Development of a chimeric hemagglutinin-based live-attenuated influenza vaccine against both lineages of influenza B virus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: The development of a universal influenza vaccine remains a critical goal to enhance protection against diverse influenza virus strains. While vaccines against influenza type A viruses have benefited from the use of chimeric hemagglutinin designs, strategies for influenza type B vaccines still lag.

AIM: The study aimed to investigate the efficacy of chimeric vaccine strains to induce humoral immune response targeting conserved antigenic sites of influenza type B virus.

METHODS: A chimeric hemagglutinin was engineered by combining the head domain from the B/Brisbane/60/2008 virus (Victoria lineage) with the stalk domain from the B/Phuket/3073/2013 virus (Yamagata lineage). The gene encoding the chimeric hemagglutinin was incorporated into a vaccine virus based on the cold-adapted B/USSR/60/69 master donor virus to produce live-attenuated influenza vaccine. Mice were sequentially vaccinated with the conventional live-attenuated influenza vaccine and then with the recombinant live-attenuated influenza vaccine expressing the chimeric hemagglutinin. Immune responses and cross-protection against both homologous and heterologous influenza type B virus strains were assessed.

RESULTS: The engineered chimeric hemagglutinin did not impair the replication or assembly of the vaccine virus. Sequential vaccination induced a robust humoral immune response and provided protection against both homologous and heterologous influenza type B virus strains in the mouse model.

CONCLUSION: Live-attenuated influenza type B vaccines expressing chimeric hemagglutinin show promise in broadening protection against influenza type B virus infection. These findings support the development of a universal influenza type B vaccine using a chimeric hemagglutinin design.

About the authors

Pei-Fong Wong

Institute of Experimental Medicine

Author for correspondence.
Email: po333222@gmail.com
ORCID iD: 0000-0002-7939-6313
SPIN-code: 7151-7480
Russian Federation, Saint Petersburg

Ekaterina A. Stepanova

Institute of Experimental Medicine

Email: fedorova.iem@gmail.com
ORCID iD: 0000-0002-8670-8645
SPIN-code: 8010-3047

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Ekaterina A. Bazhenova

Institute of Experimental Medicine

Email: sonya.01.08@mail.ru
ORCID iD: 0000-0003-3280-556X
SPIN-code: 5169-1426

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Svetlana A. Donina

Institute of Experimental Medicine

Email: sveta.donina@gmail.com
ORCID iD: 0000-0002-6502-8341
SPIN-code: 6961-3849

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Larisa G. Rudenko

Institute of Experimental Medicine

Email: vaccine@mail.ru
ORCID iD: 0000-0002-0107-9959
SPIN-code: 4181-1372

MD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg

Irina N. Isakova-Sivak

Institute of Experimental Medicine

Email: isakova.sivak@iemspb.ru
ORCID iD: 0000-0002-2801-1508
SPIN-code: 3469-3600

