Changes in the spectrum of extracellular vesicles produced by THP-1 cells during polarization toward M1 or M2 macrophages
- Authors: Sambur D.B.1, Kalinina O.V.1, Aquino A.D.1, Tirikova P.V.1, Zubkova K.D.1, Dreizis I.I.1, Rubinstein A.A.1,2, Trulioff A.S.1,2, Kudriavtsev I.V.1,2, Golovkin A.S.1
-
Affiliations:
- Almazov National Medical Research Center
- Institute of Experimental Medicine
- Issue: Vol 25, No 2 (2025)
- Pages: 98-111
- Section: Original research
- URL: https://journals.rcsi.science/MAJ/article/view/319501
- DOI: https://doi.org/10.17816/MAJ639999
- EDN: https://elibrary.ru/BSIPWO
- ID: 319501
Cite item
Abstract
BACKGROUND: Macrophages are capable of secreting extracellular vesicles that exert a wide range of biological effects, including modulation of the immune response under pathological conditions.
AIM: The work aimed to compare the qualitative and quantitative composition of extracellular vesicles produced by THP-1 cells depending on the concentration and duration of activation with phorbol 12-myristate 13-acetate and the direction of polarization toward M1 or M2 macrophages.
METHODS: THP-1 cells were activated with different concentrations of phorbol 12-myristate 13-acetate (100 and 10 ng/mL). Polarization toward M1 macrophages was induced using IFN-γ and LPS, and toward M2 using IL-4 and IL-13. Cells and their extracellular vesicles were immunophenotyped for CD80, CD64, HLA-DR, CD206, CD209, and CD163. Relative gene expression levels of IL-1β, IL-6, IL-8, IL-12p40, TNFα, CXCL10, CD163, CD206, CCL22, IL-10, FN, and GAPDH were assessed. The size and concentration of extracellular vesicles were measured by nanoparticle tracking analysis. The protein composition of extracellular vesicles was additionally assessed for the presence of tetraspanin receptors (CD9, CD63, CD82, and CD81) and flotillin-1.
RESULTS: Activation of cells with high doses of phorbol 12-myristate 13-acetate followed by polarization toward M1, compared to M2, led to increased expression of CD80, CD209, and CD163. Regardless of the applied activation–polarization protocol, THP-1 cells were distributed into distinct, compact clusters according to the results of discriminant analysis of gene expression levels. Activation was accompanied by a more than 10-fold increase in extracellular vesicle production. High-dose phorbol 12-myristate 13-acetate activation followed by M1 polarization resulted in secretion of the highest number of extracellular vesicles (188×108 [185×108; 202.5×108] particles/mL), of larger size (134 ± 6.1 nm), and expressing CD63 and CD82. However, their flotillin-1 content was reduced.
CONCLUSION: Thus, high-dose phorbol 12-myristate 13-acetate activation of THP-1 cells is more effective for subsequent polarization. Depending on the applied polarization protocol, cells produce extracellular vesicles differing in both quantity and composition.
Full Text
##article.viewOnOriginalSite##About the authors
Darina B. Sambur
Almazov National Medical Research Center
Email: sambour-darina@mail.ru
ORCID iD: 0009-0009-6352-813X
SPIN-code: 8885-9190
Russian Federation, Saint Petersburg
Olga V. Kalinina
Almazov National Medical Research Center
Email: olgakalinina@mail.ru
ORCID iD: 0000-0003-1916-5705
SPIN-code: 7752-7929
Dr. Sci. (Biology)
Russian Federation, Saint PetersburgArthur D. Aquino
Almazov National Medical Research Center
Email: akino97@bk.ru
ORCID iD: 0000-0001-6516-7184
SPIN-code: 3395-5556
Dr. Sci. (Biology)
Russian Federation, Saint PetersburgPolina V. Tirikova
Almazov National Medical Research Center
Email: tipo.paulina2002@yandex.ru
ORCID iD: 0000-0002-4433-1640
Russian Federation, Saint Petersburg
Kseniya D. Zubkova
Almazov National Medical Research Center
Email: zubkowa.ksenija@gmail.com
ORCID iD: 0009-0007-8108-0311
Russian Federation, Saint Petersburg
Irina I. Dreizis
Almazov National Medical Research Center
Email: ira.dreyzis@gmail.com
ORCID iD: 0009-0004-3673-015X
Russian Federation, Saint Petersburg
Artem A. Rubinstein
Almazov National Medical Research Center; Institute of Experimental Medicine
Email: arrubin6@mail.ru
ORCID iD: 0000-0002-8493-5211
SPIN-code: 6025-1790
Russian Federation, Saint Petersburg; Saint Petersburg
Andrey S. Trulioff
Almazov National Medical Research Center; Institute of Experimental Medicine
Email: trulioff@gmail.com
ORCID iD: 0000-0002-7495-446X
SPIN-code: 8688-7506
Cand. Sci. (Biology)
Russian Federation, Saint Petersburg; Saint PetersburgIgor V. Kudriavtsev
Almazov National Medical Research Center; Institute of Experimental Medicine
Email: igorek1981@yandex.ru
ORCID iD: 0000-0001-7204-7850
SPIN-code: 4903-7636
Cand. Sci. (Biology)
Russian Federation, Saint Petersburg; Saint PetersburgAlexey S. Golovkin
Almazov National Medical Research Center
Author for correspondence.
