FULLERENECARBOXYLIC ACIDS AND PROSPECTS FOR THEIR USE IN THE CHEMISTRY OF DRUGS


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Among the various derivatives of fullerenes, compounds containing carboxyl groups (carboxyfullerenes) occupy a prominent place. The reason is that the introduction of carboxyl groups makes it possible to obtain water-soluble derivatives of highly lipophilic fullerenes. The review deals with matters of synthesis and structure of carboxyfullerenes, the influence of the amount and structure of the addends on the solubility of the entire compound, various aspects of the usage of these compounds as independent biologically active substances and carriers for creation of various delivery systems.

About the authors

E V Litasova

FSBSI “Institute of Experimental Medicine”

L B Piotrovskiy

FSBSI “Institute of Experimental Medicine”

References

  1. Пиотровский Л.Б., Киселев О.И. Фуллерены в биологии. СПб.: Росток, 2006. 334 с. [Piotrovskiy L.B., Kiselev O.I. Fullerene in biology. St. Petersburg: Rostok, 2006. 334 p.]
  2. Tokuyama H., Yamago S., Nakamura E., Shiraki T., Sugiura Y. Photoinduced biochemical activity of fullerene carbocyclic acid // J. Am. Chem. Soc. 1993. Vol. 115. P. 7918-7919.
  3. Yamago S., Tokuyama H., Nakamura E., Kikuchi K., Kananishi S., Sueki K., Nakahara H., Enomoto S., Ambe F. In vivo biological behavior of a watermiscible fullerene: 14Clabeling, absorption, distribution, excretion and acute toxicity // Chem. Biol. 1995. Vol. 2. P. 385-389.
  4. Станкевич И.В., Соколов В.И. Успехи химии фуллерена // Изв. АН. Сер. хим. 2004. № 9. С. 17491770. [Stankevich I.V., Sokolov V.I. Advances in fullerene chemistry, Russian Chem. Bull. 2004. Vol. 53 (9). P. 18241845.]
  5. Beuerle F., Witte P., Hartnagel U., Lebovitz R., Parng C., Hirsch A. Cytoprotective activities of watersoluble fullerenes in zebrafish models // J. Exper. Nanosci. 2007. Vol. 2. P. 147170.
  6. Witte P., Beuerle F., Hartnagel U., Lebovitz R., Savouchkina A., Sali S., Guldi D., Chronakis N., Hirsch A. Water solubility, antioxidant activity and cytochrome C binding of four families of exohedral adducts of C60 and C70 // Org. Biomol. Chem. 2007. Vol. 5. P. 3599-3613. doi: 10.1039/B711912g.
  7. Nikolaev D.N., Klimenicheva Yu.S., Davidovich P.B., Piotrovskii L.B. The use of solid phase synthesis for the preparation of monoadducts of fullerene C60. Russian Chem. Bull., Internat. Ed. 2012. Vol. 61, No 4. P. 853-857.
  8. Hirsch A., Lamparth I., Karfunkel H. Fullerene chemistry in three dimensions: isolation of seven regioisomeric bisadducts and chiral trisadducts of C60 and di(ethoxycarbonyl)methylene // Angew. Chem., Int. Ed. 1994. Vol. 33. P. 437-438.
  9. Bingel C. Cyclopropanierung von Fullerenen // Chem. Ber. 1993. Vol. 126. P. 1957-1959.
  10. Maggini M., Scorrano G., Prato M. Addition of azomethine ylides to C60: synthesis, characterization, and functionalization of fullerene pyrrolidines // J. Am. Chem. Soc. 1993. Vol. 115, No 21. P. 9798-9799.
