头颈部恶性肿瘤计算机断层扫描的优先放射组学分析参数:系统综述

封面图片

如何引用文章

全文:

详细

论证。放射组学是现代放射治疗诊断中最新、最有前途的领域。使用这种方法对头颈部恶性肿瘤进行检查的数量每年都在增加。我们对基于计算机断层扫描的头颈部恶性肿瘤最新出版物(2021-2023 年)进行了系统综述。

目的是系统整理通过计算机断层扫描检测到的头颈部癌症的放射组学分析参数数据。

材料和方法。这些文章在 PubMed 数据库中进行了检索。我们提取了所选文章的基线特征,并使用 RQS 2.0 和修改后的 QUADAS-CAD 问卷对其质量进行了评估。我们评估了不同研究中预后模型所选放射组学参数的可重复性水平。我们选择了 11 篇文章进行审查。在大多数情况下,由于人口统计参数和病理学水平的取样不平衡,系统误差的风险很高。

结果。在评估放射组学的质量时,所分析文章的得分范围从最高可能得分的 19.44% 到 50.00% 不等。导致研究质量下降的主要问题是研究结果缺乏外部验证(占所分析文章的 73%),以及研究数据无法获取或缺乏透明度(占 82%)。由于所使用的图像采集和后处理技术种类繁多,以及对放射组学参数的提取和统计处理,不同研究之间放射组学参数的可重复性很低。

结论。讨论将该方法引入临床实践的基本稳定放射组学参数分配的必要性,这只有在放射组学方法标准化和建立开放的放射组学数据库的情况下才能实现。

作者简介

Yuriy A. Vasilev

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: npcmr@zdrav.mos.ru
ORCID iD: 0000-0002-0208-5218
SPIN 代码: 4458-5608

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Moscow

Olga G. Nanova

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

编辑信件的主要联系方式.
Email: NanovaOG@zdrav.mos.ru
ORCID iD: 0000-0001-8886-3684
SPIN 代码: 6135-4872

Cand. Sci. (Biology)

俄罗斯联邦, Moscow

Ivan A. Blokhin

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: i.blokhin@npcmr.ru
ORCID iD: 0000-0002-2681-9378
SPIN 代码: 3306-1387
俄罗斯联邦, Moscow

Roman V. Reshetnikov

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: reshetnikov@fbb.msu.ru
ORCID iD: 0000-0002-9661-0254
SPIN 代码: 8592-0558

Cand. Sci. (Physics and Mathematics)

俄罗斯联邦, Moscow

Anton V. Vladzymyrskyy

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: npcmr@zdrav.mos.ru
ORCID iD: 0000-0002-2990-7736
SPIN 代码: 3602-7120

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Moscow

Olga V. Omelyanskaya

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: o.omelyanskaya@npcmr.ru
ORCID iD: 0000-0002-0245-4431
SPIN 代码: 8948-6152
俄罗斯联邦, Moscow

