clinical studies. Part I. Anticancer, oncoimmunological, and immunomodulatory activities: a review. International Journal of Medicinal Mushrooms. 2017. V. 19 (4). P. 279–317.
  20. Zmitrovich I. V., Belova N. V., Balandaykin M. E. et al. Cancer without pharmacological illusions and a niche for mycotherapy (review). International Journal of Medicinal Mushrooms. 2019. V. 21 (2). P. 105–119. DOI: 0.1615/IntJMedMushrooms.2019030047
  21. Zmitrovich I. V., Bondartseva M. A., Arefyev S. P. et al. Profiles of little-known medicinal polypores: Funalia trogii (Agaricomycetes). International Journal of Medicinal Mushrooms. 2018. V. 20 (7). P. 657–664. doi: 10.1615/IntJMedMushrooms.2018026564
  22. Wasser S.P. Medicinal mushroom science: history, current status, future trends, and unsolved problems. International Journal of Medicinal Mushrooms. 2010. V. 12 (1). P. 1–16.
  23. Łowicki D., Czarny A., Mlynarski J. NMR of carbohydrates. Nucl. Magn. Reson. 2013. V. 42. P. 383–419. doi: 10.1039/9781849737678-00383
  24. Gow N. A. R., Latge J. -P., Munro C. A. The fungal cell wall: structure, biosynthesis, and function. Microbiology Spectrum. 2017. V. 5 (3): 1–25. doi: 10.1128/microbiolspec.FUNK-0035–2016.
  25. Synytsya A., Novák M. Structural diversity of fungal glucans. Carbohydrate Polymers. 2013. V. 92. P. 792–809. doi: 10.1016/j.carbpol.2012.09.077
  26. Hoffmann G. C., Simson B. W., Timell T. E. Structure and molecular size of pachyman. Carbohydrate Research. 1971, V. 20: 185–188.
  27. Baron M., Gorin P. A. J., Iacomini M. Isolation and identification of a linear (1→3)-linked β-d-glucan and other carbohydrate components of the lichen Stereocaulon ramulosum (Sw.) Räusch. Carbohydrate Research. 1988, V. 177. P. 235–239.
  28. Tabata K., Ito W., Kojima T. et al. Ultrasonic degradation of schizophyllan, an antitumor polysaccharide produced by Schizophyllum commune Fries. Carbohydrate Research. 1981. V. 89. P. 121–135.
  29. Ohno N., Adachi Y., Suzuki I. et al. Characterization of the antitumor glucan obtained from liquid-cultured Grifola frondosa. Chemical and Pharmaceutical Bulletin. 1986. V. 34. P. 1709–1715.
  30. Karácsonyi S., Kuniak L. Polysaccharides of Pleurotus ostreatus: Isolation and structure of pleuran, an alkali-insoluble β-glucan. Carbohydrate Polymers. 1994. V. 24 (2). P. 107–111.
  31. Ma Zh., Zhang L., Nishiyama Y. et al. The molecular structure and solution conformation of an acidic heteropolysaccharide from Auricularia auricula-judae. Biopolymers. 2010. V. 95 (4). doi: 10.1002/bip.21559
  32. Zhang A. -Q., Xiao N. -N., Deng Y. -L. et al. Purification and structural investigation of a water-soluble polysaccharide from Flammulina velutipes. Carbohydrate Polymers. 2012. V. 87. P. 2279–2283. doi: 10.1016/j.carbpol.2011.10.061
  33. Zhang A., Deng Y., Sun P. et al. Structural investigation of a novel fucoglucogalactan isolated from fruiting bodies of Hericium erincaeus. Journal of Food Biochemistry. 2010. V. 35. P. 451–456. doi: 10.1016/j.foodchem.2006.11.033
  34. Ding X., Feng S., Cao M. et al. Structure characterization of polysaccharide isolated from the fruiting bodies of Tricholoma matsutake. Carbohydrate Polymers. 2010. V. 81. P. 942–947. doi: 10.1016/j.carbpol.2010.04.010
  35. Ding X., Hou Y.- L., Hou W. -R. Structure elucidation and antioxidant activity of a novel polysaccharide isolated from Boletus speciosus Fors. International Journal of Biological Macromolecules. 2012. V. 50. P. 613–618. doi: 10.1016/j.ijbiomac.2012.01.021
  36. Nie S.-P., Cui S. W., Phillips A. O. et al. Elucidation of the structure of a bioactive hydrophilic polysaccharide from Cordyceps sinensis by methylation analysis and NMR spectroscopy. Carbohydrate Polymers. 2011. V. 84. P. 894–899. doi: 10.1016/j.carbpol.2010.12.033
  37. Maity K. K., Patra S., Dey B., et al. A heteropolysaccharide from aqueous extract of an edible mushroom, Pleurotus ostreatus cultivar: structural and biological studies. Carbohydrate Research. 2011. V. 346. P. 366–372. doi: 10.1016/j.carres.2010.10.026
  38. Barad A., Mackedenski S., Li W. M. et al. Anti-proliferative activity of a purified polysaccharide isolated from the basidiomycete fungus Paxillus involutus. Carbohydrate Polymers. 2018. V. 181. P. 923–930. doi: 10.1016/j.carbpol.2017.11.058
  39. Calixto R., Mattos B., Bittencourt V. et al. β-Galactofuranose-containing structures present in the cell wall of the saprophytic fungus Cladosporium (Hormoconis) resinae. Research in Microbiology. 2010. V. 161. P. 720–728. doi: 10.1016/j.resmic.2010.07.005
  40. Bernabe M., Salvachua D., Jimenez-Barbero J. et al. Structures of wall heterogalactomannans isolated from three genera of entomopathogenic fungi. Fungal Biology. 2011. V. 115. P. 862–870. doi: 10.1016/j.funbio.2011.06.015
  41. Komura D. L., Carbonero E. R., Gracher A. H. P. et al. Structure of Agaricus spp. fucogalactans and their anti-inflammatory and antinociceptive properties. Bioresource Technology. 2010. V. 101. P. 6192–6199. doi: 10.1016/j.biortech.2010.01.142
  42. Chan G. C. F, Chan W. K., Sze D. M. Y. The effects of β-glucan on human immune and cancer cells. Journal of Hematology and Oncology. 2009. V. 2. P. 25.
