Применение наночастиц серебра в медицине: плюсы и минусы. Преимущества композитов наночастиц серебра с органическими антибактериальными субстанциями и биосовместимыми полимерами
- Авторы: Владимирова Е.В.1, Шамова О.В.1
-
Учреждения:
- Институт экспериментальной медицины
- Выпуск: Том 25, № 3 (2025)
- Страницы: 5-21
- Раздел: Аналитические обзоры
- URL: https://journals.rcsi.science/MAJ/article/view/380132
- DOI: https://doi.org/10.17816/MAJ635890
- EDN: https://elibrary.ru/WIZXYC
- ID: 380132
Цитировать
Аннотация
Развитие резистентности бактерий к применяемым в клинической практике препаратам является серьезной проблемой современной медицины. Наночастицы в настоящее время широко используются в различных отраслях промышленности, а также в медицине. Антибактериальный потенциал наночастиц серебра обширен и распространяется на грамотрицательные и грамположительные бактерии, включая мультирезистентные штаммы, в том числе в составе бактериальных биопленок. Установлено, что наночастицы серебра имеют множественные мишени антимикробного действия, вследствие чего развитие микробной резистентности к ним затруднено. Кроме того, для серебра описаны другие виды биологической активности: ранозаживляющая, противовоспалительная, противоопухолевая. Однако, несмотря на несомненные достоинства этих наноматериалов, до сих пор остаются и проблемы с их применением в медицине, связанные с некоторым нежелательным влиянием на живые объекты. Столь разнообразные биологические свойства, а также потенциальная токсичность наночастиц серебра определяются размером и формой наночастиц, способом их синтеза и видом стабилизирующего агента. В данном обзоре приводится информация по способам модификации наночастиц серебра антибактериальными соединениями, такими как антибиотики, антимикробные пептиды, которые демонстрируют синергические и аддитивные воздействия против патогенных бактерий при использовании в комбинации с наночастицами, а при создании комплексов повышают антимикробную активность и обеспечивают стабильность наночастиц. Поэтому композиты наночастиц серебра с органическими антибактериальными препаратами и биосовместимыми полимерами могут рассматриваться как перспективная основа для создания новых эффективных антибактериальных препаратов, лишенных нежелательных свойств.
Об авторах
Елизавета Васильевна Владимирова
Институт экспериментальной медицины
Email: vladymyrovaliza18@mail.ru
ORCID iD: 0000-0002-6576-9844
SPIN-код: 8068-4141
Россия, Санкт-Петербург
Ольга Валерьевна Шамова
Институт экспериментальной медицины
Автор, ответственный за переписку.
Email: oshamova@yandex.ru
ORCID iD: 0000-0002-5168-2801
SPIN-код: 2913-4726
д-р биол. наук, чл.-корр. РАН
Россия, Санкт-ПетербургСписок литературы
- Hong L, Luo SH, Yu CH, et al. Functional nanomaterials and their potential applications in antibacterial therapy. Pharm Nanotechnol. 2019;7(2):129–146. doi: 10.2174/2211738507666190320160802
- Betts JW, Hornsey M, La Ragione RM. Novel antibacterials: alternatives to traditional antibiotics. Adv Microb Physiol. 2018;73:123–169. doi: 10.1016/bs.ampbs.2018.06.001 EDN: YJVGMP
- Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver nanoparticles and their antibacterial applications. Int J Mol Sci. 2021;22(13):7202. doi: 10.3390/ijms22137202 EDN: ZDZBXM
- Kowalczyk P, Szymczak M, Maciejewska M, et al. All that glitters is not silver-A new look at microbiological and medical applications of silver nanoparticles. Int J Mol Sci. 2021;22(2):1–29. doi: 10.3390/ijms22020854 EDN: QEGENO
