Применение наночастиц серебра в медицине: плюсы и минусы. Преимущества композитов наночастиц серебра с органическими антибактериальными субстанциями и биосовместимыми полимерами

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Развитие резистентности бактерий к применяемым в клинической практике препаратам является серьезной проблемой современной медицины. Наночастицы в настоящее время широко используются в различных отраслях промышленности, а также в медицине. Антибактериальный потенциал наночастиц серебра обширен и распространяется на грамотрицательные и грамположительные бактерии, включая мультирезистентные штаммы, в том числе в составе бактериальных биопленок. Установлено, что наночастицы серебра имеют множественные мишени антимикробного действия, вследствие чего развитие микробной резистентности к ним затруднено. Кроме того, для серебра описаны другие виды биологической активности: ранозаживляющая, противовоспалительная, противоопухолевая. Однако, несмотря на несомненные достоинства этих наноматериалов, до сих пор остаются и проблемы с их применением в медицине, связанные с некоторым нежелательным влиянием на живые объекты. Столь разнообразные биологические свойства, а также потенциальная токсичность наночастиц серебра определяются размером и формой наночастиц, способом их синтеза и видом стабилизирующего агента. В данном обзоре приводится информация по способам модификации наночастиц серебра антибактериальными соединениями, такими как антибиотики, антимикробные пептиды, которые демонстрируют синергические и аддитивные воздействия против патогенных бактерий при использовании в комбинации с наночастицами, а при создании комплексов повышают антимикробную активность и обеспечивают стабильность наночастиц. Поэтому композиты наночастиц серебра с органическими антибактериальными препаратами и биосовместимыми полимерами могут рассматриваться как перспективная основа для создания новых эффективных антибактериальных препаратов, лишенных нежелательных свойств.

Об авторах

Елизавета Васильевна Владимирова

Институт экспериментальной медицины

Email: vladymyrovaliza18@mail.ru
ORCID iD: 0000-0002-6576-9844
SPIN-код: 8068-4141
Россия, Санкт-Петербург

Ольга Валерьевна Шамова

Институт экспериментальной медицины

Автор, ответственный за переписку.
Email: oshamova@yandex.ru
ORCID iD: 0000-0002-5168-2801
SPIN-код: 2913-4726