参考

  1. Rizzo S, Botta F, Raimondi S, et al. Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp. 2018;2. doi: 10.1186/s41747-018-0068-z
  2. Lambin P, Leijenaar R, Deist T, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14:749–762. doi: 10.1038/nrclinonc.2017.141
  3. Mayerhoefer ME, Materka A, Langs G, et al. Introduction to Radiomics. J Nucl Med. 2020;61(4):488–495. doi: 10.2967/jnumed.118.222893
  4. Wan Y, Yang P, Xu L, et al. Radiomics analysis combining unsupervised learning and handcrafted features: A multiple-disease study. Medical Physics. 2021;48(11):7003–7015. doi: 10.1002/mp.15199
  5. Zwanenburg A, Vallières M, Abdalah MA, et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology. 2020;295(2). doi: 10.1148/radiol.2020191145
  6. Berenguer R, Pastor-Juan M, Canales-Vázquez J, et al. Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of CT Acquisition Parameters. Radiology. 2018;288(2). doi: 10.1148/radiol.2018172361
  7. Laura QM, Chow MD. Head and Neck Cancer. N Engl J Med. 2020;382:60–72. doi: 10.1056/NEJMra1715715
  8. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. Ca Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660
  9. Bolotina LV, Vladimirova LYu, Den’gina NV, Novik AV, Romanov IS. Practice guidelines for the treatment of malignant tumors of the head and neck. Zlokačestvennye opuholi. 2020;10(3s2-1):93–108. (In Russ). doi: 10.18027/2224-5057-2020-10-3s2-06
  10. Bossi P, Chan AT, Licitra L, et al. Nasopharyngeal carcinoma: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of oncology. 2021;32(4):452–465. doi: 10.1016/j.annonc.2020.12.007
  11. Petrovichev VS, Neklyudova MV, Sinitsyn VE, Nikitin IG. Dual-energy computed tomography for head and neck cancer. Digital Diagnostics. 2021;2(3):343–355. doi: 10.17816/DD62572
  12. Guha A, Connor S, Anjari M, et al. Radiomic analysis for response assessment in advanced head and neck cancers, a distant dream or an inevitable reality? A systematic review of the current level of evidence. BJR. 2019;93(1106). doi: 10.1259/bjr.20190496
  13. Giannitto C, Mercante G, Ammirabile A, et al. Radiomics-based machine learning for the diagnosis of lymph node metastases in patients with head and neck cancer: Systematic review. Head & Neck. 2022;45(2):482–491. doi: 10.1002/hed.27239
  14. Yu Y, Li X, Li W, Wang H, Wang Y. Pretreatment radiomics power in evaluating neoadjuvant chemotherapy response and outcome for patients with head and neck squamous cell carcinoma: a systematic review and meta-analysis. Preprint. 2023. doi: 10.21203/rs.3.rs-2530190/v1
  15. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372. doi: 10.1136/bmj.n71
  16. Radiomics Quality Score — RQS 2.0 [Internet]. [cited 1 Jan 2023]. Available from: https://www.radiomics.world/rqs2
  17. Kodenko MR, Vasilev YA, Vladzymyrskyy AV, et al. Diagnostic Accuracy of AI for Opportunistic Screening of Abdominal Aortic Aneurysm in CT: A Systematic Review and Narrative Synthesis. Diagnostics. 2022;12(12):3197. doi: 10.3390/diagnostics12123197
  18. Kodenko MR, Reshetnikov RV, Makarova TA. Modification of quality assessment tool for artificial intelligence diagnostic test accuracy studies (QUADAS-CAD). Digital Diagnostics. 2022;3(S1):4–5. doi: 10.17816/DD105567
  19. Teng X, Zhang J, Ma Z, et al. Improving radiomic model reliability using robust features from perturbations for head-and-neck carcinoma. Front. Oncol. 2022;12. doi: 10.3389/fonc.2022.974467
  20. Liu X, Maleki F, Muthukrishnan N, et al. Site-Specific Variation in Radiomic Features of Head and Neck Squamous Cell Carcinoma and Its Impact on Machine Learning Models. Cancers. 2021;13(15). doi: 10.3390/cancers13153723
  21. Zhao X, Li W, Zhang J, et al. Radiomics analysis of CT imaging improves preoperative prediction of cervical lymph node metastasis in laryngeal squamous cell carcinoma. European Radiology. 2023;33:1121–1131. doi: 10.1007/s00330-022-09051-4
  22. Zhang W, Peng J, Zhao S, et al. Deep learning combined with radiomics for the classification of enlarged cervical lymph nodes. Journal of Cancer Research and Clinical Oncology. 2022;148:2773–2780. doi: 10.1007/s00432-022-04047-5
  23. Yang G, Yang F, Zhang F, et al. Radiomics Profiling Identifies the Value of CT Features for the Preoperative Evaluation of Lymph Node Metastasis in Papillary Thyroid Carcinoma. Diagnostics. 2022;12(5). doi: 10.3390/diagnostics12051119
