Иммунотропная терапия: блокада CTLA-4/B7- и PD-1/PD-L1-путей в терапии злокачественных новообразований. Часть 1. Иммунологические аспекты
- Авторы: Шукшин А.А.1, Рубинштейн А.А.1, Головкин А.С.1, Моисеева О.М.1, Кудрявцев И.В.1
-
Учреждения:
- Национальный медицинский исследовательский центр им. В.А. Алмазова
- Выпуск: Том 25, № 3 (2025)
- Страницы: 69-77
- Раздел: Аналитические обзоры
- URL: https://journals.rcsi.science/MAJ/article/view/380137
- DOI: https://doi.org/10.17816/MAJ641689
- EDN: https://elibrary.ru/SOCGUL
- ID: 380137
Цитировать
Аннотация
Сигнальные пути CTLA-4/B7 и PD-1/PD-L1 являются ключевыми при формировании и поддержании периферической иммунологической толерантности. Взаимодействие рецепторов PD-1 и CTLA-4 со своими лигандами запускает каскад реакций, способствующий подавлению активности эффекторных CD4+- и CD8+-Т-лимфоцитов. Однако роль этих сигнальных каскадов в иммунных реакциях достаточно многогранна. Так, на поверхности Т-клеток CTLA-4 конкурирует с CD28 за лиганды и при взаимодействии с молекулами семейства В7 ингибирует передачу сигнала с Т-клеточного рецептора (TCR). В то же время данное взаимодействие способствует выработке противовоспалительных цитокинов IL-10 и TGF-β регуляторными Т-лимфоцитами (Трег). На регуляторных Т-лимфоцитах CTLA-4 после связывания с молекулами семейства В7 (CD80 и CD86) на поверхности антигенпрезентирующей клетки опосредует CTLA-4-зависимый трогоцитоз, вследствие которого снижается экспрессия молекул семейства B7 на антигенпрезентирующие клетки. Это снижает эффективность антигенпрезентирующих клеток в стимуляции клональной экспансии и выживания активированных Т-клеток в лимфоидной ткани. Молекула PD-1, в свою очередь, экспрессируется на широком спектре клеток, включая эффекторные CD4+- и CD8+-Т-лимфоциты. Данная молекула крайне важна для выживания и проявления эффекторных свойств активированных антиген-специфических Т-лимфоцитов в воспаленных периферических тканях. Кроме того, взаимодействие PD-1 с PD-L1 может стимулировать выработку противовоспалительных цитокинов регуляторных Т-лимфоцитов. При онкологических заболеваниях опухолевые клетки могут использовать преимущества периферической толерантности, реализуемой как молекулой CTLA-4, так и молекулой PD-1. Следовательно, блокада этих рецепторов может выступать эффективным терапевтическим подходом в клинической практике при лечении злокачественных новообразований.
Ключевые слова
Об авторах
Андрей Алексеевич Шукшин
Национальный медицинский исследовательский центр им. В.А. Алмазова
Email: andrei.shukshinf@yandex.ru
ORCID iD: 0009-0009-0830-1733
Россия, Санкт-Петербург
Артем Аркадьевич Рубинштейн
Национальный медицинский исследовательский центр им. В.А. Алмазова
Автор, ответственный за переписку.