д-р биол. наук, чл.-корр. РАН

Россия, Санкт-Петербург

Список литературы

  1. Hong L, Luo SH, Yu CH, et al. Functional nanomaterials and their potential applications in antibacterial therapy. Pharm Nanotechnol. 2019;7(2):129–146. doi: 10.2174/2211738507666190320160802
  2. Betts JW, Hornsey M, La Ragione RM. Novel antibacterials: alternatives to traditional antibiotics. Adv Microb Physiol. 2018;73:123–169. doi: 10.1016/bs.ampbs.2018.06.001 EDN: YJVGMP
  3. Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver nanoparticles and their antibacterial applications. Int J Mol Sci. 2021;22(13):7202. doi: 10.3390/ijms22137202 EDN: ZDZBXM
  4. Kowalczyk P, Szymczak M, Maciejewska M, et al. All that glitters is not silver-A new look at microbiological and medical applications of silver nanoparticles. Int J Mol Sci. 2021;22(2):1–29. doi: 10.3390/ijms22020854 EDN: QEGENO
  5. Deshmukh SP, Patil SM, Mullani SB, Delekar SD. Silver nanoparticles as an effective disinfectant: a review. Mater Sci Eng C Mater Biol Appl. 2019;97:954–965. doi: 10.1016/j.msec.2018.12.102
  6. Li L, Stoiber M, Wimmer A, et al. To what extent can full-scale wastewater treatment plant effluent influence the occurrence of silver-based nanoparticles in surface waters? Environ Sci Technol. 2016;50(12):6327–6333. doi: 10.1021/acs.est.6b00694
  7. Li P, Su M, Wang X, et al. Environmental fate and behavior of silver nanoparticles in natural estuarine systems. J Environ Sci. 2020;88:248–259. doi: 10.1016/j.jes.2019.09.013 EDN: ICNUCO
  8. Wimmer A, Urstoeger A, Funck NC, et al. What happens to silver-based nanoparticles if they meet seawater? Water Res. 2020;171:115399. doi: 10.1016/j.watres.2019.115399 EDN: QKGGQD
  9. Lee JH, Mun J, Park JD, Yu IJ. A health surveillance case study on workers who manufacture silver nanomaterials. Nanotoxicology. 2012;6(6):667–669. doi: 10.3109/17435390.2011.600840
  10. Ferdous Z, Nemmar A. Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci. 2020;21(7):2375. doi: 10.3390/ijms21072375 EDN: OSGAEA
  11. Tran QH, Nguyen VQ, Le AT. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol. 2013;4(3):033001. doi: 10.1088/2043-6262/4/3/033001 EDN: SOFTKX
  12. Yaqoob AA, Umar K, Ibrahim MNM. Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications — a review. Appl Nanosci. 2020;10(5):1369–1378. doi: 10.1007/s13204-020-01318-w EDN: ABMMGC
  13. Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17(9):1534. doi: 10.3390/ijms17091534 EDN: XTTASF
  14. Elsupikhe RF, Shameli K, Ahmad MB, et al. Green sonochemical synthesis of silver nanoparticles at varying concentrations of κ-carrageenan. Nanoscale Res Lett. 2015;10(1):302. doi: 10.1186/s11671-015-0916-1 EDN: NXNCJW
  15. Dung TMD, Le TTT, Fribourg-Blanc E, Dang MC. Influence of surfactant on the preparation of silver nanoparticles by polyol method. Adv Nat Sci Nanosci Nanotechnol. 2012;3(3):035004. doi: 10.1088/2043-6262/3/3/035004
  16. Krutyakov YA, Kudrinskiy AA, Olenin AY, Lisichkin GV. Synthesis and properties of silver nanoparticles: advances and prospects. Russ Chem Rev. 2008;77(3):233–257. doi: 10.1070/RC2008v077n03ABEH003751 EDN: LLIPLX
  17. Nam KT, Lee YJ, Krauland EM, et al. Peptide-mediated reduction of silver ions on engineered biological scaffolds. ACS Nano. 2008;2(7):1480–1486. doi: 10.1021/nn800018n
  18. Sintubin L, De Windt W, Dick J, et al. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol. 2009;84(4):741–749. doi: 10.1007/s00253-009-2032-6 EDN: HMEGAG
  19. Balaji DS, Basavaraja S, Deshpande R, et al. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces. 2009;68(1):88–92. doi: 10.1016/j.colsurfb.2008.09.022 EDN: MCTCMH
