Changes in the spectrum of extracellular vesicles produced by THP-1 cells during polarization toward M1 or M2 macrophages

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Macrophages are capable of secreting extracellular vesicles that exert a wide range of biological effects, including modulation of the immune response under pathological conditions.

AIM: The work aimed to compare the qualitative and quantitative composition of extracellular vesicles produced by THP-1 cells depending on the concentration and duration of activation with phorbol 12-myristate 13-acetate and the direction of polarization toward M1 or M2 macrophages.

METHODS: THP-1 cells were activated with different concentrations of phorbol 12-myristate 13-acetate (100 and 10 ng/mL). Polarization toward M1 macrophages was induced using IFN-γ and LPS, and toward M2 using IL-4 and IL-13. Cells and their extracellular vesicles were immunophenotyped for CD80, CD64, HLA-DR, CD206, CD209, and CD163. Relative gene expression levels of IL-1β, IL-6, IL-8, IL-12p40, TNFα, CXCL10, CD163, CD206, CCL22, IL-10, FN, and GAPDH were assessed. The size and concentration of extracellular vesicles were measured by nanoparticle tracking analysis. The protein composition of extracellular vesicles was additionally assessed for the presence of tetraspanin receptors (CD9, CD63, CD82, and CD81) and flotillin-1.

RESULTS: Activation of cells with high doses of phorbol 12-myristate 13-acetate followed by polarization toward M1, compared to M2, led to increased expression of CD80, CD209, and CD163. Regardless of the applied activation–polarization protocol, THP-1 cells were distributed into distinct, compact clusters according to the results of discriminant analysis of gene expression levels. Activation was accompanied by a more than 10-fold increase in extracellular vesicle production. High-dose phorbol 12-myristate 13-acetate activation followed by M1 polarization resulted in secretion of the highest number of extracellular vesicles (188×108 [185×108; 202.5×108] particles/mL), of larger size (134 ± 6.1 nm), and expressing CD63 and CD82. However, their flotillin-1 content was reduced.

CONCLUSION: Thus, high-dose phorbol 12-myristate 13-acetate activation of THP-1 cells is more effective for subsequent polarization. Depending on the applied polarization protocol, cells produce extracellular vesicles differing in both quantity and composition.

About the authors

Darina B. Sambur

Almazov National Medical Research Center

Email: sambour-darina@mail.ru
ORCID iD: 0009-0009-6352-813X
SPIN-code: 8885-9190
Russian Federation, Saint Petersburg

Olga V. Kalinina

Almazov National Medical Research Center

Email: olgakalinina@mail.ru
ORCID iD: 0000-0003-1916-5705
SPIN-code: 7752-7929

Dr. Sci. (Biology)

Russian Federation, Saint Petersburg

Arthur D. Aquino

Almazov National Medical Research Center

Email: akino97@bk.ru
ORCID iD: 0000-0001-6516-7184
SPIN-code: 3395-5556

Dr. Sci. (Biology)

Russian Federation, Saint Petersburg

Polina V. Tirikova

Almazov National Medical Research Center

Email: tipo.paulina2002@yandex.ru
ORCID iD: 0000-0002-4433-1640
Russian Federation, Saint Petersburg

Kseniya D. Zubkova

Almazov National Medical Research Center

Email: zubkowa.ksenija@gmail.com
ORCID iD: 0009-0007-8108-0311
Russian Federation, Saint Petersburg

Irina I. Dreizis

Almazov National Medical Research Center

Email: ira.dreyzis@gmail.com
ORCID iD: 0009-0004-3673-015X
Russian Federation, Saint Petersburg

Artem A. Rubinstein

Almazov National Medical Research Center; Institute of Experimental Medicine

Email: arrubin6@mail.ru
ORCID iD: 0000-0002-8493-5211
SPIN-code: 6025-1790
Russian Federation, Saint Petersburg; Saint Petersburg