Dr. Sci. (Biology), Corresponding Member of the RAS

Russian Federation, Saint Petersburg

References

  1. Caini S, Kusznierz G, Garate VV, et al. The epidemiological signature of influenza B virus and its B/Victoria and B/Yamagata lineages in the 21st century. PLoS One. 2019;14:e0222381. doi: 10.1371/journal.pone.0222381
  2. Hay AJ, Gregory V, Douglas AR, Lin YP. The evolution of human influenza viruses. Philos Trans R Soc Lond B Biol Sci. 2001;356(1416):1861–1870. doi: 10.1098/rstb.2001.0999
  3. Kanegae Y, Sugita S, Endo A, et al. Evolutionary pattern of the hemagglutinin gene of influenza B viruses isolated in Japan: cocirculating lineages in the same epidemic season. J Virol. 1990;64(6):2860–2865. doi: 10.1128/jvi.64.6.2860-2865.1990
  4. Rota PA, Wallis TR, Harmon MW, et al. Cocirculation of two distinct evolutionary lineages of influenza type B virus since 1983. Virology. 1990;175(1):59–68. doi: 10.1016/0042-6822(90)90186-u
  5. Isakova-Sivak I, Grigorieva E, Rudenko L. Insights into current clinical research on the immunogenicity of live attenuated influenza vaccines. Expert Rev Vaccines. 2020;19(1):43–55. doi: 10.1080/14760584.2020.1711056
  6. Dhanasekaran V, Sullivan S, Edwards KM, et al. Human seasonal influenza under COVID-19 and the potential consequences of influenza lineage elimination. Nat Commun. 2022;13(1):1721. doi: 10.1038/s41467-022-29402-5
  7. Osterhaus AD, Rimmelzwaan GF, Martina BE, et al. Influenza B virus in seals. Science. 2000;288(5468):1051–1053. doi: 10.1126/science.288.5468.1051
  8. Ryder AB, Nachbagauer R, Buonocore L, et al. Vaccination with vesicular stomatitis virus-vectored chimeric hemagglutinins protects mice against divergent influenza virus challenge strains. J Virol. 2015;90(5):2544–2550. doi: 10.1128/JVI.02598-15
  9. Krammer F, Margine I, Hai R, et al. H3 stalk-based chimeric hemagglutinin influenza virus constructs protect mice from H7N9 challenge. J Virol. 2014;88(4):2340–2343. doi: 10.1128/JVI.03183-13
  10. Krammer F, Pica N, Hai R, et al. Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies. J Virol. 2013;87(12):6542–6550. doi: 10.1128/JVI.00641-13
  11. Isakova-Sivak I, Korenkov D, Smolonogina T, et al. Broadly protective anti-hemagglutinin stalk antibodies induced by live attenuated influenza vaccine expressing chimeric hemagglutinin. Virology. 2018;518:313–323. doi: 10.1016/j.virol.2018.03.013
  12. Bliss CM, Nachbagauer R, Mariottini C, et al. A chimeric haemagglutinin-based universal influenza virus vaccine boosts human cellular immune responses directed towards the conserved haemagglutinin stalk domain and the viral nucleoprotein. EBioMedicine. 2024;104:105153. doi: 10.1016/j.ebiom.2024.105153
  13. Nachbagauer R, Feser J, Naficy A, et al. A chimeric hemagglutinin-based universal influenza virus vaccine approach induces broad and long-lasting immunity in a randomized, placebo-controlled phase I trial. Nat Med. 2021;27(1):106–114. doi: 10.1038/s41591-020-1118-7
  14. Bernstein DI, Guptill J, Naficy A, et al. Immunogenicity of chimeric haemagglutinin-based, universal influenza virus vaccine candidates: interim results of a randomised, placebo-controlled, phase 1 clinical trial. Lancet Infect Dis. 2020;20(1):80–91. doi: 10.1016/S1473-3099(19)30393-7
  15. Puente-Massaguer E, Vasilev K, Beyer A, et al. Chimeric hemagglutinin split vaccines elicit broadly cross-reactive antibodies and protection against group 2 influenza viruses in mice. Sci Adv. 2023;9:eadi4753. doi: 10.1126/sciadv.adi4753
  16. Ermler ME, Kirkpatrick E, Sun W, et al. Chimeric hemagglutinin constructs induce broad protection against influenza B virus challenge in the mouse model. J Virol. 2017;91(12):e00286–17. doi: 10.1128/JVI.00286-17
  17. Song Y, Zhu, W, Wang Y, et al. Layered protein nanoparticles containing influenza B HA stalk induced sustained cross-protection against viruses spanning both viral lineages. Biomaterials. 2022;287:121664. doi: 10.1016/j.biomaterials.2022.121664
  18. Wong PF, Isakova-Sivak I, Stepanova E, et al. Development of cross-reactive live attenuated influenza vaccine candidates against both lineages of influenza B virus. Vaccines (Basel). 2024;12(1):95. doi: 10.3390/vaccines12010095
  19. Baranov KV, Wong P-F, Stepanova EA, et al. Construction of the vaccine strain of the influenza B virus with chimeric hemagglutinin to induce a cross-protective immune response. Medical Academic Journal. 2021;21(3):91–96. doi: 10.17816/MAJ77556