  24. Li J, Wu X, Mao N, et al. Computed Tomography-Based Radiomics Model to Predict Central Cervical Lymph Node Metastases in Papillary Thyroid Carcinoma: A Multicenter Study. Front. Endocrinol. 2021;12. doi: 10.3389/fendo.2021.741698
  25. Franzese C, Lillo S, Cozzi L, et al. Predictive value of clinical and radiomic features for radiation therapy response in patients with lymph node-positive head and neck cancer. Head & Neck. 2023;45(5):1184–1193. doi: 10.1002/hed.27332
  26. Gonçalves M, Gsaxner Ch, Ferreira A, et al. Radiomics in Head and Neck Cancer Outcome Predictions. Diagnostics. 2022;12(11). doi: 10.3390/diagnostics12112733
  27. Zhai T, Wesseling F, Langendijk J, et al. External validation of nodal failure prediction models including radiomics in head and neck cancer. Oral Oncology. 2021;112. doi: 10.1016/j.oraloncology.2020.105083
  28. Morgan HE, Wang K, Dohopolski M, et al. Exploratory ensemble interpretable model for predicting local failure in head and neck cancer: the additive benefit of CT and intra-treatment cone-beam computed tomography features. Quant Imaging Med Surg. 2021;11(12):4781–4796. doi: 10.21037/qims-21-274
  29. Intarak S, Chongpison Y, Vimolnoch M, et al. Tumor Prognostic Prediction of Nasopharyngeal Carcinoma Using CT-Based Radiomics in Non-Chinese Patients. Front. Oncol. 2022;12. doi: 10.3389/fonc.2022.775248
  30. Zhong J, Lu J, Zhang G, et al. An overview of meta-analyses on radiomics: more evidence is needed to support clinical translation. Insights Imaging. 2023;14. doi: 10.1186/s13244-023-01437-2
  31. Certificate of state registration of the computer program № 2022617324/ 19.04.2022. Morozov SP, Andreichenko AE, Chetverikov SF, et al. Web-based tool for performing ROC analysis of diagnostic test results: № 2022616046. (In Russ).
  32. Giraud P, Giraud Ph, Gasnier A, et al. Radiomics and Machine Learning for Radiotherapy in Head and Neck Cancers. Front. Oncol. 2019;9. doi: 10.3389/fonc.2019.00174
  33. Certificate of state registration of the computer program № 2023619686/ 15.05.2023. Vasilev YuA, Vladzymirskyy AV, Omelyanskaya OV, et al. Web-based tool for quality control of datasets: № 2023617136. (In Russ).
  34. Gundersen OE, Kjensmo S. State of the Art: Reproducibility in Artificial Intelligence. Proceedings of the AAAI Conference on Artificial Intelligence. 2018;32(1). doi: 10.1609/aaai.v32i1.11503
  35. Tortora M, Gemini L, Scaravilli A, et al. Radiomics Applications in Head and Neck Tumor Imaging: A Narrative Review. Cancers. 2023;15(4). doi: 10.3390/cancers15041174
  36. Image Biomarker Standardisation Initiative (IBSI) [Internet]. [cited 1 Jan 2023]. Available from: https://theibsi.github.io/
  37. Morozov SP, Vladzymirskyy AV, Klyashtornyi VG, et al. Practice guidelines for the treatment of malignant tumors of the head and neck. Moscow; 2019. (In Russ).
  38. Buvat I, Orlhac F. The Dark Side of Radiomics: On the Paramount Importance of Publishing Negative Results. The Journal of Nuclear Medicine. 2019;60(11):1543–1544. doi: 10.2967/jnumed.119.235325
  39. Kocak B, Bulut E, Bayrak ON, et al. NEgatiVE results in Radiomics research (NEVER): A meta-research study of publication bias in leading radiology journals. European Journal of Radiology. 2023;163. doi: 10.1016/j.ejrad.2023.110830
  40. Berenguer R, Pastor-Juan MR, Canales-Vázquez J, et al. Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of CT Acquisition Parameters. Radiology. 2018;288(2). doi: 10.1148/radiol.2018172361
  41. Morozov SP, Lindenbraten LD, Gabai PG, et al. Fundamentals of medical imaging management. Morozov SP, editor. Moscow: GEOTAR-Media; 2020. (In Russ). doi: 10.33029/9704-5247-9-MEN-2020-1-424
  42. Khoruzhaya AN, Ahkmad ES, Semenov DS. The role of the quality control system for diagnostics of oncological diseases in radiomics. Digital Diagnostics. 2021;2(2):170–184. doi: 10.17816/DD60393

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Flow chart of systematic literature search. MRI — magnetic resonance imaging, US — ultrasound diagnostics

下载 (261KB)
3. Supplement 1. Table 1. Basic characteristics of articles
下载 (33KB)
4. SUPPLEMENT 2. Table 2. Assessment of the quality of radiomics according to RQS-2.0
下载 (23KB)

版权所有 © Eco-Vector, 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

##common.cookie##