Andrey S. Trulioff

Almazov National Medical Research Center; Institute of Experimental Medicine

Email: trulioff@gmail.com
ORCID iD: 0000-0002-7495-446X
SPIN-code: 8688-7506

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg; Saint Petersburg

Igor V. Kudriavtsev

Almazov National Medical Research Center; Institute of Experimental Medicine

Email: igorek1981@yandex.ru
ORCID iD: 0000-0001-7204-7850
SPIN-code: 4903-7636

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg; Saint Petersburg

Alexey S. Golovkin

Almazov National Medical Research Center

Author for correspondence.
Email: golovkin_a@mail.ru
ORCID iD: 0000-0002-7577-628X
SPIN-code: 8803-2425

MD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg

References

  1. Buzas EI. The roles of extracellular vesicles in the immune system. Nat Rev Immunol. 2023;23(4):236–250. doi: 10.1038/s41577-022-00763-8
  2. Deville S, Garcia Romeu H, Oeyen E, et al. Macrophages release extracellular vesicles of different properties and composition following exposure to nanoparticles. Int J Mol Sci. 2023;24(1):1–18. doi: 10.3390/ijms24010260
  3. Sun L, Wang X, Saredy J, et al. Innate-adaptive immunity interplay and redox regulation in immune response. Redox Biol. 2020;37:101759. doi: 10.1016/j.redox.2020.101759
  4. Duan T, Du Y, Xing C, et al. Toll-like receptor signaling and its role in cell-mediated immunity. Front Immunol. 2022;13:812774. doi: 10.3389/fimmu.2022.812774
  5. Li D, Wu M. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther. 2021;6(1):1–24. doi: 10.1038/s41392-021-00687-0
  6. Porcelli SA. Innate Immunity. In: Kelley and Firestein’s Textbook of Rheumatology. Philadelphia, PA: Elsevier; 2017. Vol. 1. P. 274–287.
  7. Zhou D, Huang C, Lin Z, et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal. 2014;26(2):192–197. doi: 10.1016/j.cellsig.2013.11.004
  8. Rumpel N, Riechert G, Schumann J. miRNA-mediated fine regulation of TLR-induced M1 polarization. Cells. 2024;13(8):1–18. doi: 10.3390/cells13080701
  9. Zhao W, Ma L, Deng D, et al. M2 macrophage polarization: a potential target in pain relief. Front Immunol. 2023;14:1243149. doi: 10.3389/fimmu.2023.1243149
  10. Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233:6425–6440. doi: 10.1002/jcp.26429
  11. Funes SC, Rios M, Escobar-Vera J, Kalergis AM. Implications of macrophage polarization in autoimmunity. Immunology. 2018;154(2):186–195. doi: 10.1111/imm.12910
  12. Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020;877:173090. doi: 10.1016/j.ejphar.2020.173090
  13. Strizova Z, Benesova I, Bartolini R, et al. M1/M2 macrophages and their overlaps – myth or reality? Clin Sci. 2023;137(15):1067–1093. doi: 10.1042/CS20220531
  14. Luo M, Zhao F, Cheng H, et al. Macrophage polarization: an important role in inflammatory diseases. Front Immunol. 2024;15:1352946. doi: 10.3389/fimmu.2024.1352946
  15. Zhang Q, Sioud M. Tumor-associated macrophage subsets: shaping polarization and targeting. Int J Mol Sci. 2023;24(8):7493. doi: 10.3390/ijms24087493
  16. Arora S, Dev K, Agarwal B, et al. Macrophages: Their role, activation and polarization in pulmonary diseases. Immunobiology. 2018;223(4–5):383–396. doi: 10.1016/j.imbio.2017.11.001
  17. Kiseleva V, Vishnyakova P, Elchaninov A, et al. Biochemical and molecular inducers and modulators of M2 macrophage polarization in clinical perspective. Int Immunopharmacol. 2023;122:110583. doi: 10.1016/j.intimp.2023.110583
  18. Wang LX, Zhang SX, Wu HJ, et al. M2b macrophage polarization and its roles in diseases. J Leukoc Biol. 2019;106(2):345–358. doi: 10.1002/JLB.3RU1018-378RR
  19. Noh JY, Han HW, Kim DM, et al. Innate immunity in peripheral tissues is differentially impaired under normal and endotoxic conditions in aging. Front Immunol. 2024;15:1357444. doi: 10.3389/fimmu.2024.1357444