Email: arrubin6@mail.ru
ORCID iD: 0000-0002-8493-5211
SPIN-код: 6025-1790
Россия, Санкт-Петербург
Алексей Сергеевич Головкин
Национальный медицинский исследовательский центр им. В.А. Алмазова
Email: golovkin_a@mail.ru
ORCID iD: 0000-0002-7577-628X
SPIN-код: 8803-2425
д-р мед. наук
Россия, Санкт-ПетербургОльга Михайловна Моисеева
Национальный медицинский исследовательский центр им. В.А. Алмазова
Email: moiseeva@almazovcentre.ru
ORCID iD: 0000-0002-7817-3847
SPIN-код: 1492-3900
д-р мед. наук, профессор
Россия, Санкт-ПетербургИгорь Владимирович Кудрявцев
Национальный медицинский исследовательский центр им. В.А. Алмазова
Email: igorek1981@yandex.ru
ORCID iD: 0000-0001-7204-7850
SPIN-код: 4903-7636
канд. биол. наук
Россия, Санкт-ПетербургСписок литературы
- Takaba H, Takayanagi H. The mechanisms of T cell selection in the thymus. Trends Immunol. 2017;38(11):805–816. doi: 10.1016/j.it.2017.07.010
- Gianchecchi E, Delfino DV, Fierabracci A. Recent insights into the role of the PD-1/PD-L1 pathway in immunological tolerance and autoimmunity. Autoimmun Rev. 2013;12(11):1091–1100. doi: 10.1016/j.autrev.2013.05.003
- Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236(1):219–242. doi: 10.1111/j.1600-065X.2010.00923.x
- Fife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev. 2008;224(1):166–182. doi: 10.1111/j.1600-065X.2008.00662.x
- Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–264. doi: 10.1038/nrc3239
- Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016;8(328):328rv4. doi: 10.1126/scitranslmed.aad7118 EDN: WPOOLX
- Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood. 2018;131(1):58–67. doi: 10.1182/blood-2017-06-741033 EDN: YFEFTV
- Chambers CA, Kuhns MS, Egen JG, Allison JP. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol. 2001;19(1):565–594. doi: 10.1146/annurev.immunol.19.1.565
- Naluai ÅT, Nilsson S, Samuelsson L, et al. The CTLA4/CD28 gene region on chromosome 2q33 confers susceptibility to celiac disease in a way possibly distinct from that of type 1 diabetes and other chronic inflammatory disorders. Tissue Antigens. 2000;56(4):350–355. doi: 10.1034/j.1399-0039.2000.560407.x
- Collins AV, Brodie DW, Gilbert RJC, et al. The interaction properties of costimulatory molecules revisited. Immunity. 2002;17(2):201–210. doi: 10.1016/s1074-7613(02)00362-x
- Perkins D, Wang Z, Donovan C, et al. Regulation of CTLA-4 expression during T cell activation. J Immunol. 1996;156(11):4154–4159. doi: 10.4049/jimmunol.156.11.4154
- Takahashi T, Tagami T, Yamazaki S, et al. Immunologic self-tolerance maintained by Cd25+Cd4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte–associated antigen 4. J Exp Med. 2000;192(2):303–310. doi: 10.1084/jem.192.2.303
- Shiratori T, Miyatake S, Ohno H, et al. Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity. 1997;6(5):583–589. doi: 10.1016/s1074-7613(00)80346-5
- Zhang Y, Allison JP. Interaction of CTLA-4 with AP50, a clathrin-coated pit adaptor protein. Proc Natl Acad Sci. 1997;94(17):9273–9278. doi: 10.1073/pnas.94.17.9273
- Bluestone JA, St. Clair EW, Turka LA. CTLA4Ig: bridging the basic immunology with clinical application. Immunity. 2006;24(3):233–238. doi: 10.1016/j.immuni.2006.03.001
- Bachmann MF, McKall-Faienza K, Schmits R, et al. Distinct roles for LFA-1 and CD28 during activation of naive T cells: adhesion versus costimulation. Immunity. 1997;7(4):549–557. doi: 10.1016/s1074-7613(00)80376-3
- Bachmann MF, Sebzda E, Kündig TM, et al. T cell responses are governed by avidity and co-stimulatory thresholds. Eur J Immunol. 1996;26(9):2017–2022. doi: 10.1002/eji.1830260908