- Deshmukh SP, Patil SM, Mullani SB, Delekar SD. Silver nanoparticles as an effective disinfectant: a review. Mater Sci Eng C Mater Biol Appl. 2019;97:954–965. doi: 10.1016/j.msec.2018.12.102
- Li L, Stoiber M, Wimmer A, et al. To what extent can full-scale wastewater treatment plant effluent influence the occurrence of silver-based nanoparticles in surface waters? Environ Sci Technol. 2016;50(12):6327–6333. doi: 10.1021/acs.est.6b00694
- Li P, Su M, Wang X, et al. Environmental fate and behavior of silver nanoparticles in natural estuarine systems. J Environ Sci. 2020;88:248–259. doi: 10.1016/j.jes.2019.09.013 EDN: ICNUCO
- Wimmer A, Urstoeger A, Funck NC, et al. What happens to silver-based nanoparticles if they meet seawater? Water Res. 2020;171:115399. doi: 10.1016/j.watres.2019.115399 EDN: QKGGQD
- Lee JH, Mun J, Park JD, Yu IJ. A health surveillance case study on workers who manufacture silver nanomaterials. Nanotoxicology. 2012;6(6):667–669. doi: 10.3109/17435390.2011.600840
- Ferdous Z, Nemmar A. Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci. 2020;21(7):2375. doi: 10.3390/ijms21072375 EDN: OSGAEA
- Tran QH, Nguyen VQ, Le AT. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol. 2013;4(3):033001. doi: 10.1088/2043-6262/4/3/033001 EDN: SOFTKX
- Yaqoob AA, Umar K, Ibrahim MNM. Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications — a review. Appl Nanosci. 2020;10(5):1369–1378. doi: 10.1007/s13204-020-01318-w EDN: ABMMGC
- Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17(9):1534. doi: 10.3390/ijms17091534 EDN: XTTASF
- Elsupikhe RF, Shameli K, Ahmad MB, et al. Green sonochemical synthesis of silver nanoparticles at varying concentrations of κ-carrageenan. Nanoscale Res Lett. 2015;10(1):302. doi: 10.1186/s11671-015-0916-1 EDN: NXNCJW
- Dung TMD, Le TTT, Fribourg-Blanc E, Dang MC. Influence of surfactant on the preparation of silver nanoparticles by polyol method. Adv Nat Sci Nanosci Nanotechnol. 2012;3(3):035004. doi: 10.1088/2043-6262/3/3/035004
- Krutyakov YA, Kudrinskiy AA, Olenin AY, Lisichkin GV. Synthesis and properties of silver nanoparticles: advances and prospects. Russ Chem Rev. 2008;77(3):233–257. doi: 10.1070/RC2008v077n03ABEH003751 EDN: LLIPLX
- Nam KT, Lee YJ, Krauland EM, et al. Peptide-mediated reduction of silver ions on engineered biological scaffolds. ACS Nano. 2008;2(7):1480–1486. doi: 10.1021/nn800018n
- Sintubin L, De Windt W, Dick J, et al. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol. 2009;84(4):741–749. doi: 10.1007/s00253-009-2032-6 EDN: HMEGAG
- Balaji DS, Basavaraja S, Deshpande R, et al. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces. 2009;68(1):88–92. doi: 10.1016/j.colsurfb.2008.09.022 EDN: MCTCMH
- Chung IM, Park I, Seung-Hyun K, et al. Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Res Lett. 2016;11(1):40. doi: 10.1186/s11671-016-1257-4 EDN: HEJSCC
- Korshed P, Li L, Liu Z, et al. Size-dependent antibacterial activity for laser-generated silver nanoparticles. J Interdiscip Nanomed. 2019;4(1):24–33. doi: 10.1002/jin2.54
- Cavassin ED, de Figueiredo LF, Otoch JP, et al. Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. J Nanobiotechnology. 2015;13(1):64. doi: 10.1186/s12951-015-0120-6 EDN: TUVZVG
- Marambio-Jones C, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 2010;12(5):1531–1551. doi: 10.1007/s11051-010-9900-y EDN: NAWQFD
- Qing Y, Cheng L, Li R, et al. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine. 2018;13:3311–3327. doi: 10.2147/IJN.S165125
- Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol. 2016;7:1831. doi: 10.3389/fmicb.2016.01831 EDN: XZNZHB