  20. Reed LJ, Muench H. A simple method of estimating fifty percent endpoints. Am J Epidemiol. 1938;27:493–497. doi: 10.1093/oxfordjournals.aje.a118408
  21. WHO manual on animal influenza diagnosis and surveillance. 2002 [Internet]. Available from: https://pdf4pro.com/view/who-manual-on-animal-influenza-diagnosis-and-surveillance-6d3a18.html. Accessed: 24 May 2025.
  22. Ni F, Kondrashkina E, Wang Q. Structural basis for the divergent evolution of influenza B virus hemagglutinin. Virology. 2013;446(1–2):112–122. doi: 10.1016/j.virol.2013.07.035
  23. McCullers JA, Saito T, Iverson AR. Multiple genotypes of influenza B virus circulated between 1979 and 2003. J Virol. 2004;78:12817–12828. doi: 10.1128/jvi.78.23.12817-12828.2004
  24. Tisa V, Barberis I, Faccio V, et al. Quadrivalent influenza vaccine: a new opportunity to reduce the influenza burden. J Prev Med Hyg. 2016;57(1):E28–33.
  25. Belshe RB, Coelingh K, Ambrose CS, et al. Efficacy of live attenuated influenza vaccine in children against influenza B viruses by lineage and antigenic similarity. Vaccine. 2010;28(9):2149–2156. doi: 10.1016/j.vaccine.2009.11.068
  26. Tan HX, Jegaskanda S, Juno JA, et al. Subdominance and poor intrinsic immunogenicity limit humoral immunity targeting influenza HA stem. J Clin Invest. 2019;129:850–862. doi: 10.1172/jci123366
  27. Andrews SF, Huang Y, Kaur K, et al. Immune history profoundly affects broadly protective B cell responses to influenza. Sci Transl Med. 2015;7(316):316ra192. doi: 10.1126/scitranslmed.aad0522
  28. Impagliazzo A, Milder F, Kuipers H, et al. A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science. 2015;349(6254):1301–1306. doi: 10.1126/science.aac7263
  29. Boyoglu-Barnum S, Hutchinson GB, Boyington JC, et al. Glycan repositioning of influenza hemagglutinin stem facilitates the elicitation of protective cross-group antibody responses. Nat Commun. 2020;11(1):791. doi: 10.1038/s41467-020-14579-4
  30. de Vries RD, Nieuwkoop NJ, van der Klis FRM, et al. Primary human influenza B virus infection induces cross-lineage hemagglutinin stalk–specific antibodies mediating antibody-dependent cellular cytoxicity. J Infect Dis. 2018;217(1):3–11. doi: 10.1093/infdis/jix546
  31. Lee J, Boutz DR, Chromikova V, et al. Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination. Nat Med. 2016;22(12):1456–1464. doi: 10.1038/nm.4224
  32. Ambrose CS, Wu X, Jones T, Mallory RM. The role of nasal IgA in children vaccinated with live attenuated influenza vaccine. Vaccine. 2012;30:6794–6801. doi: 10.1016/j.vaccine.2012.09.018
  33. Belshe RB, Gruber WC, Mendelman PM, et al. Correlates of immune protection induced by live, attenuated, cold-adapted, trivalent, intranasal influenza virus vaccine. J Infect Dis. 2000;181(3):1133–1137. doi: 10.1086/315323
  34. Mohn KG, Bredholt G, Brokstad KA, et al. Longevity of B-cell and T-cell responses after live attenuated influenza vaccination in children. J Infect Dis. 2015;211(10):1541–1549. doi: 10.1093/infdis/jiu654
  35. Korenkov D, Isakova-Sivak I, Rudenko L. Basics of CD8 T-cell immune responses after influenza infection and vaccination with inactivated or live attenuated influenza vaccine. Expert Rev Vaccines. 2018;17(11):977–987. doi: 10.1080/14760584.2018.1541407
  36. Terajima M, Babon JA, Co MD, Ennis FA. Cross-reactive human B cell and T cell epitopes between influenza A and B viruses. Virol J. 2013;10:244. doi: 10.1186/1743-422x-10-244
  37. Robbins PA, Rota PA, Shapiro SZ. A broad cytotoxic T lymphocyte response to influenza type B virus presented by multiple HLA molecules. Int Immunol. 1997;9(6):815–823. doi: 10.1093/intimm/9.6.815
  38. van de Sandt CE, Dou Y, Vogelzang-van Trierum SE, et al. Influenza B virus-specific CD8+ T-lymphocytes strongly cross-react with viruses of the opposing influenza B lineage. J Gen Virol. 2015;96(8):2061–2073. doi: 10.1099/vir.0.000156
  39. Caini S, Meijer A, Nunes MC, et al. Probable extinction of influenza B/Yamagata and its public health implications: a systematic literature review and assessment of global surveillance databases. Lancet Microbe. 2024;5(8):100851. doi: 10.1016/S2666-5247(24)00066-1
  40. Pekarek MJ, Weaver EA. Influenza B virus vaccine innovation through computational design. Pathogens. 2024;13(9):755. doi: 10.3390/pathogens13090755