- Dodson LF, Boomer JS, Deppong CM, et al. Targeted knock-in mice expressing mutations of CD28 reveal an essential pathway for costimulation. Mol Cell Biol. 2009;29(13):3710–3721. doi: 10.1128/MCB.01869-08
- Fraser JD, Irving BA, Crabtree GR, Weiss A. Regulation of interleukin-2 gene enhancer activity by the T cell accessory molecule CD28. Science. 1991;251(4991):313–316. doi: 10.1126/science.1846244 EDN: BIWFCV
- Okkenhaug K, Wu L, Garza KM, et al. A point mutation in CD28 distinguishes proliferative signals from survival signals. Nat Immunol. 2001;2(4):325–332. doi: 10.1038/86327
- Watts TH. Staying alive: T cell costimulation, CD28, and Bcl-xL. J Immunol. 2010;185(7):3785–3787. doi: 10.4049/jimmunol.1090085
- Roybal KT, Buck TE, Ruan X, et al. Computational spatiotemporal analysis identifies WAVE2 and cofilin as joint regulators of costimulation-mediated T cell actin dynamics. Sci Signal. 2016;9(424):rs3. doi: 10.1126/scisignal.aad4149
- Muscolini M, Camperio C, Porciello N, et al. Phosphatidylinositol 4-phosphate 5-kinase α and Vav1 mutual cooperation in CD28-mediated actin remodeling and signaling functions. J Immunol. 2015;194(3):1323–1333. doi: 10.4049/jimmunol.1401643
- Tan YX, Manz BN, Freedman TS, et al. Inhibition of the kinase Csk in thymocytes reveals a requirement for actin remodeling in the initiation of full TCR signaling. Nat Immunol. 2014;15(2):186–194. doi: 10.1038/ni.2772
- Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995;182(2):459–465. doi: 10.1084/jem.182.2.459
- Sharpe AH, Freeman GJ. The B7–CD28 superfamily. Nat Rev Immunol. 2002;2(2):116–126. doi: 10.1038/nri727 EDN: LURQSR
- Guntermann C, Alexander DR. CTLA-4 suppresses proximal TCR signaling in resting human CD4+ T Cells by inhibiting ZAP-70 Tyr319 phosphorylation: a potential role for tyrosine phosphatases. J Immunol. 2002;168(9):4420–4429. doi: 10.4049/jimmunol.168.9.4420
- Lee KM, Chuang E, Griffin M, et al. Molecular basis of T cell inactivation by CTLA-4. Science. 1998;282(5397):2263–2266. doi: 10.1126/science.282.5397.2263 EDN: CVRNSD
- Schildberg FA, Klein SR, Freeman GJ, Sharpe AH. Coinhibitory pathways in the B7-CD28 ligand-receptor family. Immunity. 2016;44(5):955–972. doi: 10.1016/j.immuni.2016.05.002 EDN: XYWUMX
- Tivol EA, Borriello F, Schweitzer AN, et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 1995;3(5):541–547. doi: 10.1016/1074-7613(95)90125-6
- Chikuma S, Bluestone JA. Expression of CTLA-4 and FOXP3 in cis protects from lethal lymphoproliferative disease. Eur J Immunol. 2007;37(5):1285–1289. doi: 10.1002/eji.200737159
- Tekguc M, Wing JB, Osaki M, et al. Treg-expressed CTLA-4 depletes CD80/CD86 by trogocytosis, releasing free PD-L1 on antigen-presenting cells. Proc Natl Acad Sci USA. 2021;118(30):e2023739118. doi: 10.1073/pnas.2023739118 EDN: DNGNHE
- Fallarino F, Grohmann U, Hwang KW, et al. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol. 2003;4(12):1206–1212. doi: 10.1038/ni1003
- Munn DH, Shafizadeh E, Attwood JT, et al. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med. 1999;189(9):1363–1372. doi: 10.1084/jem.189.9.1363
- Ohue Y, Nishikawa H. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci. 2019;110(7):2080–2089. doi: 10.1111/cas.14069 EDN: AJHXGN
- Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12(4):298–306. doi: 10.1038/nrc3245
- Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11(11):3887–3895. doi: 10.1002/j.1460-2075.1992.tb05481.x