- Swolana D, Wojtyczka RD. Activity of silver nanoparticles against Staphylococcus spp. Int J Mol Sci. 2022;23(8):4298. doi: 10.3390/ijms23084298 EDN: LKOKGB
- Klueh U, Wagner V, Kelly S, et al. Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J Biomed Mater Res. 2000;53(6):621–631. doi: 10.1002/1097-4636(2000)53:6<621::AID-JBM2>3.0.CO;2-Q
- Yamanaka M, Hara K, Kudo J. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol. 2005;71(11):7589–7593. doi: 10.1128/AEM.71.11.7589-7593.2005
- Durán N, Marcato PD, Conti R De, et al. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc. 2010;21(6):949–959. doi: 10.1590/S0103-50532010000600002
- Slawson RM, Lee H, Trevors JT. Bacterial interactions with silver. Biol Met. 1990;3(3–4):151–154. doi: 10.1007/BF01140573 EDN: HNWRKT
- Panzner MJ, Bilinovich SM, Parker JA, et al. Isomorphic deactivation of a Pseudomonas aeruginosa oxidoreductase: The crystal structure of Ag(I) metallated azurin at 1.7 Å. J Inorg Biochem. 2013;128:11–16. doi: 10.1016/j.jinorgbio.2013.07.011
- Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73(6):1712–1720. doi: 10.1128/AEM.02218-06
- Tang S, Zheng J. Antibacterial activity of silver nanoparticles: structural effects. Adv Healthc Mater. 2018;7(13):e1701503. doi: 10.1002/adhm.201701503
- Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed. 2017;12:1227–1249. doi: 10.2147/IJN.S121956 EDN: WLABYY
- Jo DH, Kim JH, Lee TG, Kim JH. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine. 2015;11(7):1603–1611. doi: 10.1016/j.nano.2015.04.015 EDN: VETAOL
- Xu L, Wang YY, Huang J, et al. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics. 2020;10(20):8996–9031. doi: 10.7150/thno.45413 EDN: EQOPYZ
- Sharma VK, Zboril R. Silver nanoparticles in natural environment: formation, fate, and toxicity. In: Yan B, Zhou H, Gardea-Torresdey JL, eds. Bioactivity of Engineered Nanoparticles. Springer; 2017. P. 239–258. doi: 10.1007/978-981-10-5864-6_10
- Burkowska-But A, Sionkowski G, Walczak M. Influence of stabilizers on the antimicrobial properties of silver nanoparticles introduced into natural water. J Environ Sci. 2014;26(3):542–549. doi: 10.1016/S1001-0742(13)60451-9
- dos Santos CA, Jozala AF, Pessoa Jr A, Seckler MM. Antimicrobial effectiveness of silver nanoparticles co-stabilized by the bioactive copolymer pluronic F68. J Nanobiotechnology. 2012;10(1):43. doi: 10.1186/1477-3155-10-43
- Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev. 2003;27(2–3):341–353. doi: 10.1016/S0168-6445(03)00047-0 EDN: BJEDKH
- Clement JL, Jarrett PS. Antibacterial Silver. Met Based Drugs. 1994;1(5–6):467–482. doi: 10.1155/MBD.1994.467
- von Rozycki T, Nies DH. Cupriavidus metallidurans: evolution of a metal-resistant bacterium. Antonie Van Leeuwenhoek. 2009;96(2):115–139. doi: 10.1007/s10482-008-9284-5 EDN: NAKECP
- Nies DH. The biological chemistry of the transition metal “transportome” of Cupriavidus metallidurans. Metallomics. 2016;8(5):481–507. doi: 10.1039/C5MT00320B EDN: WUGHKJ
- Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. 2013;65(13–14):1803–1815. doi: 10.1016/j.addr.2013.07.011
- Markowska K, Grudniak AM, Wolska KI. Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim Pol. 2013;60(4):523–530. EDN: SOHPEV
- Percival SL, Bowler PG, Russell D. Bacterial resistance to silver in wound care. J Hosp Infect. 2005;60(1):1–7. doi: 10.1016/j.jhin.2004.11.014 EDN: XTFMGU
- Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8(9):881–890. doi: 10.3201/eid0809.020063
- Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623–633. doi: 10.1038/nrmicro2415
- Gjermansen M, Ragas P, Sternberg C, et al. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ Microbiol. 2005;7(6):894–904. doi: 10.1111/j.1462-2920.2005.00775.x
- Reid DW, Withers NJ, Francis L, et al. Iron deficiency in cystic fibrosis. Chest. 2002;121(1):48–54. doi: 10.1378/chest.121.1.48
- Di Martino P, Fursy R, Bret L, et al. Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. Can J Microbiol. 2003;49(7):443–449. doi: 10.1139/w03-056
- Patel CN, Wortham BW, Lines JL, et al. Polyamines are essential for the formation of plague biofilm. J Bacteriol. 2006;188(7):2355–2363. doi: 10.1128/JB.188.7.2355-2363.2006 EDN: MBXMIX
- Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev. 2009;73(2):310–347. doi: 10.1128/MMBR.00041-08
- Haussler S, Fuqua C. Biofilms 2012: new discoveries and significant wrinkles in a dynamic field. J Bacteriol. 2013;195(13):2947–2958. doi: 10.1128/JB.00239-13
- Webster TJ, Seil I. Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedcine. 2012;7:2767–2781. doi: 10.2147/IJN.S24805
- Fabrega J, Renshaw JC, Lead JR. Interactions of Silver Nanoparticles with Pseudomonas putida biofilms. Environ Sci Technol. 2009;43(23):9004–9009. doi: 10.1021/es901706j
- Kalishwaralal K, BarathManiKanth S, Pandian SR, et al. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B Biointerfaces. 2010;79(2):340–344. doi: 10.1016/j.colsurfb.2010.04.014 EDN: NWLLST
- Martinez-Gutierrez F, Boegli L, Agostinho A, et al. Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling. 2013;29(6):651–660. doi: 10.1080/08927014.2013.794225
- Islam MS, Larimer C, Ojha A, Nettleship I. Antimycobacterial efficacy of silver nanoparticles as deposited on porous membrane filters. Mater Sci Eng C. 2013;33(8):4575–4581. doi: 10.1016/j.msec.2013.07.013
- Knetsch MLW, Koole LH. New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers (Basel). 2011;3(1):340–366. doi: 10.3390/polym3010340
- Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76–83. doi: 10.1016/j.biotechadv.2008.09.002 EDN: LYQQRZ
- Chen M, Yu Q, Sun H. Novel strategies for the prevention and treatment of biofilm related infections. Int J Mol Sci. 2013;14(9):18488–18501. doi: 10.3390/ijms140918488 EDN: YANXZC
- Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2(1):17023. doi: 10.1038/sigtrans.2017.23 EDN: JSCXHV
- Gonzalez-Carter DA, Leo BF, Ruenraroengsak P, et al. Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes. Sci Rep. 2017;7(1):42871. doi: 10.1038/srep42871
- Adhya A, Bain J, Ray O, et al. Healing of burn wounds by topical treatment: A randomized controlled comparison between silver sulfadiazine and nano-crystalline silver. J Basic Clin Pharm. 2015;6(1):29–34. doi: 10.4103/0976-0105.145776
- Boonkaew B, Suwanpreuksa P, Cuttle L, et al. Hydrogels containing silver nanoparticles for burn wounds show antimicrobial activity without cytotoxicity. J Appl Polym Sci. 2014;131(9):1–10. doi: 10.1002/app.40215
- Marcato PD, De Paula LB, Melo PS, et al. In vivo evaluation of complex biogenic silver nanoparticle and enoxaparin in wound healing. J Nanomater. 2015;2015:1–10. doi: 10.1155/2015/439820
- Hebeish A, El-Rafie MH, EL-Sheikh MA, et al. Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int J Biol Macromol. 2014;65:509–515. doi: 10.1016/j.ijbiomac.2014.01.071
- Rigo C, Ferroni L, Tocco I, et al. Active silver nanoparticles for wound healing. Int J Mol Sci. 2013;14(3):4817–4840. doi: 10.3390/ijms14034817