  20. Chung IM, Park I, Seung-Hyun K, et al. Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Res Lett. 2016;11(1):40. doi: 10.1186/s11671-016-1257-4 EDN: HEJSCC
  21. Korshed P, Li L, Liu Z, et al. Size-dependent antibacterial activity for laser-generated silver nanoparticles. J Interdiscip Nanomed. 2019;4(1):24–33. doi: 10.1002/jin2.54
  22. Cavassin ED, de Figueiredo LF, Otoch JP, et al. Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. J Nanobiotechnology. 2015;13(1):64. doi: 10.1186/s12951-015-0120-6 EDN: TUVZVG
  23. Marambio-Jones C, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 2010;12(5):1531–1551. doi: 10.1007/s11051-010-9900-y EDN: NAWQFD
  24. Qing Y, Cheng L, Li R, et al. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine. 2018;13:3311–3327. doi: 10.2147/IJN.S165125
  25. Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol. 2016;7:1831. doi: 10.3389/fmicb.2016.01831 EDN: XZNZHB
  26. Swolana D, Wojtyczka RD. Activity of silver nanoparticles against Staphylococcus spp. Int J Mol Sci. 2022;23(8):4298. doi: 10.3390/ijms23084298 EDN: LKOKGB
  27. Klueh U, Wagner V, Kelly S, et al. Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J Biomed Mater Res. 2000;53(6):621–631. doi: 10.1002/1097-4636(2000)53:6<621::AID-JBM2>3.0.CO;2-Q
  28. Yamanaka M, Hara K, Kudo J. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol. 2005;71(11):7589–7593. doi: 10.1128/AEM.71.11.7589-7593.2005
  29. Durán N, Marcato PD, Conti R De, et al. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc. 2010;21(6):949–959. doi: 10.1590/S0103-50532010000600002
  30. Slawson RM, Lee H, Trevors JT. Bacterial interactions with silver. Biol Met. 1990;3(3–4):151–154. doi: 10.1007/BF01140573 EDN: HNWRKT
  31. Panzner MJ, Bilinovich SM, Parker JA, et al. Isomorphic deactivation of a Pseudomonas aeruginosa oxidoreductase: The crystal structure of Ag(I) metallated azurin at 1.7 Å. J Inorg Biochem. 2013;128:11–16. doi: 10.1016/j.jinorgbio.2013.07.011
  32. Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73(6):1712–1720. doi: 10.1128/AEM.02218-06
  33. Tang S, Zheng J. Antibacterial activity of silver nanoparticles: structural effects. Adv Healthc Mater. 2018;7(13):e1701503. doi: 10.1002/adhm.201701503
  34. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed. 2017;12:1227–1249. doi: 10.2147/IJN.S121956 EDN: WLABYY
  35. Jo DH, Kim JH, Lee TG, Kim JH. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine. 2015;11(7):1603–1611. doi: 10.1016/j.nano.2015.04.015 EDN: VETAOL
  36. Xu L, Wang YY, Huang J, et al. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics. 2020;10(20):8996–9031. doi: 10.7150/thno.45413 EDN: EQOPYZ
  37. Sharma VK, Zboril R. Silver nanoparticles in natural environment: formation, fate, and toxicity. In: Yan B, Zhou H, Gardea-Torresdey JL, eds. Bioactivity of Engineered Nanoparticles. Springer; 2017. P. 239–258. doi: 10.1007/978-981-10-5864-6_10
  38. Burkowska-But A, Sionkowski G, Walczak M. Influence of stabilizers on the antimicrobial properties of silver nanoparticles introduced into natural water. J Environ Sci. 2014;26(3):542–549. doi: 10.1016/S1001-0742(13)60451-9
  39. dos Santos CA, Jozala AF, Pessoa Jr A, Seckler MM. Antimicrobial effectiveness of silver nanoparticles co-stabilized by the bioactive copolymer pluronic F68. J Nanobiotechnology. 2012;10(1):43. doi: 10.1186/1477-3155-10-43
  40. Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev. 2003;27(2–3):341–353. doi: 10.1016/S0168-6445(03)00047-0 EDN: BJEDKH
  41. Clement JL, Jarrett PS. Antibacterial Silver. Met Based Drugs. 1994;1(5–6):467–482. doi: 10.1155/MBD.1994.467