  20. Deng L, Jian Z, Xu T, et al. Macrophage polarization: an important candidate regulator for lung diseases. Molecules. 2023;28(5):2379. doi: 10.3390/molecules28052379
  21. Gao J, Liang Y, Wang L. Shaping polarization of tumor-associated macrophages in cancer immunotherapy. Front Immunol. 2022;13:888713. doi: 10.3389/fimmu.2022.888713
  22. Zhou X, Xie F, Wang L, et al. The function and clinical application of extracellular vesicles in innate immune regulation. Cell Mol Immunol. 2020;17(4):323–334. doi: 10.1038/s41423-020-0391-1
  23. Hoppenbrouwers T, Bastiaan-Net S, Garssen J, et al. Functional differences between primary monocyte-derived and THP-1 macrophages and their response to LCPUFAs. PharmaNutrition. 2022;22(12):100322. doi: 10.1016/j.phanu.2022.100322
  24. Mohd Yasin ZN, Mohd Idrus FN, Hoe CH, Yvonne-Tee GB. Macrophage polarization in THP-1 cell line and primary monocytes: A systematic review. Differentiation. 2022;128:67–82. doi: 10.1016/j.diff.2022.10.001
  25. Chanput W, Mes JJ, Wichers HJ. THP-1 cell line: An in vitro cell model for immune modulation approach. Int Immunopharmacol. 2014;23:37–45. doi: 10.1016/j.intimp.2014.08.002
  26. Scobie MR, Abood A, Rice CD. Differential transcriptome responses in human THP-1 macrophages following exposure to T98G and LN-18 human glioblastoma secretions: a simplified bioinformatics approach to understanding patient-glioma-specific effects on tumor-associated macrophages. Int J Mol Sci. 2023;24(6):5115. doi: 10.3390/ijms24065115
  27. Tang D, Cao F, Yan C, et al. Extracellular vesicle/macrophage axis: potential targets for inflammatory disease intervention. Front Immunol. 2022;13. doi: 10.3389/fimmu.2022.705472
  28. Akino AD, Rubinshtein AA, Golovkin IA, et al. Features of extracellular vesicle production by THP-1 cells during in vitro stimulation. Complex Issues Cardiovasc Dis. 2024;13(3):154–66. doi: 10.17802/2306-1278-2024-13-3-154-166
  29. Sambur DB, Kalinina O V., Aquino AD, et al. Extracellular vesicles secreted by the activated THP-1 cells influence the inflammation gene expression in zebrafish. Neurochem J. 2024;18(1):92–107. doi: 10.31857/S1027813324010096
  30. Petrova T, Kalinina O, Aquino A, et al. Topographic distribution of miRNAs (miR-30a, miR-223, miR-let-7a, miR-let-7f, miR-451, and miR-486) in the plasma extracellular vesicles. Noncoding RNA. 2024;10(1):15. doi: 10.3390/ncrna10010015
  31. Wang Y, Zhao M, Liu S, et al. Macrophage-derived extracellular vesicles: diverse mediators of pathology and therapeutics in multiple diseases. Cell Death Dis. 2020;11(10):924. doi: 10.1038/s41419-020-03127-z
  32. Nielsen MC, Hvidbjerg Gantzel R, et al. Macrophage activation markers, CD163 and CD206, in acute-on-chronic liver failure. Cells. 2020;9(5):1175. doi: 10.3390/cells9051175
  33. Nielsen MC, Andersen MN, Rittig N, et al. The macrophage-related biomarkers sCD163 and sCD206 are released by different shedding mechanisms. J Leukoc Biol. 2019;106(5):1129–1138. doi: 10.1002/JLB.3A1218-500R
  34. Heideveld E, Horcas-Lopez M, Lopez-Yrigoyen M, et al. Methods for macrophage differentiation and in vitro generation of human tumor associated-like macrophages. Methods Enzymol. 2020;632:113–131. doi: 10.1016/bs.mie.2019.10.005
  35. Rynikova M, Adamkova P, Hradicka P, et al. Transcriptomic analysis of macrophage polarization protocols: vitamin D3 or IL-4 and IL-13 do not polarize THP-1 monocytes into reliable M2 macrophages. Biomedicines. 2023;11(2):608. doi: 10.3390/biomedicines11020608
  36. Zhao F, Zhang J, Liu YS, et al. Research advances on flotillins. Virol J. 2011;8(1):479. doi: 10.1186/1743-422X-8-479
  37. Skytthe MK, Graversen JH, Moestrup SK. Targeting of CD163+ macrophages in inflammatory and malignant diseases. Int J Mol Sci. 2020;21(15):5497. doi: 10.3390/ijms21155497