- Galandáková A, Franková J, Ambrožová N, et al. Effects of silver nanoparticles on human dermal fibroblasts and epidermal keratinocytes. Hum Exp Toxicol. 2016;35(9):946–957. doi: 10.1177/0960327115611969
- Franková J, Pivodová V, Vágnerová H, et al. Effects of silver nanoparticles on primary cell cultures of fibroblasts and keratinocytes in a wound-healing model. J Appl Biomater Funct Mater. 2016;14(2):e137–142. doi: 10.5301/jabfm.5000268 EDN: XYXWON
- Yeasmin S, Datta HK, Chaudhuri S, et al. In-vitro anti-cancer activity of shape controlled silver nanoparticles (AgNPs) in various organ specific cell lines. J Mol Liq. 2017;242:757–766. doi: 10.1016/j.molliq.2017.06.047 EDN: AZNNZT
- Wang Z, Chen C, Wang Y, et al. Ångstrom-scale silver particles as a promising agent for low-toxicity broad-spectrum potent anticancer therapy. Adv Funct Mater. 2019;29(23):1808556. doi: 10.1002/adfm.201808556 EDN: PKOSFW
- Barabadi H, Hosseini O, Kamali D, et al. Emerging theranostic silver nanomaterials to combat lung cancer: a systematic review. J Clust Sci. 2020;31(1):1–10. doi: 10.1007/s10876-019-01639-z EDN: EOZKOU
- Chen B, Zhang Y, Yang Y, et al. Involvement of telomerase activity inhibition and telomere dysfunction in silver nanoparticles anticancer effects. Nanomedicine. 2018;13(16):2067–2082. doi: 10.2217/nnm-2018-0036
- Yang T, Yao Q, Cao F, et al. Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis. Int J Nanomedicine. 2016;11:6679–6692. doi: 10.2147/IJN.S109695 EDN: XZPGJL
- Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–1437. doi: 10.1038/nm.3394
- Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–252. doi: 10.1038/nrc2618 EDN: MHBAQD
- Kim Y, Lin Q, Glazer P, Yun Z. Hypoxic tumor microenvironment and cancer cell differentiation. Curr Mol Med. 2009;9(4):425–434. doi: 10.2174/156652409788167113
- Kemp MM, Kumar A, Mousa S, et al. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties. Nanotechnology. 2009;20(45):455104. doi: 10.1088/0957-4484/20/45/455104
- Eom HJ, Choi J. p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol. 2010;44(21):8337–8342. doi: 10.1021/es1020668
- Pei J, Fu B, Jiang L, Sun T. Biosynthesis, characterization, and anticancer effect of plant-mediated silver nanoparticles using Coptis chinensis. Int J Nanomedicine. 2019;14:1969–1978. doi: 10.2147/IJN.S188235
- Hashemi Goradel N, Ghiyami-Hour F, Jahangiri S, et al. Nanoparticles as new tools for inhibition of cancer angiogenesis. J Cell Physiol. 2018;233(4):2902–2910. doi: 10.1002/jcp.26029
- Zhao Y, Adjei AA. Targeting angiogenesis in cancer therapy: moving beyond vascular endothelial growth factor. Oncologist. 2015;20(6):660–673. doi: 10.1634/theoncologist.2014-0465 EDN: UOFAZF
- Buttacavoli M, Albanese NN, Di Cara G, et al. Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation. Oncotarget. 2018;9(11):9685–9705. doi: 10.18632/oncotarget.23859 EDN: YEJUCD
- Fulbright LE, Ellermann M, Arthur JC. The microbiome and the hallmarks of cancer. PLoS Pathog. 2017;13(9):e1006480. doi: 10.1371/journal.ppat.1006480
- Gurunathan S, Lee KJ, Kalishwaralal K, et al. Antiangiogenic properties of silver nanoparticles. Biomaterials. 2009;30(31):6341–6350. doi: 10.1016/j.biomaterials.2009.08.008
- Kalishwaralal K, Banumathi E, Pandian SRK, et al. Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surf B Biointerfaces. 2009;73(1):51–57. doi: 10.1016/j.colsurfb.2009.04.025
- Singh SP, Bhargava CS, Dubey V, et al. Silver nanoparticles: Biomedical applications, toxicity, and safety issues. Int J Res Pharm Pharm. 2017;4(2):1–10.