  42. von Rozycki T, Nies DH. Cupriavidus metallidurans: evolution of a metal-resistant bacterium. Antonie Van Leeuwenhoek. 2009;96(2):115–139. doi: 10.1007/s10482-008-9284-5 EDN: NAKECP
  43. Nies DH. The biological chemistry of the transition metal “transportome” of Cupriavidus metallidurans. Metallomics. 2016;8(5):481–507. doi: 10.1039/C5MT00320B EDN: WUGHKJ
  44. Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. 2013;65(13–14):1803–1815. doi: 10.1016/j.addr.2013.07.011
  45. Markowska K, Grudniak AM, Wolska KI. Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim Pol. 2013;60(4):523–530. EDN: SOHPEV
  46. Percival SL, Bowler PG, Russell D. Bacterial resistance to silver in wound care. J Hosp Infect. 2005;60(1):1–7. doi: 10.1016/j.jhin.2004.11.014 EDN: XTFMGU
  47. Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8(9):881–890. doi: 10.3201/eid0809.020063
  48. Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623–633. doi: 10.1038/nrmicro2415
  49. Gjermansen M, Ragas P, Sternberg C, et al. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ Microbiol. 2005;7(6):894–904. doi: 10.1111/j.1462-2920.2005.00775.x
  50. Reid DW, Withers NJ, Francis L, et al. Iron deficiency in cystic fibrosis. Chest. 2002;121(1):48–54. doi: 10.1378/chest.121.1.48
  51. Di Martino P, Fursy R, Bret L, et al. Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. Can J Microbiol. 2003;49(7):443–449. doi: 10.1139/w03-056
  52. Patel CN, Wortham BW, Lines JL, et al. Polyamines are essential for the formation of plague biofilm. J Bacteriol. 2006;188(7):2355–2363. doi: 10.1128/JB.188.7.2355-2363.2006 EDN: MBXMIX
  53. Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev. 2009;73(2):310–347. doi: 10.1128/MMBR.00041-08
  54. Haussler S, Fuqua C. Biofilms 2012: new discoveries and significant wrinkles in a dynamic field. J Bacteriol. 2013;195(13):2947–2958. doi: 10.1128/JB.00239-13
  55. Webster TJ, Seil I. Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedcine. 2012;7:2767–2781. doi: 10.2147/IJN.S24805
  56. Fabrega J, Renshaw JC, Lead JR. Interactions of Silver Nanoparticles with Pseudomonas putida biofilms. Environ Sci Technol. 2009;43(23):9004–9009. doi: 10.1021/es901706j
  57. Kalishwaralal K, BarathManiKanth S, Pandian SR, et al. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B Biointerfaces. 2010;79(2):340–344. doi: 10.1016/j.colsurfb.2010.04.014 EDN: NWLLST
  58. Martinez-Gutierrez F, Boegli L, Agostinho A, et al. Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling. 2013;29(6):651–660. doi: 10.1080/08927014.2013.794225
  59. Islam MS, Larimer C, Ojha A, Nettleship I. Antimycobacterial efficacy of silver nanoparticles as deposited on porous membrane filters. Mater Sci Eng C. 2013;33(8):4575–4581. doi: 10.1016/j.msec.2013.07.013
  60. Knetsch MLW, Koole LH. New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers (Basel). 2011;3(1):340–366. doi: 10.3390/polym3010340
  61. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76–83. doi: 10.1016/j.biotechadv.2008.09.002 EDN: LYQQRZ
  62. Chen M, Yu Q, Sun H. Novel strategies for the prevention and treatment of biofilm related infections. Int J Mol Sci. 2013;14(9):18488–18501. doi: 10.3390/ijms140918488 EDN: YANXZC
  63. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2(1):17023. doi: 10.1038/sigtrans.2017.23 EDN: JSCXHV
  64. Gonzalez-Carter DA, Leo BF, Ruenraroengsak P, et al. Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes. Sci Rep. 2017;7(1):42871. doi: 10.1038/srep42871