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Design of chimeric HA/B constructs. Influenza B virus HA monomer (based on data reported under PDB accession number 4M44 [22]). The head domain is located between alanines 57 and 305 (B/Yamagata/16/88 numbering, starting with methionine). TM, transmembrane domain; CTD, cytoplasmic tail domain.

Download (24KB)
3. Fig. 2. Growth of recombinant LAIV viruses in MDCK cells. Confluent monolayers of MDCK cells were inoculated at an MOI of 0.001 indicated viruses and incubated at 33 °C. Culture supernatants were collected at 0, 24, 48, 72 and 96 hpi and viral titers were quantified by TCID50 assays. Dotted line shows the limit of virus detection in the TCID50 assay.

Download (50KB)
4. Fig. 3. Virus replication and tissue tropism of the 6+2 LAIV or BrH viruses in the respiratory tracts of mice. At 3 dpi, four animals from each group were euthanized, and virus titers in the upper respiratory tracts (NT) or lower respiratory tracts (lungs) of the mice were determined by limiting dilutions in eggs.

Download (33KB)
5. Fig. 4. Immunogenicity of sequential vaccination with IBV live-attenuated influenza vaccine viruses and/or cHA/BrH virus measured by HI, MN assay, and ELISA against diverse WT IBVs at 43 dpi. Serum responses to Br-wt (a), Ph-wt (b), Lee-wt (c), and Ma-wt (d). *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

Download (573KB)
6. Fig. 5. Induction of anti-stalk IgG antibodies after sequential vaccination with IBV LAIV viruses and/or cHA/BrH virus. ELISA was performed with a chimeric recombinant H8BY recombinant protein consisting of HA globular head domain from the influenza A/H8N4 virus and HA stalk domain from B/Phuket/3037/2013. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

Download (99KB)
7. Fig. 6. Weight loss and survival rate of vaccinated groups challenged with Br-wt (a), Ph-wt (b), Lee-wt (c), and Ma-wt (d) in mice. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

Download (498KB)
8. Fig. 7. Protective activity of 6+2 and BrH LAIV viruses in mice. Immunized mice were challenged with B/Brisbane/60/2008 (left panel) and B/Phuket/3037/2013 virus (right panel); viral titers were determined in lungs and nasal turbinates on Day 3 post challenge. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

Download (144KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».