  11. Li J., Takeuchi A., Ozawa M., Li X., Saigo K., Kitazawa K. C60 fullerol formation catalysed by quaternary ammonium hydroxides // J. Chem. Soc., Chem. Commun. 1993. P. 1784-1785.
  12. Dugan L.L., Turetsky D.M., Du C., Lobner D., Wheeler M., Almli C.R., Shen C.K.F., Luh T., Choi D.W., Lin T. Carboxyfullerenes as neuroprotective agents // Proc. Natl. Acad. Sci. USA. 1997. Vol. 94. P. 9434-9439.
  13. Rancan F., Rosan S., Boehm F., Cantrell A., Brellreich M., Schoenberger H., Hirsch A., Moussa F. Cytotoxicity and photocytotoxicity of a dendritic C60 monoadduct and a malonic acid C60 trisadduct on Jurkat cells // J. Photochem. Photobiol. B. Biol. 2002. Vol. 67. P. 157-162.
  14. Lin Y., Lei H., Luh T., Chou C., Liu H. Lightindependent inactivation of dengue2 virus by carboxyfullerene C3 isomer // Virology. 2000. Vol. 275. P. 258-262.
  15. Lin A., Fang S., Lin S., Chou C., Luh T., Ho L. Local carboxyfullerene protects cortical infarction in rat brain // Neurosci. Res. 2002. Vol. 43. P. 317321.
  16. Bisaglia M., Natalini B., Pellicciari R., Straface E., Malorni W., Monti D., Franceschi C., Schettini G. C3fullerotrismethanodicarboxylic acid protects cerebellar granule cells from apoptosis // J. Neurochem. 2000. Vol. 74. P. 1197-1204.
  17. Sumizawa T., Igisu H. Suppression of acrylamide toxicity by carboxyfullerene in human neuroblastoma cells in vitro // Arch. Toxicol. 2009. Vol. 83. P. 817-824.
  18. Wang Y.H., Lee E.J., Wu C.M., Luh T.Y., Chou C.K., Lei H.Y. Inhibition of middle cerebral artery occlusioninduced focal cerebral ischemia by carboxyfullerene // J. Drug Del. Sci. Tech. 2004. Vol. 14. P. 45-49.
  19. Dugan L.L., Lovett E.G., Quick K.L., Lotharius J., Lin T.T., O`Malley K.L. Fullerenebased antioxidants and neurodegenerative disorders // Parkinsonism Relat. Disord. 2001. Vol. 7. P. 243-246.
  20. Dugan L.L., Tian L., Quick K.L., Hardt J.I., Karimi M., Brown C., Loftin S., Flores H., Moerlein S.M., Polich J., Tabbal S.D., Mink J.W., Perlmutter J.S. Carboxyfullerene neuroprotection postinjury in parkinsonian nonhuman primates // Ann. Neurol. 2014. Vol. 76. P. 393-402.
  21. Nazem A., Mansoori G.A. Nanotechnology solutions for Alzheimer’s disease: advances in research tools, diagnostic methods and therapeutic agents // J. Alzheim. Disease. 2008. Vol. 13. P. 199-223.
  22. Hardy J. Toward Alzheimer therapies based on genetic knowledge // Annu. Rev. Med. 2004. Vol. 55. P. 15-25.
  23. Zimmermann M., Gardoni F., Di Luca M. Molecular rationale for the pharmacological treatment of Alzheimer’s disease // Drugs Aging. 2005. Vol. 22, Suppl. 1. P. 27-37.
  24. Ali S., Hardt J., Quick K., KimHan J., Erlanger B., Huang T., Epstein C., Dugan L. A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties // Free Rad. Biol. Med. 2004. Vol. 37, No 8. P. 1191-1202.
  25. Ali S.S., Xiong C., Lucero J., Behrens M.M., Dugan L.L., Quick K.L. Gender differences in free radical homeostasis during aging: shorterlived female C57BL6 mice have increased oxidative stress // Aging Cell. 2006. Vol. 5, No 6. P. 565-574.