  65. Adhya A, Bain J, Ray O, et al. Healing of burn wounds by topical treatment: A randomized controlled comparison between silver sulfadiazine and nano-crystalline silver. J Basic Clin Pharm. 2015;6(1):29–34. doi: 10.4103/0976-0105.145776
  66. Boonkaew B, Suwanpreuksa P, Cuttle L, et al. Hydrogels containing silver nanoparticles for burn wounds show antimicrobial activity without cytotoxicity. J Appl Polym Sci. 2014;131(9):1–10. doi: 10.1002/app.40215
  67. Marcato PD, De Paula LB, Melo PS, et al. In vivo evaluation of complex biogenic silver nanoparticle and enoxaparin in wound healing. J Nanomater. 2015;2015:1–10. doi: 10.1155/2015/439820
  68. Hebeish A, El-Rafie MH, EL-Sheikh MA, et al. Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int J Biol Macromol. 2014;65:509–515. doi: 10.1016/j.ijbiomac.2014.01.071
  69. Rigo C, Ferroni L, Tocco I, et al. Active silver nanoparticles for wound healing. Int J Mol Sci. 2013;14(3):4817–4840. doi: 10.3390/ijms14034817
  70. Galandáková A, Franková J, Ambrožová N, et al. Effects of silver nanoparticles on human dermal fibroblasts and epidermal keratinocytes. Hum Exp Toxicol. 2016;35(9):946–957. doi: 10.1177/0960327115611969
  71. Franková J, Pivodová V, Vágnerová H, et al. Effects of silver nanoparticles on primary cell cultures of fibroblasts and keratinocytes in a wound-healing model. J Appl Biomater Funct Mater. 2016;14(2):e137–142. doi: 10.5301/jabfm.5000268 EDN: XYXWON
  72. Yeasmin S, Datta HK, Chaudhuri S, et al. In-vitro anti-cancer activity of shape controlled silver nanoparticles (AgNPs) in various organ specific cell lines. J Mol Liq. 2017;242:757–766. doi: 10.1016/j.molliq.2017.06.047 EDN: AZNNZT
  73. Wang Z, Chen C, Wang Y, et al. Ångstrom-scale silver particles as a promising agent for low-toxicity broad-spectrum potent anticancer therapy. Adv Funct Mater. 2019;29(23):1808556. doi: 10.1002/adfm.201808556 EDN: PKOSFW
  74. Barabadi H, Hosseini O, Kamali D, et al. Emerging theranostic silver nanomaterials to combat lung cancer: a systematic review. J Clust Sci. 2020;31(1):1–10. doi: 10.1007/s10876-019-01639-z EDN: EOZKOU
  75. Chen B, Zhang Y, Yang Y, et al. Involvement of telomerase activity inhibition and telomere dysfunction in silver nanoparticles anticancer effects. Nanomedicine. 2018;13(16):2067–2082. doi: 10.2217/nnm-2018-0036
  76. Yang T, Yao Q, Cao F, et al. Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis. Int J Nanomedicine. 2016;11:6679–6692. doi: 10.2147/IJN.S109695 EDN: XZPGJL
  77. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–1437. doi: 10.1038/nm.3394
  78. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–252. doi: 10.1038/nrc2618 EDN: MHBAQD
  79. Kim Y, Lin Q, Glazer P, Yun Z. Hypoxic tumor microenvironment and cancer cell differentiation. Curr Mol Med. 2009;9(4):425–434. doi: 10.2174/156652409788167113
  80. Kemp MM, Kumar A, Mousa S, et al. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties. Nanotechnology. 2009;20(45):455104. doi: 10.1088/0957-4484/20/45/455104
  81. Eom HJ, Choi J. p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol. 2010;44(21):8337–8342. doi: 10.1021/es1020668
  82. Pei J, Fu B, Jiang L, Sun T. Biosynthesis, characterization, and anticancer effect of plant-mediated silver nanoparticles using Coptis chinensis. Int J Nanomedicine. 2019;14:1969–1978. doi: 10.2147/IJN.S188235
  83. Hashemi Goradel N, Ghiyami-Hour F, Jahangiri S, et al. Nanoparticles as new tools for inhibition of cancer angiogenesis. J Cell Physiol. 2018;233(4):2902–2910. doi: 10.1002/jcp.26029
  84. Zhao Y, Adjei AA. Targeting angiogenesis in cancer therapy: moving beyond vascular endothelial growth factor. Oncologist. 2015;20(6):660–673. doi: 10.1634/theoncologist.2014-0465 EDN: UOFAZF
