REMOTE ISCHEMIC PRE- AND POSTCONDITIONING ABOLISHED DELAYED HIF-1a EXPRESSION IN THE RAT HIPPOCAMPUS ALONGSIDE WITH THE CORRECTION OF EXPERIMENTAL POST-TRAUMATIC STRESS DISORDER


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Aims of the study. To examine effects of remote ischemic pre- and postconditioning which prevents development of the experimental post-traumatic s tress disorder (PTSD) in rats on the dynamics of expression of regulatory a-subunit of hypoxia-inducible factor (HIF-1a) in hippocampus. Materials and methods. Using immunohistochemistry method, the level of HIF-1a immunoreactivity has been quantitatively assessed in the hippocampus of animals exposed to stressors in the “traumatic stress-restress” paradigm, and by using the three-time remote limb ischemia which prevented the formation of anxiety pathology in this model. Results. Development of the PTSD-like pathology in rats was accompanied by considerable and persistent (up to 10 days after restress) up-regulation of HIF-1a immunoreactivity level in the CA1 field and dentate gyrus of hippocampus. Conditioning remote ischemia applied before traumatic stress (preconditioning) or following restress (postconditioning) did not affect early post-stress induction of HIF-1a (the first day) but abolished the delayed overexpression of this factor (5-10 days). Conclusions. The data obtained support our recent hypothesis on the pathogenic role of increased HIF-1 factor activity for the development of stress-related anxiety and depressive disorders within the delayed time-period. This also gives evidence to the fact that normalization of delayed violations of HIF-1a expression is obviously the key link of stress-protective effects of remote ischemic conditioning.

About the authors

K A Baranova

FSBSI “Pavlov Institute of Physiology of the Russian Academy of Sciences”

E A Rybnikova

FSBSI “Pavlov Institute of Physiology of the Russian Academy of Sciences”

References

  1. Liberzon I., Krstov M., Young E.A. Stress restress: effects on ACTH and fast feedback // Psychoneuroendocrinology. 1997. Vol. 22 (6). P. 443-453.
  2. Рыбникова Е.А., Миронова В.И., Тюлькова Е.И., Самойлов М.О. Анксиолитический эффект умеренной гипобарической гипоксии у крыс в модели посттравматического стрессового расстройства // ЖВНД им. И.П. Павлова. 2008. Т. 58, № 4. С. 486-492. [Rybnikova E.A., Mironova V.I., Tiul'kova E.I., Samoĭlov M.O. The anxyolytic effect of mild hypobaric hypoxia in a model of post-traumatic stress disorder in rats // Zh Vyssh Nerv Deiat Im I.P. Pavlova. 2008. Vol. 58 (4). P. 486-492].
  3. Рыбникова Е.А., Воробьев М.Г., Самойлов М.О. Гипоксическое посткондиционирование корректирует нарушения поведения крыс в модели посттравматического стрессового расстройства // ЖВНД им. И.П. Павлова. 2012. Т. 62, № 3. С. 364-371. [Rybnikova E.A., Vorob'ev M.G., Samoĭlov M.O. Hypoxic postconditioning corrects behavioral abnormalities in a model of post-traumatic stress disorder in rats // Zh Vyssh Nerv Deiat Im I.P. Pavlova. 2012. Vol. 62, No 3. P. 364-371].
  4. Baranova K.A., Rybnikova E.A., Samoilov M.O. The Dynamics of HIF-1α Expression in the Rat Brain at Different Stages of Experimental Posttraumatic Stress Disorder and its Correction with Moderate Hypoxia // Neurochemical Journal. 2017. Vol. 11, Nо 2. P. 149-156.
  5. Baranova K.A., Mironova V.I., Rybnikova E.A., Samoilov M.O. Characteristics of the Transcription Factor HIF-1α Expression in the Rat Brain during the Development of a Depressive State and the Antidepressive Effects of Hypoxic Preconditioning // Neurochemical Journal. 2010. Vol. 4, No 1. P. 35-40.
  6. Ren C., Gao M., Dornbos D. 3rd, Ding Y., Zeng X., Luo Y., Ji X. Remote ischemic post-conditioning reduced brain damage in experimental ischemia/reperfusion injury // Neurol. Res. 2011. Vol. 33. P. 514-519.
  7. Joseph B., Pandit V., Zangbar B., Kulvatunyou N., Khalil M., Tang A., O'Keeffe T., Gries L., Vercruysse G., Friese R.S., Rhee P. Secondary brain injury in trauma patients: the effects of remote ischemic conditioning // J. Trauma Acute Care Surg. 2015. Vol. 78. P. 698-703.
  8. Li S., Hu X., Zhang M., Zhou F., Lin N., Xia Q., Zhou Y., Qi W., Zong Y., Yang H., Wang T. Remote ischemic post-conditioning improves neurological function by AQP4 down-regulation in astrocytes // Behav. Brain Res. 2015. Vol. 289. P. 1-8.
  9. Baranova K.A. Mild hypoxic and remote ischemic preconditioning in the prevention and correction of anxiety and depressive disorders in animal models // Official J. of the Internat. Stress and Behavior Society. 2016. Vol. 5. P. 17.
  10. Wang G.L., Jiang B.H., Rue E.A., Semenza G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension // Proc. Nat. Acad. Sci. USA. 1995. Vol. 92. P. 5510-5514.
  11. Bell E.L., Chandel N.S. Mitochondrial oxygen sensing: regulation of hypoxia-inducible factor by mitochondrial generated reactive oxygen species // Essays Biochem. 2007. Vol. 43. P. 17-27.
  12. Wagner A.E., Huck G., Stiehl D.P., Jelkmann W., Hellwig-Bürgel T. Dexamethasone impairs hypoxia-inducible factor-1 function // Biochem. Biophys. Res. Commun. 2008. Vol. 372, Nо 2. P. 336-340.
  13. Richard D.E., Berra E., Pouyssegur J. Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1alpha in vascular smooth muscle cells // J. Biol. Chem. 2000. Vol. 275. P. 26765-26771.
  14. Senba E., Ueyama T. Stress-induced expression of immediate early genes in the brain and peripheral organs of the rat // Neurosci. Res. 1997. Vol. 29 (3). P. 183-207.
  15. Baranova K.A., Rybnikova E.A., Samoilov M.O. Involvement of the Transcription Factor c-Fos in the Protective Effect of Hypoxic Preconditioning in a Model of Post-Traumatic Stress Disorder in Rats // Neurochemical Journal. 2011. Vol. 5, Nо 4. P. 257-262.
  16. Paschos N., Lykissas M.G., Beris A.E. The role of erythropoietin as an inhibitor of tissue ischemia // Int. J. Biol. Sci. 2008. Vol. 10, Nо 4 (3). P. 161-168.
  17. Leonard M.O., Godson C., Brady H.R., Taylor C.T. Potentiation of glucocorticoid activity in hypoxia through induction of the glucocorticoid receptor // J. Immunol. 2005. Vol. 174, Nо 4. P. 2250-2257.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Baranova K.A., Rybnikova E.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».