MRT评估前列腺癌和乳腺癌骨骨治疗骨转移有效性的客观标准:系统评论和核心分析

封面图片

如何引用文章

详细

论证转移性前列腺癌(PC)和乳腺癌(BC)的个体化治疗需要客观的方法来评估对骨骼病灶治疗的反应。经过验证的高效MRT在骨骼中鉴定与没有电离辐射的组合的鉴定产生的前提是使用该方法在监测基于评估治疗效果的客观标准治疗治疗方法时的先决条件。

目标是估计客观定量和半定量MRT标准的可能性,用于确定患有PC和BC患者的临床研究中使用的骨骼中的治疗的有效性(无线电,化学 - 激素和靶向治疗)。

材料与方法Embase,PubMed数据库,Cochrane Central寄存器(中央),Elibrary通过关键词“磁共振成像”,“MRI”,“DWI”,“治疗反应”,“前列腺”癌症“,”乳腺癌“, 英语和俄语”骨转移“。 概述仅包括在骨架的转移病变期间对任何类型治疗效果(外科除外)有效性的客观MRT评估的研究。

结果。根据分析选自312次来源的11项研究,4组客观MRI标准,用于估算PC和BC患者骨骼的转移损伤期间的治疗效果,包括尺寸的动态; 扩散加权图像上的信号强度; 测量扩散系数(MDC)的数值; 总肿瘤载荷。 所有作品中,这些定量和半定量指标的变化在唯一的例外,虽然它们具有相同的焦点,但它们的数值不同。 鉴于治疗前后的ICD值的统计学上显着的异质性(p <0,1 对于χ2标准和I2> 40%)进行治疗前后的MDC值,用于分析随机效应的模型。 治疗导致的 CDI 变化平均为 +0.35 [+0.12; +0.49] × 10-3 平方毫米/秒治疗前平均 ADC 值 0.83 [0.71; 1.03] × 10-3平方毫米/秒, 处理后 - 1.18 [0.83; 1.49] × 10-3 平方毫米/秒。