  85. Buttacavoli M, Albanese NN, Di Cara G, et al. Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation. Oncotarget. 2018;9(11):9685–9705. doi: 10.18632/oncotarget.23859 EDN: YEJUCD
  86. Fulbright LE, Ellermann M, Arthur JC. The microbiome and the hallmarks of cancer. PLoS Pathog. 2017;13(9):e1006480. doi: 10.1371/journal.ppat.1006480
  87. Gurunathan S, Lee KJ, Kalishwaralal K, et al. Antiangiogenic properties of silver nanoparticles. Biomaterials. 2009;30(31):6341–6350. doi: 10.1016/j.biomaterials.2009.08.008
  88. Kalishwaralal K, Banumathi E, Pandian SRK, et al. Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surf B Biointerfaces. 2009;73(1):51–57. doi: 10.1016/j.colsurfb.2009.04.025
  89. Singh SP, Bhargava CS, Dubey V, et al. Silver nanoparticles: Biomedical applications, toxicity, and safety issues. Int J Res Pharm Pharm. 2017;4(2):1–10.
  90. Lansdown ABG. Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol. 2006;33:17–34. doi: 10.1159/000093928
  91. Ahamed M, AlSalhi MS, Siddiqui MKJ. Silver nanoparticle applications and human health. Clin Chim Acta. 2010;411(23–24):1841–1848. doi: 10.1016/j.cca.2010.08.016
  92. Korani M, Rezayat M, Gilani K. Acute and subchronic dermal toxicity of nanosilver in guinea pig. Int J Nanomedicine. 2011;6:855–862. doi: 10.2147/IJN.S17065
  93. Wong KKY, Liu X. Silver nanoparticles—the real “silver bullet” in clinical medicine? MedChemComm. 2010;1(2):125. doi: 10.1039/c0md00069h EDN: PIKEXT
  94. Tak YK, Pal S, Naoghare PK, et al. Shape-dependent skin penetration of silver nanoparticles: does it really matter? Sci Rep. 2015;5(1):16908. doi: 10.1038/srep16908
  95. Szmyd R, Goralczyk AG, Skalniak L, et al. Effect of silver nanoparticles on human primary keratinocytes. Biol Chem. 2013;394(1):113–123. doi: 10.1515/hsz-2012-0202
  96. De Jong WH, Van Der Ven LT, Sleijffers A, et al. Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats. Biomaterials. 2013;34(33):8333–8343. doi: 10.1016/j.biomaterials.2013.06.048
  97. Xue Y, Zhang S, Huang Y, et al. Acute toxic effects and gender-related biokinetics of silver nanoparticles following an intravenous injection in mice. J Appl Toxicol. 2012;32(11):890–899. doi: 10.1002/jat.2742
  98. Kim WY, Kim J, Park JD, et al. Histological study of gender differences in accumulation of silver nanoparticles in kidneys of fischer 344 rats. J Toxicol Environ Health A. 2009;72(21–22):1279–1284. doi: 10.1080/15287390903212287
  99. Kim YS, Kim JS, Cho HS, et al. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in sprague-dawley rats. Inhal Toxicol. 2008;20(6):575–583. doi: 10.1080/08958370701874663
  100. Kim YS, Song MY, Park JD, et al. Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol. 2010;7(1):20. doi: 10.1186/1743-8977-7-20 EDN: PSSQGI
  101. Song KS, Sung JH, Ji JH, et al. Recovery from silver-nanoparticle-exposure-induced lung inflammation and lung function changes in Sprague Dawley rats. Nanotoxicology. 2013;7(2):169–180. doi: 10.3109/17435390.2011.648223
  102. Lee JH, Sung JH, Ryu HR, et al. Tissue distribution of gold and silver after subacute intravenous injection of co-administered gold and silver nanoparticles of similar sizes. Arch Toxicol. 2018;92(4):1393–1405. doi: 10.1007/s00204-018-2173-4 EDN: ZLTTNB
  103. Lee JH, Kim YS, Song KS, et al. Biopersistence of silver nanoparticles in tissues from Sprague–Dawley rats. Part Fibre Toxicol. 2013;10(1):36. doi: 10.1186/1743-8977-10-36 EDN: LEWRZA
  104. Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci. 2005;88(2):412–419. doi: 10.1093/toxsci/kfi256 EDN: MEDIHF