Email: golovkin_a@mail.ru
ORCID iD: 0000-0002-7577-628X
SPIN-code: 8803-2425
MD, Dr. Sci. (Medicine)
Russian Federation, Saint PetersburgReferences
- Buzas EI. The roles of extracellular vesicles in the immune system. Nat Rev Immunol. 2023;23(4):236–250. doi: 10.1038/s41577-022-00763-8
- Deville S, Garcia Romeu H, Oeyen E, et al. Macrophages release extracellular vesicles of different properties and composition following exposure to nanoparticles. Int J Mol Sci. 2023;24(1):1–18. doi: 10.3390/ijms24010260
- Sun L, Wang X, Saredy J, et al. Innate-adaptive immunity interplay and redox regulation in immune response. Redox Biol. 2020;37:101759. doi: 10.1016/j.redox.2020.101759
- Duan T, Du Y, Xing C, et al. Toll-like receptor signaling and its role in cell-mediated immunity. Front Immunol. 2022;13:812774. doi: 10.3389/fimmu.2022.812774
- Li D, Wu M. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther. 2021;6(1):1–24. doi: 10.1038/s41392-021-00687-0
- Porcelli SA. Innate Immunity. In: Kelley and Firestein’s Textbook of Rheumatology. Philadelphia, PA: Elsevier; 2017. Vol. 1. P. 274–287.
- Zhou D, Huang C, Lin Z, et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal. 2014;26(2):192–197. doi: 10.1016/j.cellsig.2013.11.004
- Rumpel N, Riechert G, Schumann J. miRNA-mediated fine regulation of TLR-induced M1 polarization. Cells. 2024;13(8):1–18. doi: 10.3390/cells13080701
- Zhao W, Ma L, Deng D, et al. M2 macrophage polarization: a potential target in pain relief. Front Immunol. 2023;14:1243149. doi: 10.3389/fimmu.2023.1243149
- Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233:6425–6440. doi: 10.1002/jcp.26429
- Funes SC, Rios M, Escobar-Vera J, Kalergis AM. Implications of macrophage polarization in autoimmunity. Immunology. 2018;154(2):186–195. doi: 10.1111/imm.12910
- Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020;877:173090. doi: 10.1016/j.ejphar.2020.173090
- Strizova Z, Benesova I, Bartolini R, et al. M1/M2 macrophages and their overlaps – myth or reality? Clin Sci. 2023;137(15):1067–1093. doi: 10.1042/CS20220531
- Luo M, Zhao F, Cheng H, et al. Macrophage polarization: an important role in inflammatory diseases. Front Immunol. 2024;15:1352946. doi: 10.3389/fimmu.2024.1352946
- Zhang Q, Sioud M. Tumor-associated macrophage subsets: shaping polarization and targeting. Int J Mol Sci. 2023;24(8):7493. doi: 10.3390/ijms24087493
- Arora S, Dev K, Agarwal B, et al. Macrophages: Their role, activation and polarization in pulmonary diseases. Immunobiology. 2018;223(4–5):383–396. doi: 10.1016/j.imbio.2017.11.001
- Kiseleva V, Vishnyakova P, Elchaninov A, et al. Biochemical and molecular inducers and modulators of M2 macrophage polarization in clinical perspective. Int Immunopharmacol. 2023;122:110583. doi: 10.1016/j.intimp.2023.110583
- Wang LX, Zhang SX, Wu HJ, et al. M2b macrophage polarization and its roles in diseases. J Leukoc Biol. 2019;106(2):345–358. doi: 10.1002/JLB.3RU1018-378RR
- Noh JY, Han HW, Kim DM, et al. Innate immunity in peripheral tissues is differentially impaired under normal and endotoxic conditions in aging. Front Immunol. 2024;15:1357444. doi: 10.3389/fimmu.2024.1357444
- Deng L, Jian Z, Xu T, et al. Macrophage polarization: an important candidate regulator for lung diseases. Molecules. 2023;28(5):2379. doi: 10.3390/molecules28052379
- Gao J, Liang Y, Wang L. Shaping polarization of tumor-associated macrophages in cancer immunotherapy. Front Immunol. 2022;13:888713. doi: 10.3389/fimmu.2022.888713