  26. Quick K.L., Ali S.S., Arch R., Xiong C., Wozniak D., Dugan L.L. A carboxyfullerene SOD mimetic improves cognition and extends the lifespan of mice // Neurobiol Aging. 2008. Vol. 29, No 1. P. 117-128.
  27. Behrens M.M., Ali S.S., Dao D.N., Lucero J., Shekhtman G., Quick K.L., Dugan L.L. Ketamine-induced loss of phenotype of fastspiking interneurons is mediated by NADPHoxidase // Science. 2007. Vol. 318, No 5856. P. 1645-1647.
  28. Karakoti A., Singh S., Dowding J.M., Seal S., Self W.T. Redoxactive radical scavenging nanomaterials // Chem. Soc. Rev. 2010. Vol. 39. P. 4422-4432.
  29. Ali S.S., Hardt J., Dugan L.L. SOD activity of carboxyfullerenes predicts their neuroprotective efficacy: A structure-activity study // Nanomedicine. 2008. Vol. 4, No 4. P. 283-294.
  30. Rauf S., Nawaz M.A.H., Badea M., Marty J.L., Hayat A. Nanoengineered biomimetic optical sensors for glucose monitoring in diabetes // Sensors. 2016. Vol. 16. P. 1931.
  31. Rebecca M., HsingLin W., Jun G., Srinivas I., Gabriel M.A., Jennifer M., Andrew S.P., Yuping B., ChunChih W., Zhong C., Yuan G., Rashi I. Impact of physicochemical properties of engineered fullerenes on key biological responses // Toxicol. Appl. Pharmacol. 2009. Vol. 234. P. 58-67.
  32. Yin J.J., Lao F., Fu P.P., Wamer W.G., Zhao Y., Wang P.C., Qiu Y., Sun B., Xing G., Dong J., Liang X.J., Chen C. The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials // Biomaterials. 2009. Vol. 30. P. 611-621.
  33. Sayes C.M., Marchione A.A., Reed K.L., Warheit D.B. Comparative pulmonary toxicity assessments of C60 water suspensions in rats: few differences in fullerene toxicity in vivo in contrast to in vitro profiles // Nano Lett. 2007. Vol. 7, No 8. P. 2399-2406.
  34. Bobylev A.G., Shpagina M.D., Bobyleva L.G., Okuneva A.D., Podlubnaya Z.A., Piotrovsky L.B. Antiamyloid properties of fullerene C60 derivatives // Biophysics. 2012. Vol. 57, No 3. P. 300-304.
  35. Li W., Chen C.Y., Ye C., Wei T.T., Zhao Y.L., Lao F., Chen Z., Meng H., Gao Y., Yuan H., Xing G., Zhao F., Chai Z., Zhang X., Yang F., Han D., Tang X., Zhang Y. The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrinmediated endocytosis // Nanotechnology. 2008. Vol. 19 (14). P. 145102-145113.
  36. Li W., Zhao L., Wei T., Zhao Y., Chen C. The inhibition of death receptor mediated apoptosis through lysosome stabilization following internalization of carboxyfullerene nanoparticles // Biomaterials. 2011. Vol. 32. P. 4030-4041.
  37. Liu Q., Zhao Y., Wan Y., Zheng J., Zhang X., Wang C., Fang X., Lin J. Study the inhibitory effect of water soluble fullerenes on plant growth at the cellular level // ACS Nano. 2010. Vol. 4. P. 5743-5748.
  38. Liu Q., Zhang X., Zhao Y., Lin J., Shu C., Wang C., Fang X. Fullereneinduced increase of glycosyl residue on living plant cell wall // Environ. Sci. Technol. 2013. Vol. 47. P. 7490-7498.
  39. Belgorodsky B., Fadeev L., Ittah V., Benyamini H., Zelner S., Huppert D., Kotlyar A.B., Gozin M. Formation and characterization of stable human serum albumin-trismalonic acid [C60]fullerene complex // Bioconjugate Chem. 2005. Vol. 16. P. 1058-1062.
  40. Benyamini H., ShulmanPeleg A., Wolfson H.J., Belgorodsky B., Fadeev L., Gozin M. Interaction of C60 fullerene and carboxyfullerene with proteins: docking and binding site alignment // Bioconjugate Chem. 2006. Vol. 17, No 2. P. 378-386.
  41. Yang X.L., Fan C.H., Zhu H.S. Photoinduced cytotoxicity of malonic acid [C60]fullerene derivatives and its mechanism // Toxicol. Vitr. 2002. Vol. 16. P. 41-46.
  42. Liu Q., Guan M., Xu L., Shu C., Jin C., Zheng J., Fang X., Yang Y., Wang C. Structural effect and mechanism of С70-carboxyfullerenes as efficient sensitizers against cancer cells // Small. 2012. Vol. 8, No 13. P. 2070-2077.
  43. Liu Q., Zheng J., Guan M., Fang X., Wang C., Shu C. Protective effect of C70 carboxyfullerene against oxidativeinduced stress on postmitotic muscle cells // ACS Appl. Mater. Interfaces. 2013. Vol. 5. P. 4328-4333.
  44. Norton S.K., Dellinger A., Zhou Z., Lenk R., Macfarland D., Vonakis B., Conrad D., Kepley C.L. A new class of human mast cell and peripheral blood basophil stabilizers that differentially control allergic mediator release // Clin. Transl. Sci. 2010. Vol. 3. P. 158-169.
  45. Norton S.K., Wijesinghe D.S., Dellinger A., Sturgill J., Zhou Z., Barbour S., Chalfant C., Conrad D.H., Kepley C.L. Epoxyeicosatrienoic acids are involved in the C70 fullerene derivative induced control of allergic asthma // J. Allergy Clin. Immunol. 2012. Vol. 130, No 3. P. 761-769.e2.
  46. Nishihara M., Perret F., Takeuchi T., Futaki S., Lazar A.N., Coleman A.W., Sakai N., Matile S. Arginine magic with new counterions up the sleeve // Org. Biomol. Chem. 2005. Vol. 3. P. 1659-1669.
  47. Sakai N., Takeuchi T., Futaki S., Matile S. Direct observation of anion-mediated translocation of fluorescent oligoarginine carriers into and across bulk liquid and anionic bilayer membranes // Chem. BioChem. 2005. Vol. 6. P. 114-122.
  48. Sakai N., Matile S. Anionmediated transfer of polyarginine across liquid and bilayer membranes // J. Am. Chem. Soc. 2003. Vol. 125. P. 14348-14356.
  49. Sitharaman B., Zakharian T.Y., Saraf A., Misra P., Ashcroft J., Pan S., Pham Q.P., Mikos A.G., Wilson L.J., Engler D.A. Watersoluble fullerene (C60) derivatives as nonviral gene delivery vectors // Mol. Pharm. 2008. Vol. 5, No 4. P. 567-578.
  50. Raoof M., Mackeyev Y., Cheney M.A., Wilson L.J., Curley S.A. Internalization of C60 fullerenes into cancer cells with accumulation in the nucleus via the nuclear pore complex // Biomaterials. 2012. Vol. 33, No 10. P. 2952-2960.
  51. Piotrovskiy L.B., Litasova E.V., Dumpis M.A., Nikolaev D.N., Yakovleva E.E., Dravolina O.A., Bespalov A.Yu. Enhanced brain penetration of hexametonium in complexes with derivatives of fullerene C60 // Doklady Biochem. Biophys. 2016. Vol. 468. P. 173-175.
  52. Toth E., Bolskar R.D., Borel A., Gonzalez G., Helm L., Merbach A.E., Sitharaman B., Wilson L.J. Watersoluble gadofullerenes: toward highrelaxivity, pH responsive MRI contrast agents // J. Am. Chem. Soc. 2005. Vol. 127. P. 799-805.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Litasova E.V., Piotrovskiy L.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».