- Nishimura H. Immunological studies on PD-1 deficient mice: implication of PD-1 as a negative regulator for B cell responses. Int Immunol. 1998;10(10):1563–1572. doi: 10.1093/intimm/10.10.1563 EDN: IPYCNR
- Nishimura H, Nose M, Hiai H, et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999;11(2):141–151. doi: 10.1016/s1074-7613(00)80089-8
- Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol. 2007;19(7):813–824. doi: 10.1093/intimm/dxm057 EDN: XQBTAF
- Zhang X, Schwartz JCD, Guo X, et al. Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity. 2004;20(3):337–347. doi: 10.1016/s1074-7613(04)00051-2
- Boussiotis VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med. 2016;375(18):1767–1778. doi: 10.1056/NEJMra1514296
- Okazaki T, Maeda A, Nishimura H, et al. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci USA. 2001;98(24):13866–13871. doi: 10.1073/pnas.231486598
- Agata Y, Kawasaki A, Nishimura H, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol. 1996;8(5):765–772. doi: 10.1093/intimm/8.5.765 EDN: IPYIVD
- Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26(1):677–704. doi: 10.1146/annurev.immunol.26.021607.090331
- Terme M, Ullrich E, Aymeric L, et al. IL-18 induces PD-1-dependent immunosuppression in cancer. Cancer Res. 2011;71(16):5393–5399. doi: 10.1158/0008-5472.CAN-11-0993
- Peach RJ, Bajorath J, Brady W, et al. Complementarity determining region 1 (CDR1)- and CDR3-analogous regions in CTLA-4 and CD28 determine the binding to B7-1. J Exp Med. 1994;180(6):2049–2058. doi: 10.1084/jem.180.6.2049
- Latchman Y, Wood CR, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2(3):261–268. doi: 10.1038/85330
- Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the Pd-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192(7):1027–1034. doi: 10.1084/jem.192.7.1027
- Yamazaki T, Akiba H, Iwai H, et al. Expression of programmed death 1 ligands by murine T cells and APC. J Immunol. 2002;169(10):5538–5545. doi: 10.4049/jimmunol.169.10.5538
- Pinchuk IV, Saada JI, Beswick EJ, et al. PD-1 ligand expression by human colonic myofibroblasts/fibroblasts regulates CD4+ T-cell activity. Gastroenterology. 2008;135(4):1228–1237.e2. doi: 10.1053/j.gastro.2008.07.016
- Mühlbauer M, Fleck M, Schütz C, et al. PD-L1 is induced in hepatocytes by viral infection and by interferon-α and -γ and mediates T cell apoptosis. J Hepatol. 2006;45(4):520–528. doi: 10.1016/j.jhep.2006.05.007
- Stanciu LA, Bellettato CM, Laza-Stanca V, et al. Expression of programmed death-1 ligand (PD-L) 1, PD-L2, B7-H3, and Inducible costimulator ligand on human respiratory tract epithelial cells and regulation by respiratory syncytial virus and type 1 and 2 cytokines. J Infect Dis. 2006;193(3):404–412. doi: 10.1086/499275
- Liang SC, Latchman YE, Buhlmann JE, et al. Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur J Immunol. 2003;33(10):2706–2716. doi: 10.1002/eji.200324228
- Zhong X, Tumang JR, Gao W, et al. PD-L2 expression extends beyond dendritic cells/macrophages to B1 cells enriched for V(H)11/V(H)12 and phosphatidylcholine binding. Eur J Immunol. 2007;37(9):2405–2410. doi: 10.1002/eji.200737461
- Messal N, Serriari NE, Pastor S, et al. PD-L2 is expressed on activated human T cells and regulates their function. Mol Immunol. 2011;48(15–16):2214–2219. doi: 10.1016/j.molimm.2011.06.436
- Wu Q, Jiang L, Li SC, et al. Small molecule inhibitors targeting the PD-1/PD-L1 signaling pathway. Acta Pharmacol Sin. 2021;42(1):1–9. doi: 10.1038/s41401-020-0366-x
- Francisco LM, Salinas VH, Brown KE, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med. 2009;206(13):3015–3029. doi: 10.1084/jem.20090847