- Zhou X, Xie F, Wang L, et al. The function and clinical application of extracellular vesicles in innate immune regulation. Cell Mol Immunol. 2020;17(4):323–334. doi: 10.1038/s41423-020-0391-1
- Hoppenbrouwers T, Bastiaan-Net S, Garssen J, et al. Functional differences between primary monocyte-derived and THP-1 macrophages and their response to LCPUFAs. PharmaNutrition. 2022;22(12):100322. doi: 10.1016/j.phanu.2022.100322
- Mohd Yasin ZN, Mohd Idrus FN, Hoe CH, Yvonne-Tee GB. Macrophage polarization in THP-1 cell line and primary monocytes: A systematic review. Differentiation. 2022;128:67–82. doi: 10.1016/j.diff.2022.10.001
- Chanput W, Mes JJ, Wichers HJ. THP-1 cell line: An in vitro cell model for immune modulation approach. Int Immunopharmacol. 2014;23:37–45. doi: 10.1016/j.intimp.2014.08.002
- Scobie MR, Abood A, Rice CD. Differential transcriptome responses in human THP-1 macrophages following exposure to T98G and LN-18 human glioblastoma secretions: a simplified bioinformatics approach to understanding patient-glioma-specific effects on tumor-associated macrophages. Int J Mol Sci. 2023;24(6):5115. doi: 10.3390/ijms24065115
- Tang D, Cao F, Yan C, et al. Extracellular vesicle/macrophage axis: potential targets for inflammatory disease intervention. Front Immunol. 2022;13. doi: 10.3389/fimmu.2022.705472
- Akino AD, Rubinshtein AA, Golovkin IA, et al. Features of extracellular vesicle production by THP-1 cells during in vitro stimulation. Complex Issues Cardiovasc Dis. 2024;13(3):154–66. doi: 10.17802/2306-1278-2024-13-3-154-166
- Sambur DB, Kalinina O V., Aquino AD, et al. Extracellular vesicles secreted by the activated THP-1 cells influence the inflammation gene expression in zebrafish. Neurochem J. 2024;18(1):92–107. doi: 10.31857/S1027813324010096
- Petrova T, Kalinina O, Aquino A, et al. Topographic distribution of miRNAs (miR-30a, miR-223, miR-let-7a, miR-let-7f, miR-451, and miR-486) in the plasma extracellular vesicles. Noncoding RNA. 2024;10(1):15. doi: 10.3390/ncrna10010015
- Wang Y, Zhao M, Liu S, et al. Macrophage-derived extracellular vesicles: diverse mediators of pathology and therapeutics in multiple diseases. Cell Death Dis. 2020;11(10):924. doi: 10.1038/s41419-020-03127-z
- Nielsen MC, Hvidbjerg Gantzel R, et al. Macrophage activation markers, CD163 and CD206, in acute-on-chronic liver failure. Cells. 2020;9(5):1175. doi: 10.3390/cells9051175
- Nielsen MC, Andersen MN, Rittig N, et al. The macrophage-related biomarkers sCD163 and sCD206 are released by different shedding mechanisms. J Leukoc Biol. 2019;106(5):1129–1138. doi: 10.1002/JLB.3A1218-500R
- Heideveld E, Horcas-Lopez M, Lopez-Yrigoyen M, et al. Methods for macrophage differentiation and in vitro generation of human tumor associated-like macrophages. Methods Enzymol. 2020;632:113–131. doi: 10.1016/bs.mie.2019.10.005
- Rynikova M, Adamkova P, Hradicka P, et al. Transcriptomic analysis of macrophage polarization protocols: vitamin D3 or IL-4 and IL-13 do not polarize THP-1 monocytes into reliable M2 macrophages. Biomedicines. 2023;11(2):608. doi: 10.3390/biomedicines11020608
- Zhao F, Zhang J, Liu YS, et al. Research advances on flotillins. Virol J. 2011;8(1):479. doi: 10.1186/1743-422X-8-479
- Skytthe MK, Graversen JH, Moestrup SK. Targeting of CD163+ macrophages in inflammatory and malignant diseases. Int J Mol Sci. 2020;21(15):5497. doi: 10.3390/ijms21155497
Supplementary files