  105. Maillard JY, Hartemann P. Silver as an antimicrobial: facts and gaps in knowledge. Crit Rev Microbiol. 2013;39(4):373–383. doi: 10.3109/1040841X.2012.713323
  106. Sung JH, Ji JH, Park JD, et al. Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci. 2009;108(2):452–461. doi: 10.1093/toxsci/kfn246
  107. Khatoon N, Alam H, Khan A, et al. Ampicillin silver nanoformulations against multidrug resistant bacteria. Sci Rep. 2019;9(1):6848. doi: 10.1038/s41598-019-43309-0 EDN: XTPPRV
  108. Batul R, Bhave M, Yu A. Investigation of antimicrobial effects of polydopamine-based composite coatings. Molecules. 2023;28(11):4258. doi: 10.3390/molecules28114258 EDN: TYAZZP
  109. Deng H, McShan D, Zhang Y, et al. Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics. Environ Sci Technol. 2016;50(16):8840–8848. doi: 10.1021/acs.est.6b00998 EDN: WSNCOP
  110. Wang YW, Tang H, Wu D, et al. Enhanced bactericidal toxicity of silver nanoparticles by the antibiotic gentamicin. Environ Sci Nano. 2016;3(4):788–798. doi: 10.1039/C6EN00031B
  111. Li Y, Xiang Q, Zhang Q, et al. Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application. Peptides. 2012;37(2):207–215. doi: 10.1016/j.peptides.2012.07.001 EDN: RKCWNP
  112. Tosi MF. Innate immune responses to infection. J Allergy Clin Immunol. 2005;116(2):241–249. doi: 10.1016/j.jaci.2005.05.036
  113. Zharkova MS, Golubeva OY, Orlov DS, et al. Silver nanoparticles functionalized with antimicrobial polypeptides: benefits and possible pitfalls of a novel anti-infective tool. Front Microbiol. 2021;12:750556. doi: 10.3389/fmicb.2021.750556 EDN: XEGFEZ
  114. Masimen MAA, Harun NA, Maulidiani M, Ismail WIW. Overcoming methicillin-resistance Staphylococcus aureus (MRSA) using antimicrobial peptides-silver nanoparticles. Antibiotics (Basel). 2022;11(7):951. doi: 10.3390/antibiotics11070951 EDN: EPQOWL
  115. Jin Y, Yang Y, Duan W, et al. Synergistic and on-demand release of ag-AMPs loaded on porous silicon nanocarriers for antibacteria and wound healing. ACS Appl Mater Interfaces. 2021;13(14):16127–16141. doi: 10.1021/acsami.1c02161 EDN: QLMWXM
  116. Jin Y, Duan W, Wo F, Wu J. Two-dimensional fluorescent strategy based on porous silicon quantum dots for metal-ion detection and recognition. ACS Appl Nano Mater. 2019;2(10):6110–6115. doi: 10.1021/acsanm.9b01647
  117. Gao J, Na H, Zhong R, et al. One step synthesis of antimicrobial peptide protected silver nanoparticles: The core-shell mutual enhancement of antibacterial activity. Colloids Surf B Biointerfaces. 2020;186:110704. doi: 10.1016/j.colsurfb.2019.110704 EDN: NVBSYD
  118. Zhen JB, Kang PW, Zhao MH, Yang KW. Silver nanoparticle conjugated star PCL-b-AMPs copolymer as nanocomposite exhibits efficient antibacterial properties. Bioconjug Chem. 2020;31(1):51–63. doi: 10.1021/acs.bioconjchem.9b00739
  119. Xu J, Li Y, Wang H, et al. Enhanced antibacterial and anti-biofilm activities of antimicrobial peptides modified silver nanoparticles. Int J Nanomedicine. 2021;16:4831–4846. doi: 10.2147/IJN.S315839 EDN: JSCOTI
  120. Zheng K, Setyawati MI, Lim TP, et al. Antimicrobial cluster bombs: silver nanoclusters packed with daptomycin. ACS Nano. 2016;10(8):7934–7942. doi: 10.1021/acsnano.6b03862
  121. Ye Z, Sang T, Li K, et al. Hybrid nanocoatings of self-assembled organic-inorganic amphiphiles for prevention of implant infections. Acta Biomater. 2022;140:338–349. doi: 10.1016/j.actbio.2021.12.008 EDN: UPRRNQ

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2025

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).