结论MRI 是一种基于定量和半定量标准客观评估前列腺癌和乳腺癌患者骨转移对治疗反应的信息技术,具有作为监测转移性骨骼病变治疗效果的诊断工具的巨大潜力。

作者简介

Vladislav O. Ripp

A. Tsyb Medical Radiological Research Center — branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation

Email: rippnba@gmail.com
ORCID iD: 0000-0001-8970-4212

Radiologist of the MRI Department

俄罗斯联邦, 4 Korolev street, Obninsk, 249036

Tatyana P. Berezovskaya

A. Tsyb Medical Radiological Research Center — branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation

Email: berez@mrrc.obninsk.ru
ORCID iD: 0000-0002-3549-4499

MD, Senior Research Associate, Dr. Sci. (Med.), Professor

4 Korolev street, Obninsk, 249036

Sergey A. Ivanov

A. Tsyb Medical Radiological Research Center — branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation

编辑信件的主要联系方式.
Email: oncourolog@gmail.com
ORCID iD: 0000-0001-7689-6032

MD, Dr. Sci. (Med.), Professor

俄罗斯联邦, 4 Korolev street, Obninsk, 249036

参考

  1. Lecouvet FE, Larbi A, Pasoglou V, et al. MRI for response assessment in metastatic bone disease. Eur Radiol. 2013;23(7): 1986–1997. doi: 10.1007/s00330-013-2792-3
  2. Padhani AR, Makris A, Gall P, et al. Therapy monitoring of skeletal metastases with whole-body diffusion MRI. J Magn Reson Imaging. 2014;39(5):1049–1078. doi: 10.1002/jmri.24548
  3. Woolf DK, Padhani AR, Makris A. Assessing response to treatment of bone metastases from breast cancer: what should be the standard of care? Ann Oncol. 2015;26(6):1048–1057. doi: 10.1093/annonc/mdu558
  4. Padhani AR, Gogbashian A. Bony metastases: assessing response to therapy with whole-body diffusion MRI. Cancer Imaging. 2011;11(1A):S129–S145. doi: 10.1102/1470-7330.2011.9034
  5. Byun WM, Shin SO, Chang Y, et al. Diffusion-weighted MR imaging of metastatic disease of the spine: assessment of response to therapy. AJNR Am J Neuroradiol. 2002;23(6):906–912.
  6. Padhani AR, Lecouvet FE, Tunariu N, et al. METastasis reporting and data system for prostate cancer: practical guidelines for acquisition, interpretation, and reporting of whole-body magnetic resonance imaging-based evaluations of multiorgan involvement in advanced prostate cancer. Eur Urol. 2017;71(1):81–92. doi: 10.1016/j.eururo.2016.05.033
  7. Zugni F, Ruju F, Pricolo P, et al. The added value of whole-body magnetic resonance imaging in the management of patients with advanced breast cancer. PLoS One. 2018;13(10):e0205251. doi: 10.1371/journal.pone.0205251
  8. Yang HL, Liu T, Wang XM, et al. Diagnosis of bone metastases: a meta-analysis comparing ¹⁸FDG PET, CT, MRI and bone scintigraphy. Eur Radiol. 2011;21(12):2604–2617. doi: 10.1007/s00330-011-2221-4
  9. Messiou C, Collins DJ, Giles S, et al. Assessing response in bone metastases in prostate cancer with diffusion weighted MRI. Eur Radiol. 2011;21(10):2169–2177. doi: 10.1007/s00330-011-2173-8
  10. Reischauer C, Froehlich JM, Koh DM, et al. Bone metastases from prostate cancer: assessing treatment response by using diffusion-weighted imaging and functional diffusion maps ― initial observations. Radiology. 2010;257(2):523–531. doi: 10.1148/radiol.10092469
  11. Perez-Lopez R, Mateo J, Mossop H, et al. Diffusion-weighted imaging as a treatment response biomarker for evaluating bone metastases in prostate cancer: a pilot study. Radiology. 2017;283(1):168–177. doi: 10.1148/radiol.2016160646
  12. Blackledge MD, Collins DJ, Tunariu N, et al. Assessment of treatment response by total tumor volume and global apparent diffusion coefficient using diffusion-weighted MRI in patients with metastatic bone disease: a feasibility study. PLoS One. 2014; 9(4):e91779. doi: 10.1371/journal.pone.0091779
  13. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100. doi: 10.1371/journal.pmed.1000100
  14. Amir-Behghadami M, Janati A. Population, Intervention, Comparison, Outcomes and Study (PICOS) design as a framework to formulate eligibility criteria in systematic reviews. Emerg Med J. 2020;37(6):387. doi: 10.1136/emermed-2020-209567
  15. Whiting PF. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8): 529–536. doi: 10.7326/0003-4819-155-8-201110180-00009
  16. Sergeev NI, Kotlyarov PM, Solodkii VA. Diffusion-weighted magnetic resonance imaging in the assessment of chemoradiation treatment of metastatic lesions of bone structures. Bulletin of the Russian Scientific Center of Radiology of the Ministry of Health of the Russian Federation. 2016;16(3):2. (In Russ).
  17. Çiray I, Lindman H, Åström KGO, et al. Early response of breast cancer bone metastases to chemotherapy evaluated with mr imaging. Acta Radiologica. 2001;42(2):198–206. doi: 10.1080/028418501127346503
  18. Brown AL, Middleton G, Macvicar AD, et al. T1-weighted magnetic resonance imaging in breast cancer vertebral metastases: Changes on treatment and correlation with response to therapy. Clin Radiol. 1998;53(7):493–501. doi: 10.1016/s0009-9260(98)80168-2
  19. Tombal B, Rezazadeh A, Therasse P, et al. Magnetic resonance imaging of the axial skeleton enables objective measurement of tumor response on prostate cancer bone metastases. Prostate. 2005;65(2):178–187. doi: 10.1002/pros.20280
  20. Cappabianca S, Capasso R, Urraro F, et al. Assessing response to radiation therapy treatment of bone metastases: short-term followup of radiation therapy treatment of bone metastases with diffusion-weighted magnetic resonance imaging. J Radiotherapy. 2014. doi: 10.1155/2014/698127
  21. Kotlyarov PM, Sergeev NI, Fedina ON. MRI in the diagnosis of metastatic lesions of the skeleton and in assessing the effectiveness of treatment. Radiology Practice. 2006;6:10–15.
  22. Lecouvet FE, Talbot JN, Messiou C, et al. Monitoring the response of bone metastases to treatment with Magnetic Resonance Imaging and nuclear medicine techniques: A review and position statement by the European Organisation for Research and Treatment of Cancer imaging group. Eur J Cancer. 2014;50(15):2519–2531. doi: 10.1016/j.ejca.2014.07.002
  23. Grimm R, Padhani AR. Whole-body diffusion-weighted MR image analysis with syngo.via frontier MR total tumor. Magn Flash. 2017;68(2):73–75.
  24. Jambor I, Kuisma A, Ramadan S, et al. Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, 18F-NaF PET/CT and whole body 1.5T MRI, including DWI, for the detection of bone metastases in high risk breast and prostate cancer patients: SKELETA clinical trial. Acta Oncol. 2016;55(1):59–67. doi: 10.3109/0284186X.2015.1027411
  25. Heusner TA, Kuemmel S, Koeninger A, et al. Diagnostic value of diffusion-weighted magnetic resonance imaging (DWI) compared to FDG PET/CT for whole-body breast cancer staging. Eur J Nucl Med Mol Imaging. 2010;37(6):1077–1086. doi: 10.1007/s00259-010-1399-z
  26. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–247. doi: 10.1016/j.ejca.2008.10.026
  27. Costelloe CM, Chuang HH, Madewell JE, et al. Cancer response criteria and bone metastases: RECIST 1.1, MDA and PERCIST. J Cancer. 2010;1:80–92. doi: 10.7150/jca.1.80

补充文件

附件文件
动作
1. JATS XML
2. Fig. 2.

下载 (58KB)
3. 图 1本研究的 PRISMA 框图。

下载 (178KB)
4. 图 3根据QUADAS-2的偏倚风险。

下载 (96KB)
5. 图 4。基于研究结果的森林图,这些研究确定了对治疗有反应的骨转移中测量的扩散系数值的变化。

下载 (139KB)
6. 图 5治疗前(boxplot)和治疗开始后 1-6 个月(淡紫色)测量的骨转移扩散系数的箱线图,绘制时考虑了出版物中包含的所有响应病灶(n = 156)的值。

下载 (47KB)

版权所有 © Ripp V.O., Berezovskaya T.P., Ivanov S.A., 2021

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

##common.cookie##