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Supplementary materials
Download (66KB)
3. Fig. 1. Microscopy of THP-1 cells depending on the activation and polarization protocol: native THP-1 cells (a); exposure to 100 ng/mL phorbol 12-myristate 13-acetate (PMA) for 48 h (protocol 1) (b); exposure to 10 ng/mL PMA for 24 h followed by a 24 h rest period (protocol 2) (c). M0_1, cells activated according to protocol 1; M1_1, cells polarized toward the M1 macrophage phenotype after activation according to protocol 1; M2_1, cells polarized toward the M2 macrophage phenotype after activation according to protocol 1; M0_2, cells activated according to protocol 2; M1_2, cells polarized toward the M1 macrophage phenotype after activation according to protocol 2; M2_2, cells polarized toward the M2 macrophage phenotype after activation according to protocol 2.

Download (340KB)
4. Fig. 2. Immunophenotyping of THP-1 cells activated according to protocol 1 (a) and protocol 2 (b), followed by polarization toward M1 and M2 macrophages. Group designations as in Fig. 1.

Download (181KB)
5. Fig. 3. Relative expression of IL-1β, IL-6, IL-8, IL-12p40, TNFα, and CXCL10 genes in intact THP-1 cells, activated according to protocol 1 (a) and protocol 2 (b), followed by polarization toward M1 and M2 macrophages. Group designations as in Fig. 1. *р < 0.05, **р < 0.01, ***p < 0.0001.

Download (178KB)
6. Fig. 4. Relative expression of CD163, CD206, CCL22, IL-10, and fibronectin (FN) genes in intact THP-1 cells, activated according to protocol 1 (a) and protocol 2 (b), followed by polarization toward M1 and M2 macrophages. Group designations as in Fig. 1. *р < 0.05, **р < 0.01, ***p < 0.0001.

Download (199KB)
7. Fig. 5. Discriminant analysis based on the relative expression levels of 11 genes in intact THP-1 cells, activated according to protocol 1 (a) and protocol 2 (b), followed by polarization toward M1 and M2 macrophages. The plot shows clusters formed by cells of the respective groups (THP-1, M0_1, M1_1, M2_1, and M0_2, M1_2, M2_2). Each point represents one sample.

Download (385KB)
8. Fig. 6. Presence of tetraspanin receptors (CD9, CD63, CD82, and CD81) and surface molecules CD163, CD206, HLA-DR, and CD209 characteristic of THP-1 cells according to protocol 1 (a) and protocol 2 (b), followed by polarization toward M1 and M2 macrophage phenotypes. Group designations as in Fig. 1.

Download (240KB)
9. Fig. 7. Western blot performed with antibodies against flotillin-1. Group designations as in Fig. 1.

Download (54KB)

Copyright (c) 2025 Eco-Vector



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».