- Lansdown ABG. Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol. 2006;33:17–34. doi: 10.1159/000093928
- Ahamed M, AlSalhi MS, Siddiqui MKJ. Silver nanoparticle applications and human health. Clin Chim Acta. 2010;411(23–24):1841–1848. doi: 10.1016/j.cca.2010.08.016
- Korani M, Rezayat M, Gilani K. Acute and subchronic dermal toxicity of nanosilver in guinea pig. Int J Nanomedicine. 2011;6:855–862. doi: 10.2147/IJN.S17065
- Wong KKY, Liu X. Silver nanoparticles—the real “silver bullet” in clinical medicine? MedChemComm. 2010;1(2):125. doi: 10.1039/c0md00069h EDN: PIKEXT
- Tak YK, Pal S, Naoghare PK, et al. Shape-dependent skin penetration of silver nanoparticles: does it really matter? Sci Rep. 2015;5(1):16908. doi: 10.1038/srep16908
- Szmyd R, Goralczyk AG, Skalniak L, et al. Effect of silver nanoparticles on human primary keratinocytes. Biol Chem. 2013;394(1):113–123. doi: 10.1515/hsz-2012-0202
- De Jong WH, Van Der Ven LT, Sleijffers A, et al. Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats. Biomaterials. 2013;34(33):8333–8343. doi: 10.1016/j.biomaterials.2013.06.048
- Xue Y, Zhang S, Huang Y, et al. Acute toxic effects and gender-related biokinetics of silver nanoparticles following an intravenous injection in mice. J Appl Toxicol. 2012;32(11):890–899. doi: 10.1002/jat.2742
- Kim WY, Kim J, Park JD, et al. Histological study of gender differences in accumulation of silver nanoparticles in kidneys of fischer 344 rats. J Toxicol Environ Health A. 2009;72(21–22):1279–1284. doi: 10.1080/15287390903212287
- Kim YS, Kim JS, Cho HS, et al. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in sprague-dawley rats. Inhal Toxicol. 2008;20(6):575–583. doi: 10.1080/08958370701874663
- Kim YS, Song MY, Park JD, et al. Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol. 2010;7(1):20. doi: 10.1186/1743-8977-7-20 EDN: PSSQGI
- Song KS, Sung JH, Ji JH, et al. Recovery from silver-nanoparticle-exposure-induced lung inflammation and lung function changes in Sprague Dawley rats. Nanotoxicology. 2013;7(2):169–180. doi: 10.3109/17435390.2011.648223
- Lee JH, Sung JH, Ryu HR, et al. Tissue distribution of gold and silver after subacute intravenous injection of co-administered gold and silver nanoparticles of similar sizes. Arch Toxicol. 2018;92(4):1393–1405. doi: 10.1007/s00204-018-2173-4 EDN: ZLTTNB
- Lee JH, Kim YS, Song KS, et al. Biopersistence of silver nanoparticles in tissues from Sprague–Dawley rats. Part Fibre Toxicol. 2013;10(1):36. doi: 10.1186/1743-8977-10-36 EDN: LEWRZA
- Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci. 2005;88(2):412–419. doi: 10.1093/toxsci/kfi256 EDN: MEDIHF
- Maillard JY, Hartemann P. Silver as an antimicrobial: facts and gaps in knowledge. Crit Rev Microbiol. 2013;39(4):373–383. doi: 10.3109/1040841X.2012.713323
- Sung JH, Ji JH, Park JD, et al. Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci. 2009;108(2):452–461. doi: 10.1093/toxsci/kfn246