  43. Bohn J. A., BeMiller J. N. (1→3)-β-D-Glucans as biological response modifiers: A review of structure-functional activity relationships. Carbohydrate Polymers. 1995. V. 28. P. 3–14.
  44. Novak M., Vetvicka V. Beta-glucans, history, and the present: Immunomodulatory aspects and mechanisms of action. Journal of Immunotoxicology. 2008. V. 5. P. 47–57.
  45. Zmitrovich I. V., Vlasenko V. A., Perelygin V. V., Figurin I. S. Prevention and treatment of cancer using so-called medicinal mushrooms raw materials: Criticism, facts, and perspectives. Pharmacy Formulas. 2020. V. 2. N. 4. P. 118–127. doi: 10.17816/phf55224. (In Russ).
  46. Brown G. D., Herre J., Williams D. L. Dectin-1 mediates the biological effects of beta-glucans. Journal of Experimental Medicine. 2003. V. 197 (9). P. 1119–1124. doi: 10.1084/jem.20021890
  47. Gross O., Gewies A., Finger K. et al. Card9 controls a non-TLR signaling pathway for innate anti-fungal immunity. Nature. 2006. V. 442 (7103). P. 651–656. doi: 10.1038/nature04926
  48. Dennehy K. M., Brown G. D. The role of the β-glucan receptor Dectin-1 in control of fungal infection. Journal of Leukocyte Biology. 2007. V. 82 (2). P. 253–258. doi: 10.1189/jlb.1206753
  49. Ikeda Y., Adachi Y., Ishii T. et al. Dissociation of Toll-like receptor 2-mediated innate immune response to zymosan by organic solvent-treatment without loss of Dectin-1 reactivity. Biological and Pharmaceutical Bulletin. 2008. V. 31 (1). P. 13–18. doi: 10.1248/bpb.31.13
  50. Coffelt S. B., Lewis C. E., Naldini L. et al. Elusive identities and overlapping phenotypes of proangiogenic myeloid cells in tumors. American Journal of Pathology. 2010. V. 176. P. 1564–1576.
  51. Mantovani A. Molecular pathways linking inflammation and cancer. Current Molecular Medicine. 2010. V. 10. P. 369–373. doi: 10.2174/156652410791316968
  52. Qian B. Z., Pollard J. W. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010. V. 141. P. 39–51. doi: 10.1016/j.cell.2010.03.014
  53. Quaranta V., Schmid Michael C. Macrophage-mediated subversion of anti-tumour immunity. Cells. 2019. V. 8(7). P. 747. doi: 10.3390/cells8070747
  54. Min L., Luo F., Ding C. et al. Dectin-1 activation by a natural product β-glucan converts immunosuppressive macrophages into an M1-like phenotype. Journal of Immunology. 2015. V. 195 (10). P. 5055–5065. doi: 10.4049/jimmunol.1501158
  55. Utomo R. Yu., Herwandhani P., Susidarti R. A. et al. Synthesis and cytotoxic activity of 2,5-bis(4-boronic acid)benzylidine cyclopentanone on HER2-overexpressed cancer cells. Indonesian Journal of Pharmacy. 2017. V. 28 (2). P. 74–81. doi: 10.14499/indonesianjpharm28iss2pp74
  56. Ferreira I. G., Pucci M., Venturi G. et al. Glycosylation as a main regulator of growth and death factor receptors signaling. International Journal of Molecular Sciences. 2018. V. 19. P. 2–28. doi: 10.3390/ijms19020580
  57. Moher D., Liberati A., Tetzlaff J. et al. Preferred reporting items for systematic reviews and meta-analyses: the prisma statement. Annals of Internal Medicine. 2009. V. 151. P. 264–269. doi: 10.7326/0003-4819-151-4-200908180-00135
  58. Jin X., Ruiz Beguerier J., Sze D. M. et al. Ganoderma lucidum (Reishi mushroom) for cancer treatement. Cochrane Database of Systematic Reviews. 2012. V. 6. CD 007731. doi: 10.1002/14651858.CD007731.pub2
  59. Zhong L., Yan P., Lam W. C. et al. Coriolus versicolor and Ganoderma lucidum related natural products as an adjunct therapy for cancers: A systematic review and meta-analysis of randomized controlled trials. Frontiers in Pharmacology. 2019. doi: 10.3389/fphar.2019.00703
  60. Zmitrovich I. V., Bondartseva M. A., Arefyev S. P. et al. Professor Solomon P. Wasser and Medicinal Mushroom Science with a special attention to the problems of mycotherapy in oncology. International Journal of Medicinal Mushrooms. 2022. V. 24 (1). P. 13–26. doi: 10.1615/IntJMedMushrooms.2021041831

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Primary structure of higher fungi β-glucans: 1 – (1→3)-β-D-glucan; 2 – (1→6)-β-D-glucan; 3 – (1→3),(1→4)-β-D-glucan; 4 – branched (1→3),(1→6)-β-D-glucan; 5 – branched (1→6),(1→3)-β-D-glucan

Download (264KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies