Holocene environmental conditions in the Western part of Eastern Sayan low-mountain relief: based on comprehensive study of the Mina mire deposits

Cover Page

Cite item

Full Text

Abstract

Mires in the foothill areas have high palaeoecological information content. Pollen and spores, which record composition and abundance changes of the main forest-forming species’ pollen in combination with pollen of shrubs and grasses, make it possible to trace altitudinal shifts in vegetation belts caused by relative warming or cooling [Blyakharchuk, 2011; Borisova, Panin, 2019; Blyakharchuk & Kurina, 2021; Bezrukova et al., 2022]. The feature of peat strata to retain various organogenic and mineral fractions that fall on their surface as a result of deluvial and river runoff [Volkova, 2005; Chernova, 2005] makes it possible to identify periods of increased erosion, including those of a pyrogenic factor. To date, within the Altai-Sayan region, the features of palaeoecological conditions in the western part of the Eastern Sayan have been less studied. To understand the main trends in the development of mountain taiga landscapes in specific physical-geographical, climatic and forest growth conditions, a comprehensive study of peat deposits seems extremely important.

The study site is located on the north-western macroslope of the Eastern Sayan in the floodplain of the Mina River (right bank of the Yenisei River). The river valley lies between the slopes of the Kuturchinsky and Koysky Belogorye, north of the Manskoye Belogorye ridge (the western end of the main watershed ridge of the Eastern Sayan), and belongs to the northern part of the Mansko-Kansky low-mountain region. The mires are confined to the widest sections of the Mana and Mina rivers valleys. At the river mouth of the Mina the terrace part is swampy; in the high-mountain belt, small areas of mires are confined mainly to the shores of overgrown lakes. The studied mire area is located on the right bank of the Mina River in the middle reaches above the mouth of the left-bank tributary of the Kuturchin River. The modern mire vegetation cover is represented by a mixed sparse forb-sphagnum-green moss forested mire.

Using botanical analysis of peat, three columns were studied: 1) in a terrace depression at a point with coordinates 54.92° N, 94.28° E and an absolute mark of 560 m, where the thickness of the deposits was 2.40 m, of which: peat - 2.05 m, peaty loam - 0.35 m; 2) at a distance of 450 m from the slope depression, the total thickness is 1.95 m, of which 1.25 m is peat, 0.7 m is loam; 3) at a distance of 750 m from the slope, where peat is 0.8 m, below there is gravel.

Samples of the thickest column were studied using a combination of methods: pollen [Grichuk, Zaklinskaya, 1948], botanical analysis [Kulikova, 1974], macrocharcoal analysis [Clark, 1988], determination of peat ash content was carried out according to [GOST 11306-2013, 2019]. AMS dating was performed in Poznań Radiocarbon Laboratory, Poland.

Peaty loam (depth interval 2.40–2.05 m, 7900–5700 cal. yr BP) includes remains of the bark of Picea obovata and Pinus sibirica, as well as tissues of green and sphagnum moss. The peat core has a two-layer structure; in the interval of 2.05–1.35 m, the deposit is formed by lowland woody-sphagnum peat, with ash content values varying from 15 to 30%, except for the depth interval of 1.87–1.81 m (4500–4100 cal. yr BP), where the maximum value of 53% is observed. A sample from this stratigraphic layer was separated in an aqueous medium with subsequent examination of the fine and medium-dispersed phase using a TESCAN VEGA 3 SBH scanning electron microscope with an OxfordX-Act energy-dispersive microanalysis system. The content of Si (6%) and Al (2.2%) indicates a high proportion of terrigenous admixture in the formation of the stratigraphic layer, likely associated with post-pyrogenic erosion in the study area. The upper part of the core (1.35-0.07 m, approximately from 1100 to 60 cal. yr BP) is formed by sphagnum peat.

Starting from 7970±23 cal.yr BP on the Kuturchinsky and Koysky Belogorye slopes fir-spruce- siberian pine forests grew. In the Mina River valley with a wide floodplain conditions developed for the pinching off of an oxbow lake with its gradual silting and overgrowing. The time interval of 7200–5700 cal. yr BP was characterized by high fire activity and the beginning of peat accumulation in the Mina River floodplain (around 5700 cal. yr BP), which may reflect the response of landscapes to the Holocene Thermal Maximum.

The period 5300–4100 cal. yr BP is characterized by consistently high humidity, with slopes covered by fir-spruce-cedar forests and a forb-fern ground cover. The time interval 4500-4100 cal. yr BP is characterized by the passage of strong fires and increased surface erosion, which contributed to a high input of mineral particles to the surface of the mire, which together may reflect the manifestation of pyrogenic erosion.

Starting from 4100 cal. yr BP, a significant reduction in the amount of dark coniferous species pollen is noted (up to 40–44% in total): Pinus sibirica – 25–27%, Picea – 5–8%, with a slight increase in the content of Abies pollen (up to 7–9%) and Betula sect. Nanae (up to 18–23%). The total content of grass pollen increases to 20%, representatives of the following taxons are noted: Rosaceae, Caryophyllacea, Poaceae, Artemisia, Thalictrum. In the mire the spruce-sphagnum community is replaced by green moss-sphagnum yernik. This period is marked by the maximum extremum in the content of macrocharcols indicating the close localization of the fire to the study point. The totality of the identified paleosignals may indicate a decrease in overall humidity in the period 4100-3300 cal. yr BP and high fire activity. The increase in fire activity during this period is in good agreement with the Subboreal Thermal Maximum of the Holocene (from 4200 to 3200 cal. yr BP), which was identified by N.A. Khotinsky [Khotinsky, 1982] for Northern Eurasia, or on a global scale with “event 4.2” (4.2–3.8 thousand cal. yr BP) [Mayewski et al., 2004; Wang et al., 2010].

The cooling period around 2600 cal. yr BP, known for the temperate latitudes of the Northern Hemisphere [Shnitnikov, 1957], was also noted in the highlands of the Eastern Sayan [Bezrukova et al., 2004], in Altai [Galakhov et al., 2012], and in the Baikal region [Vorobyeva, 2010]. In the Mina core, this period was manifested by an increase in the amount of Betula sect. Nanae (up to 25% in the pollen sum), a high content of Equisetum (16% of the proportion of spores), and a complete absence of traces of macrocharcoal.

 Beginning at 2400 cal. yr BP, the pollen content of dark coniferous species. In the range of 2400-2000 cal. yr BP the content of spruce is noted – up to 13.6%, which may indicate a wide distribution of Picea and a consistently high soil moisture content. At the same time, sphagnum moss dominates in the ground cover of the mire. Sphagnum angustifolium dominates, the tree layer is absent, the mire passes from the eutrophic-mesotrophic stage of development to the mesotrophic-oligotrophic one, which coincides with a significant decrease in the amount of solar insolation [Berger, Loutre, 1991], for 55° N approximately to 480-490 Wm-2.

Fires occurred 1550, 1100 and 900 cal.yr BP which in the observations may reflect a change in humidification conditions towards lower humidity. In general, the interval 1600-1100 cal.yr BP correlates well with the Cooling of the Dark Ages (410-775 AD).

The interval 1100-900 cal. yr BP is characterized by a peak value of dark coniferous species (68-73%– the maximum extremum for the entire reconstruction period), the participation of Pinus sibirica – 50-52%, Picea – up to 11%, Abies – up to 12%. This period is consistent with the Medieval Warm Period, which covered significant areas of the Northern Hemisphere from approximately 830 to 1100 AD [PAGES 2k Consortium, 2013; Moberg et al., 2005].

The most dramatic changes in vegetation composition occurred during the period 750–650 cal. yr BP: pollen concentration was extremely low, the contribution of conifers to the pollen sum was minimal, and the majority consisted of Betula sect. Nanae grains (over 65%), Ericaceae pollen, and Sphagnum spores.

In the interval of 600-500 cal. yr BP stable humid conditions are recorded, fir-spruce- siberianpine forests are developed. Later, around 500–450 cal. yr BP, a high proportion of Siberian pine in the forest composition is noted (41% of the pollen sum), with a decrease in the proportion of other dark coniferous species (up to 4–7%), a reduction in spore content to 20%, and a maximum of Ericaceae and Artemisia in the grass and shrub group, which may reflect increased continentality.

Further, at 450–400 cal. yr BP, while Siberian pine remained dominant, relatively low pollen productivity was noted. It is known that 1600-1826 AD became the coldest period of the Little Ice Age.

Later, consistently humid and cool conditions were observed in the study area, with fir-spruce-Siberian pine forests continuing to develop on the slopes. At the final stage, an increase in the pollen content of Pinus sylvestris (up to 13%) and a decrease in the proportion of Pinus sibirica (up to 27%) were recorded. The content of macrocharcoal in peat has remained consistently high over the past 1000 years, reflecting the increasing intensity of fires characteristic of the entire Northern Hemisphere [Goldammer et al., 2013; Valendik et al., 2014; Ponomarev, Haruk V.I., 2016].

About the authors

A. V. Grenaderova

Институт экологии и географии, Сибирский федеральный университет

Author for correspondence.
Email: grenaderova-anna@mail.ru
Russian Federation, Красноярск

R. A. Sharafutdinov

Институт экологии и географии, Сибирский федеральный университет

Email: grenaderova-anna@mail.ru
Russian Federation, Красноярск

A. R. Mitev

Институт экологии и географии, Сибирский федеральный университет

Email: grenaderova-anna@mail.ru
Russian Federation, Красноярск

A. B. Mikhailova

Институт экологии и географии, Сибирский федеральный университет

Email: grenaderova-anna@mail.ru
Russian Federation, Красноярск

References

  1. Arzhannikov S.G., Arzhannikova A.V., Braucher R., Jolivet M. 2015. Late pleistocene glaciations in southern East Sayan and detection of MIS 2 terminal moraines based on beryllium (10Be) dating of glacier complexes. Russian geology and geophysics, 56(11): 1509–1521. doi: 10.1016/j.rgg.2015.10.001
  2. Berger A., Loutre, M.F. 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews, 10(4): 297–317. doi: 10.1016/0277-3791(91)90033-q
  3. Beug H.-J. 2004. Leitfaden der Pollenbestimmung fur Mitteleuropa und angrenzende Gebiete. Publisher Verlag Friedrich Pfeil, Munich, 542 pp. doi: 10.1002/jqs.915
  4. Bezrukova E.V., Abzaeva A.A., Letunova P.P., Kulagina N.V., Vershinin K.E., Belov A.V., Orlova L.A., Danko L.V., Krapivina S.M. 2005. Post-glacial history of Siberian spruce (Picea obovata) in the Lake Baikal area and the significance of this species as a paleo-environmental indicator. Quaternary International, 136(1): 47–57. doi: 10.1016/j.quaint.2004.11.007
  5. Bezrukova E.V., Kulagina N.V., Reshetova S.A., Shchetnikov A.A., Krainov M.A., Filinov I.A. 2022. Environment of the Oka plateau (East Sayan mountains) in the late glacial and holocene: A case study of a complex record from the lake Khikushka sediments. Geomorphology, 53(3): 61–73. doi: 10.31857/S043542812203004X
  6. Bezrukova E.V., Vershinin K.E., Letunova P.P., Orlova L.A., Krapivina S.M., Chepinoga V.V., Verkhozina A.V., Dudareva N.V., Abzaeva A.A. 2004. Vegetation of the highlands of the Eastern Sayan in the Late Holocene according to the study of peat deposits. Botanical Journal, 89(2): 221–232 (in Russian). [Безрукова Е.В., Вершинин К.Е., Летунова П.П., Орлова Л.А., Крапивина С.М., Чепинога В.В., Верхозина А.В., Дударева Н.В., Абзаева А.А. 2004. Растительность высокогорий Восточного Саяна в позднем голоцене по данным изучения торфяных отложений // Ботанический журнал. Т. 89. № 2. С. 221–232]
  7. Blaauw M. 2010. Methods and code for “classical” age-modelling of radiocarbon sequences. Quaternary Geochronology. 5(5): 512–518. doi: 10.1016/j.quageo.2010.01.002
  8. Blyakharchuk T.A. 2011. Changes in vegetation and climate of the Western Sayan and their relationship with the development of archaeological cultures of the region in the second half of the Holocene according to the spore-pollen analysis of marsh sediments. Bulletin of Tomsk State University, 351: 145–151 (in Russian). [Бляхарчук Т.А. 2011. Изменение растительности и климата Западного Саяна и их взаимосвязь с развитием археологических культур региона во второй половине голоцена по данным спорово-пыльцевого анализа болотных отложений. Вестник Томского государственного университета. № 351. С. 145–151.]
  9. Blyakharchuk T.A., Kurina I.V. 2021. Late Holocene environmental and climatic changes in the Western Sayan Mountains based on high-resolution muliproxy data. Boreas, 50: 919–934. doi: 10.1111/bor.12493
  10. Borisova O.K, Panin А.V. 2019. Multicentennial climatic changes in the Tere-Khol basin, Southern Siberia, during the late Holocene. Geography environment sustainability, July 2019 doi: 10.24057/2071-9388-2018-64
  11. Bylinsky E.N. 1996. Glacio-isostatic influence on the Earth's relief development in the pleistocene. Publishing House of the Russian Academy of Sciences, Moscow, 210 pp. (in Russian). [Былинский Е.Н. 1996. Влияние гляциоизостазии на развитие рельефа Земли в плейстоцене. Москва: Издательство РАН, 210 с.]
  12. Chang M. 2003. Forest hydrology: an introduction to water and forests. CRC Press, Boca Raton, 373 pp. doi: 10.1201/b13614
  13. Chernova N.A. 2005. On the formation of the marshes of the Ergaki ridge. Trudy zapovednika «Tigirekskiy», 1, 159–161 (in Russian) doi: 10.53005/20767390_2005_1_159 [Чернова Н.А. 2005. О формировании болот хребта Ергаки // Труды заповедника «Тигирекский». № 1. С. 159–161. doi: 10.53005/20767390_2005_1_159]
  14. Clark J.S. 1988. Particle Motion and the Theory of Charcoal Analysis: Source Area, Transport, Deposition, and Sampling. Quaternary Research, 30(01): 67–80. doi: 10.1016/0033-5894(88)90088-9
  15. Clark J.S., Lynch J.A., Stocks B.J. Goldammer J.G. 1998. Relationships between charcoal particles in air and sediments in west-central Siberia. The Holocene, 8(1): 19–29. https://doi.org/10.1191/095968398672501165
  16. Decree of the President of the Russian Federation No. 529 dated June 18, 2024 "On approval of priority areas of scientific and technological development and the list of the most important high-tech technologies". 2024. URL: https://docs.cntd.ru/document/1306389112 (Last accessed: 22.11.2024) (in Russian). [Указ Президента Российской Федерации от 18 июня 2024 года № 529 «Об утверждении прироритетных направлений научно-технологического развития и перечня важнейших наукоемких технологий». 2024. URL: https://docs.cntd.ru/document/1306389112 (дата обращения: 22.11.2024)]
  17. Dombrovskaya A.V., Koreneva M.M., Turemnov S.N. 1959. Atlas of plant residues found in peat. Gosjenergoizdat, Moscow, Leningrad, 137 pp. [Домбровская А.В., Коренева М.М., Тюремнов С.Н. 1959. Атлас растительных остатков, встречаемых в торфе. Москва, Ленинград: Госэнергоиздат, 137 с.]
  18. Draft forest plan of the Krasnoyarsk Territory 2019-2028. 2018. Ministry of Natural Resources and Forestry of the Krasnoyarsk Territory, Krasnoyarsk. URL: http://mlx.krskstate.ru/dat/File/57/proekt_les_plan/Lesnoy%20plan%2026.11.2018.zip (Last accessed: 22.11.2024) (in Russian). [Проект лесного плана Красноярского края 2019-2028 гг. 2018. Красноярск: Министерство природных ресурсов и лесного комплекса Красноярского края. URL: http://mlx.krskstate.ru/dat/File/57/proekt_les_plan/Lesnoy%20plan%2026.11.2018.zip (дата обращения: 22.11.2024)]
  19. Gabbasova I.M., Garipov T.T., Suleimanov R.R., Komissarov M.A., Khabirov I.K., Sidorova L.V., Nazyrova F.I., Prostyakova Z.G., Kotlugalyamova E.Yu. 2019. The influence of ground fires on the properties and erosion of forest soils in the southern urals (Bashkir state nature reserve). Eurasian Soil Science, 52(4): 370–379.
  20. Galakhov V.P., Chernykh D.V., Zolotov D.V., Orlova L.A. 2012. Location and time of moraine forming of Fernau and Historic stages in the basin of Khaidun River, Altai. Proceedings of the Russian Geographical Society, 144(6): 15–21.
  21. Goldammer J.G., Stocks B.J., Sukhinin A.I., Ponomarev E.I. 2013. Current Fire Regimes, Impacts and the 226 Likely Changes – II: Forest Fires in Russia – Past and Current Trends. In: Vegetation Fires and Global Change: 227 Challenges for Concerted International Action. A White Paper Directed to the United Nations and International 228 Organizations (Goldammer J.G., Ed.), pp. 51–79, Global Fire Monitoring Center (GFMC)/Kessel Publishing House, Eifelweg, Germany.
  22. GOST 11306-2013. 2019. Peat and products of its processing. Methods for determination of ash content. Standartinform, Moscow, 6 pp. (in Russian). [ГОСТ 11306-2013. 2019. Торф и продукты его переработки. Методы определения зольности. Стандартинформ, Москва, 6 с.]
  23. Grenaderova A.V., Mikhailova A.B., Kuryina I.V., Podobueva O.V. 2024a. The vegetation cover response in the Eastern Sayan foothills to Holocene climate extremes (according to paleoecological researches of Bolshoye peat bog). Geomorphology and paleogeography, 55(4): 163–183. (in Russian). [Гренадерова А.В., Михайлова А.Б., Курьина И.В., Подобуева О.В. 2024a Отклик растительного покрова в предгорье Восточного Саяна на голоценовые экстремумы климата (по данным изучения болота Большое). Геоморфология и палеогеография. Т. 55. № 4. С. 163–183. doi: 10.31857/S2949178924040107
  24. Grenaderova A.V., Mikhailova A.B., Sharafutdinov R.A., Stoyko T.G. 2024b. Holocene environmental conditions in the Eastern Sayan foothills according to a comprehensive paleoecological study of the Sosnovka mire. Limnology and Fresh water Biology, 4: 394–396. doi: 10.31951/2658-3518-2024-A-4-394
  25. Grichuk V.P., Zaklinskaya E.D. 1948. Analysis of fossil pollen and spores and its application to paleogeography. Geografgiz, Moscow. 224 pp. (in Russian). [Гричук В.П., Заклинская Е.Д. 1948. Анализ ископаемых пыльцы и спор и его применение в палеогеографии. Географгиз, Москва. 224 с.]
  26. Helama S., Jones P.D., Briffa K.R. (2017) Dark Ages Cold Period: A literature review and directions for future research. The Holocene, 27(10): 1600–1606. doi: 10.1177/0959683617693898
  27. Higuera P.E. 2009. CharAnalysis 0.9: Diagnostic and analytical tools for sediment-charcoal analysis, USA: Montana State University, MT, Bozeman, 27 pp.
  28. Ivanova N.A., Golubtsova O.S. 2014. Environmental factors and functional processes in herbaceous plants during pyrogenic forest succession. Publishing House of Nizhnevartovsk State University, Nizhnevartovsk, 152 pp. (in Russian) [Иванова Н.А., Голубцова О.С. 2014. Факторы среды и функциональные процессы у травянистых растений при пирогенной сукцессии леса. Издательство Нижневартовского государственного университета, Нижневартовск, 152 с.]
  29. Juggins S. C. 2003. User guide Software for ecological and palaeoecological data analysis and visualization. University of Newcastle, Newcastle upon Tyne, 69 pp.
  30. Kac N.Ja., Kac S.V., Skobeeva E.I. 1977. Atlas of plant residues in peats. Nedra, Moscow, 371 pp. (in Russian). [Кац Н.Я., Кац С.В., Скобеева Е.И. 1977. Атлас растительных остатков в торфах. Недра, Москва, 371 c.]
  31. Kartashev I. P. 1972. Basic patterns of geological activity of rivers in mountainous countries. Nauka, Moscow, 212 рp. (in Russian). [Карташев И. П. 1972. Основные закономерности геологической деятельности рек горных стран. Наука, Москва, 212 с.]
  32. Khotinsky N.A. 1977. Holocene of Northern Eurasia: Experience of transcontinental correlation of stages of development of vegetation and climate. Nauka, Moscow, 197 pp. (in Russian). [Хотинский Н.А. 1977. Голоцен Северной Евразии: Опыт трансконтинентальной корреляции этапов развития растительности и климата. Наука, Москва, 197 с.]
  33. Khotinsky N.A. 1982. Holocene chronosections: controversial problems of Holocene Paleogeography. In: Razvitie prirody territorii SSSR v pozdnem plejstocene i golocene, pp. 142–147, Nauka, Moscow (in Russian). [Хотинский Н.А. 1982. Голоценовые хроносрезы: дискуссионные проблемы палеогеографии голоцена // Развитие природы территории СССР в позднем плейстоцене и голоцене. Москва: Наука. С. 142–147.]
  34. Koltsova V.G. The history of the forest vegetation of the Stolby Nature Reserve in the Holocene. Abstract dis. cand. biol. scences. Krasnoyarsk: V.N. Sukachev Institute of Forest and Timber, 150 pp. (in Russian) [Кольцова В.Г. 1980. История лесной растительности заповедника "Столбы" в голоцене. Автореф. дис. … канд. биол. наук. Красноярск: Институт леса и древесины им. В.Н. Сукачева, 150 с.]
  35. Korotkov I.A. 1994. Forest-growing zoning of Russia and the republics of the former USSR. In: Carbon in ecosystems of forests and swamps of Russia (V.A. Alekseev, R.A. Berdsi eds.), pp. 29–47, VC SB RAS, Krasnoyarsk (in Russian). [Коротков И.А. 1994. Лесорастительное районирование России и республик бывшего СССР // Углерод в экосистемах лесов и болот России / Под ред. В. А. Алексеева и Р. А. Бердси. Красноярск: ВЦ СО РАН. С. 29–47.]
  36. Krasnoborov I.M. 1963. Flora and vegetation of the Kuturchinsky belogorie (Eastern Sayan). Abstract dis. cand. biol. scences. Moscow, 21 pp. (in Russian) [Красноборов И.М. 1963. Флора и растительность Кутурчинского белогорья (Восточный Саян). Автореф. дис. … канд. биол. наук. Москва, 21 с.]
  37. Kulikova G.G. 1974. A short guide to botanical analysis of peat. MSU, Moscow. 94 pp. (in Russian). [Куликова Г.Г. 1974. Краткое пособие к ботаническому анализу торфа. Изд-во Московского университета, Москва. 94 с.]
  38. Kuprijanova L.A., Aleshina L.A. 1972. Pollen and spores of plants of the flora of the USSR. Nauka, Leningrad, 1: 171 pp. (in Russian). [Куприянова Л.А., Алешина Л.А. (1972). Пыльца и споры растений флоры СССР. Л.: Наука. Т. 1. 171 с.]
  39. Lamakin V.V. 1948. Dynamic phases of river valleys and alluvial deposits. Zemlevedenie, 2 (42): 154–187. (in Russian). [Ламакин В.В. 1948. Динамические фазы речных долин и аллювиальных отложений // Землеведение. Т. 2 (42). С. 154–187.]
  40. Largin I.F. (ed.) 1977. Peat deposits and their exploration (guidelines for laboratory and practical exercises). Nedra, Moscow, 264 pp. (in Russian). [Ларгин И.Ф. (ред.). 1977. Торфяные месторождения и их разведка (руководства по лабораторно-практическим занятиям). Недра, Москва, 264 с.]
  41. MacArthur R.H. 1957. On the relative abundance of bird species. Proceedings of the National Academy of Sciences, 43(3): 293–295. doi: 10.1073/pnas.43.3.293
  42. Mayewski P.A., Rohling E.E., Stager J.C., Karlen W., Maasch K.A., Meeker L.D., Meyerson E.A., Gasse F., van Kreveld Sh., Holmgren K., Lee-Thorp J., Rosqvist G., Rack F., Staubwasser M., Schneider R.R., Steig E.J. 2004. Holocene climate variability. Quaternary Research, 62: 243–255. doi: 10.1016/j.yqres.2004.07.001
  43. Mey J., Scherler D., Wickert A.D., Egholm D.L., Tesauro M., Schildgen T.F., Strecker M.F. 2016. Glacial isostatic uplift of the European Alps. Nature Communications, 7: 13382. doi: 10.1038/ncomms13382
  44. Mikhailov N.I. 1961. Mountains of Southern Siberia. Moscow, 238 pp. (in Russian) [Михайлов Н.И. 1961. Горы Южной Сибири. Москва, 238 с.]
  45. Mikhailova A.B., Grenaderova A.V., Kurina I.V., Shumilovskikh L.S., Stojko T.G. 2021. Holocene vegetation and hydroclimate changes in the Kansk forest steppe, Yenisei River Basin, East Siberia. Boreas, 50: 948–966. doi: 10.1111/bor.12542
  46. Moberg A., Sonechkin D.M., Holmgren K., Datsenko N.M., Karlen W. 2005. Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature, 433: 613–617. doi: 10.1038/nature03265
  47. Moore P.D., Webb J.A., Collinsom M.E. 1991. Pollen analysis. Blackwell scientific publications, Oxford, 216 p.
  48. Nikolaev V.A., Chernov A.F. 1988. Relief of the Altai-Sayan mountain region. Nauka, Novosibirsk, 204 p. (in Russian). [Николаев В.А., Чернов А.Ф. 1988. Рельеф Алтае-Саянской горной области. Наука, Новосибирск, 204 с.]
  49. PAGES 2k Consortium. 2013. Continental-scale temperature variability during the past two millennia. Nature Geoscience, 6: 339–346. doi: 10.1038/ngeo1797
  50. Pakharkova N., Borisova I., Sharafutdinov R., Gavrikov V. 2020. Photosynthetic Pigments in Siberian Pine and Fir under Climate Warming and Shift of the Timberline. Forests, 11(1), 63. doi: 10.3390/f11010063
  51. Parmuzin Y.P. 1964. Middle Siberia. Mysl', Moscow, 308 p. [Пармузин Ю.П. 1964. Средняя Сибирь. Мысль, Москва, 308 с.].
  52. Peltier W.R. 2004. Global glacial isostasy and the surface of the ice-age earth: the ICE-5G (VM2) model and GRACE. Repository Geology Science, 32: 111–149. doi: 10.1146/annurev.earth.32.082503.144359
  53. Pomeroy J. W., Gray D. M., Shook K. R., Toth J. B., Essery R. L. H., Pietroniro A.,Hedstrom N. 1998. An evaluation of snow accumulation and ablation processes for land surfacemodeling. Hydrological Processes, 12: 2339–2367.
  54. Ponomarev E.I., Haruk V.I. 2016. Wildfire Occurrence in Forests of the Altai-Sayan Region under Current Climate Changes. Siberian Ecological Journal, 1: 38–46.
  55. R Core Team. 2013. R: A language and environment for statistical computing. Foundation for Statistical Computing, Vienna, Austria.
  56. Rodionova A.B., Grenaderova A.V. 2016. Peat soils of the Kansk forest-steppe (genesis and classification). Vestnik KrasGAU, 4: 65–72. (in Russian) [Родионова А.Б., Гренадерова А.В. 2016. Торфяные почвы Канской лесостепи (генезис и классификация) // Вестник КрасГАУ. № 4. С. 65–72.]
  57. Rodionova A.B., Grenaderova A.V. 2018. Peatland development and paleoclimate records from the Holocene peat archive in the foothills of the Eastern Sayan Mountains. In: IOP Conference Series: Earth and Environmental Science, 138. doi: 10.1088/1755-1315/138/1/012014
  58. Shantzer E.V. (ed.) 1982. Stratigraphy of the USSR. Quaternary system. Nedra, Moscow, 443 рp. (in Russian). [Шанцер Е. В. (ред.). 1982. Стратиграфия СССР. Четвертичная система. Полутом 1. Недра, Москва, 443 с.].
  59. Shnitnikov A.V. 1957. Variability of the total moisture content of the continents of the Northern Hemisphere. Zapiski Geograficheskogo obshhestva SSSR. Izdatel'stvo Akademii nauk SSSR, Vol. 16. Moscow, Leningrad, 337 pp. (in Russian) [Шнитников А.В. 1957. Изменчивость общей увлажненности материков Северного полушария. Записки Географического общества СССР. Т. 16. Москва, Ленинград: Издательство Академии наук СССР. 337 с.].
  60. Filipchuk A., Malysheva N., Zolina T., Yugov A. 2020. The Boreal Forest of Russia: Opportunities for the Effects ofClimate Change Mitigatiоn. Forestry information, 1: 92–113 (in Russian). [Филипчук А.Н., Малышева Н.В., Золина Т.А., Югов А.Н. 2020. Бореальные леса России: возможности для смягчения изменения климата // Лесохоз. информ. № 1. С. 92–113. URL: http://lhi.vniilm.ru/ ]. doi: 10.24419/LHI.2304-3083.2020.1.10.
  61. Valendik E.N., Ivanova G.A. 1989. Extreme fire-hazardous seasons in the forests of Siberia. Lesnoe hozyajstvo, 5: 57–59 (in Russian). [Валендик Э.Н., Иванова Г.А. 1989. Экстремальные пожароопасные сезоны в лесах Сибири // Лесное хозяйство. № 5. С. 57–59.]
  62. Valendik E.N., Verkhovets S.V., Ponomarev E.I., Ryzhkova V.A., Kisilyakhov Y.K. 2014. Large Wildfires in Taiga Subzones of Central Siberia. Journal of Siberian Federal University. Biology, 7(1): 43–56. doi: 10.17516/1997-1389-0092
  63. Volkova I.I. 2005. On the problem of studying swamps in the Altai Mountains. Trudy zapovednika «Tigirekskiy», 1, 67–70 (in Russian). [Волкова И.И. 2005. К проблеме изучения болот в горах Алтая // Труды заповедника «Тигирекский». Вып. 1. С. 67–70.]
  64. Vorobyeva G.A. 2010. Soil as a chronicle of natural events in the Baikal region: problems of evolution and classification of soils. Irkutsk State University Publishing House, Irkutsk. 205 pp. (in Russian). [Воробьева Г.А. 2010. Почва как летопись природных событий Прибайкалья: проблемы эволюции и классификации почв. Иркутск: Издательство Иркутского государственного университета. 205 с.]
  65. Wang Y., Liu X., Herzschuh U. 2010. Asynchronous evolution of the Indian and East Asian summer monsoon indicated by Holocene moisture patterns in monsoonal central Asia. Earth-Science Reviews, 103: 135–153. doi: 10.1016/j.earscirev.2010.09.004

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Location of the study area, the asterisk indicates the sampling point of the Mina peat core; location of the nearest studied peat sections: 1 – Bolshoe mire [Grenaderova et al., 2024a], 2 – Sosnovka mire [Grenaderova et al., 2024b], 3 – Pinchinskoye mire (Mikhailova et al., 2021). The map was created using the QGIS 3.32.3-Lima geographic information system.

Download (2MB)
3. Fig. 2. Cross-sectional diagram of a mire in the Mina River floodplain. Peat: 1 – wood, 2 – wood-horsetail, 3 – horsetail, 4 – sphagnum, 5 – loam, 6 – gravel, 7 – sampling columns for detailed botanical analysis of peat.

Download (270KB)
4. Fig. 3. Types of peat and main peat-forming plants from the Mina mire deposits, ash content of peat and content of macrocharcoal particles, pcs./cm3 Peat: 1 – hypnum, 2 – sphagnum transitional, 3 – woody-sphagnum lowland, 4 – peaty loam.

Download (521KB)
5. Fig. 4. Micrograph of a sample from the interval of 1.87-1.81 m (4.5-4.1 thousand cal. years ago). A – zircon crystal 55 μm in size, B – particle of charred wood. The determination was made using the OxfordX-Act energy-dispersive microanalysis system, which is part of the TESCAN VEGA 3 SBH scanning electron microscope in the R&D center of Norilsk Nickel SFU.

Download (286KB)
6. Fig. 5. Spore-pollen diagram of the Mina mire deposits. AP+NAP=100%. AP – trees and shrubs, NAP – herbs and shrubs. The additional contour shows a 10-fold increase in the basic pollen taxon.

Download (552KB)
7. Fig. 6. Accumulation rate of macroscopic charcoal particles and peak values during fire episodes; interfire interval and fire frequency based on the study of Mina mire sediments: 1 – contours of interpolated charcoal inflow, 2 – simulated background charcoal inflow, pcs (cm2 per year), 3 – charcoal peaks (difference between interpolated inflow value and background inflow value),  4 – peaks below threshold, 5 – fire episode.

Download (199KB)

Copyright (c) 2025 Grenaderova A.V., Sharafutdinov R.A., Mitev A.R., Mikhailova A.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».