- Khatoon N, Alam H, Khan A, et al. Ampicillin silver nanoformulations against multidrug resistant bacteria. Sci Rep. 2019;9(1):6848. doi: 10.1038/s41598-019-43309-0 EDN: XTPPRV
- Batul R, Bhave M, Yu A. Investigation of antimicrobial effects of polydopamine-based composite coatings. Molecules. 2023;28(11):4258. doi: 10.3390/molecules28114258 EDN: TYAZZP
- Deng H, McShan D, Zhang Y, et al. Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics. Environ Sci Technol. 2016;50(16):8840–8848. doi: 10.1021/acs.est.6b00998 EDN: WSNCOP
- Wang YW, Tang H, Wu D, et al. Enhanced bactericidal toxicity of silver nanoparticles by the antibiotic gentamicin. Environ Sci Nano. 2016;3(4):788–798. doi: 10.1039/C6EN00031B
- Li Y, Xiang Q, Zhang Q, et al. Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application. Peptides. 2012;37(2):207–215. doi: 10.1016/j.peptides.2012.07.001 EDN: RKCWNP
- Tosi MF. Innate immune responses to infection. J Allergy Clin Immunol. 2005;116(2):241–249. doi: 10.1016/j.jaci.2005.05.036
- Zharkova MS, Golubeva OY, Orlov DS, et al. Silver nanoparticles functionalized with antimicrobial polypeptides: benefits and possible pitfalls of a novel anti-infective tool. Front Microbiol. 2021;12:750556. doi: 10.3389/fmicb.2021.750556 EDN: XEGFEZ
- Masimen MAA, Harun NA, Maulidiani M, Ismail WIW. Overcoming methicillin-resistance Staphylococcus aureus (MRSA) using antimicrobial peptides-silver nanoparticles. Antibiotics (Basel). 2022;11(7):951. doi: 10.3390/antibiotics11070951 EDN: EPQOWL
- Jin Y, Yang Y, Duan W, et al. Synergistic and on-demand release of ag-AMPs loaded on porous silicon nanocarriers for antibacteria and wound healing. ACS Appl Mater Interfaces. 2021;13(14):16127–16141. doi: 10.1021/acsami.1c02161 EDN: QLMWXM
- Jin Y, Duan W, Wo F, Wu J. Two-dimensional fluorescent strategy based on porous silicon quantum dots for metal-ion detection and recognition. ACS Appl Nano Mater. 2019;2(10):6110–6115. doi: 10.1021/acsanm.9b01647
- Gao J, Na H, Zhong R, et al. One step synthesis of antimicrobial peptide protected silver nanoparticles: The core-shell mutual enhancement of antibacterial activity. Colloids Surf B Biointerfaces. 2020;186:110704. doi: 10.1016/j.colsurfb.2019.110704 EDN: NVBSYD
- Zhen JB, Kang PW, Zhao MH, Yang KW. Silver nanoparticle conjugated star PCL-b-AMPs copolymer as nanocomposite exhibits efficient antibacterial properties. Bioconjug Chem. 2020;31(1):51–63. doi: 10.1021/acs.bioconjchem.9b00739
- Xu J, Li Y, Wang H, et al. Enhanced antibacterial and anti-biofilm activities of antimicrobial peptides modified silver nanoparticles. Int J Nanomedicine. 2021;16:4831–4846. doi: 10.2147/IJN.S315839 EDN: JSCOTI
- Zheng K, Setyawati MI, Lim TP, et al. Antimicrobial cluster bombs: silver nanoclusters packed with daptomycin. ACS Nano. 2016;10(8):7934–7942. doi: 10.1021/acsnano.6b03862
- Ye Z, Sang T, Li K, et al. Hybrid nanocoatings of self-assembled organic-inorganic amphiphiles for prevention of implant infections. Acta Biomater. 2022;140:338–349. doi: 10.1016/j.actbio.2021.12.008 EDN: UPRRNQ
Дополнительные файлы