- Kuol N, Stojanovska L, Nurgali K, Apostolopoulos V. PD-1/PD-L1 in disease. Immunotherapy. 2018;10(2):149–160. doi: 10.2217/imt-2017-0120
- Zhong X. Suppression of expression and function of negative immune regulator PD-1 by certain pattern recognition and cytokine receptor signals associated with immune system danger. Int Immunol. 2004;16(8):1181–1188. doi: 10.1093/intimm/dxh121 EDN: IPXXAZ
- Marin-Acevedo JA, Dholaria B, Soyano AE, et al. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol. 2018;11(1):39. doi: 10.1186/s13045-018-0582-8 EDN: MDFXSX
- Nomi T, Sho M, Akahori T, et al. Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res. 2007;13(7):2151–2157. doi: 10.1158/1078-0432.CCR-06-2746
- Nakanishi J, Wada Y, Matsumoto K, et al. Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. Cancer Immunol Immunother. 2007;56(8):1173–1182. doi: 10.1007/s00262-006-0266-z EDN: AONPRR
- Thompson RH, Dong H, Kwon ED. Implications of B7-H1 expression in clear cell carcinoma of the kidney for prognostication and therapy. Clin Cancer Res. 2007;13(2 Pt 2):709s–715s. doi: 10.1158/1078-0432.CCR-06-1868
- Thompson RH, Kwon ED. Significance of B7-H1 overexpression in kidney cancer. Clin Genitourin Cancer. 2006;5(3):206–211. doi: 10.3816/CGC.2006.n.038
- Thompson RH, Kuntz SM, Leibovich BC, et al. Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Res. 2006;66(7):3381–3385. doi: 10.1158/0008-5472.CAN-05-4303
- Hino R, Kabashima K, Kato Y, et al. Tumor cell expression of programmed cell death-1 ligand 1 is a prognostic factor for malignant melanoma. Cancer. 2010;116(7):1757–1766. doi: 10.1002/cncr.24899 EDN: NYSGSZ
- Yearley JH, Gibson C, Yu N, et al. PD-L2 expression in human tumors: relevance to anti-PD-1 therapy in cancer. Clin Cancer Res. 2017;23(12):3158–3167. doi: 10.1158/1078-0432.CCR-16-1761
- Sun C, Mezzadra R, Schumacher TN. Regulation and function of the PD-L1 checkpoint. Immunity. 2018;48(3):434–452. doi: 10.1016/j.immuni.2018.03.014 EDN: YGKVDN
- Spranger S, Spaapen RM, Zha Y, et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med. 2013;5(200):200ra116. doi: 10.1126/scitranslmed.3006504
- Parsa AT, Waldron JS, Panner A, et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med. 2007;13(1):84–88. doi: 10.1038/nm1517
- Akbay EA, Koyama S, Carretero J, et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 2013;3(12):1355–1363. doi: 10.1158/2159-8290.CD-13-0310
- Jiang W, He Y, He W, et al. Exhausted CD8+ T cells in the tumor immune microenvironment: new pathways to therapy. Front Immunol. 2021;11;622509. doi: 10.3389/fimmu.2020.622509 EDN: TADKPQ
- Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15(8):486–499. doi: 10.1038/nri3862
- Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat Med. 2002;8(8):793–800. doi: 10.1038/nm730
- Selenko-Gebauer N, Majdic O, Szekeres A, et al. B7-H1 (programmed death-1 ligand) on dendritic cells is involved in the induction and maintenance of T cell energy. J Immunol. 2003;170(7):3637–3644. doi: 10.4049/jimmunol.170.7.3637
- Azuma T, Yao S, Zhu G, et al. B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood. 2008;111(7):3635–3643. doi: 10.1182/blood-2007-11-123141
- Chang CH, Qiu J, O’Sullivan D, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015;162(6):1229–1241. doi: 10.1016/j.cell.2015.08.016
- Gato-Cañas M, Zuazo M, Arasanz H, et al. PDL1 signals through conserved sequence motifs to overcome interferon-mediated cytotoxicity. Cell Rep. 2017;20(8):1818–1829. doi: 10.1016/j.celrep.2017.07.075
Дополнительные файлы

