One shot lumen mesh generation of abdominal aortic aneurysm by hybrid neural network

封面

如何引用文章

全文:

详细

BACKGROUND: The majority of current algorithms for blood flow surface extraction in the context of hemomodeling of abdominal aortic aneurysms are derived through a segmentation step, rather than directly from CT scans [1]. This approach introduces a degree of complexity, as the segmentation neural network is trained without consideration of the fact that the blood flow is a simply-connected region. Consequently, post-processing may be required to fulfill the simple connectivity criterion. In addition, the blood flow surface obtained from the segmentation mask using marching cubes is too coarse and requires smoothing. To provide one-stage surface extraction, Voxel2Mesh [2] was the first to be proposed. Voxel2Mesh shows good performance in extracting relatively simple geometries, while for more complex ones, its modifications have been proposed in the literature [3, 4].

AIM: The study aimed to develop an algorithm for single-stage extraction of the lumen surface of an abdominal aortic aneurysm.

MATERIALS AND METHODS: A total of 90 contrast-enhanced CT images and segmentation masks with blood flow region labeling were prepared and divided into three groups: 40, 20, and 30 images for training, validation, and testing, respectively. Affine and non-linear augmentations were applied to increase the effective training sample size. A hybrid neural network consisting of a voxel encoder, a voxel decoder, and a grid decoder was proposed for single-stage surface extraction. The architectural design of the encoder is based on the Atto-sized ConvNeXtV2 architecture. The voxel decoder is comprised of five blocks, beginning with an interpolation layer and concluding with two super-precision words with packet normalization layers and ReLU. The voxel decoder and encoder are linked by means of analogous connections to those observed in the Unet architecture. The grid decoder comprises four GraphSAGE convolutions, with GeLU intervening between each pair. It is connected to the voxel decoder. The input to the encoder is a computed tomography image, while the input to the grid decoder is an initial approximation of the surface in the form of a ball. The output of the voxel decorrelation is a segmentation mask, while the output of the mesh decorrelation is the extracted surface. A combination of voxel and mesh loss functions was employed for the purposes of training. The surface generated from the segmentation mask by the Marching Cubes algorithm was employed as the reference surface. The mesh loss function was regularized to set the necessary parameters for the generated mesh. The quality of the generated mesh was evaluated using the Dice coefficient, which compares the true segmentation mask with the rasterized generated surface.

RESULTS: We proposed the first hybrid neural network with an encoder based on the state-of-the-art ConvNeXtV2 architecture for the direct generation of abdominal aortic aneurysm blood flow meshes. A 14.01% improvement in generation was achieved by the Dice metric, with a score of 85.32%, in comparison to Voxel2Mesh. The results demonstrate the potential for accurate lumen geometry generation, with metrics approaching those of the segmentation task. This eliminates the necessity for post-processing steps typically required for the latter.

CONCLUSION: Shows promising results for accurately generating lumen geometry with performance similar to the segmentation task, eliminating the need for post-processing steps required for the latter.

作者简介

Rostislav Epifanov

Novosibirsk State University

Email: rostepifanov@gmail.com
ORCID iD: 0009-0005-1348-2699
SPIN 代码: 9972-6042
俄罗斯联邦, Novosibirsk

Rustam Mullyadzhanov

Novosibirsk State University; Kutateladze Institute of Thermophysics

Email: rustammul@gmail.com
ORCID iD: 0000-0001-7506-1914
SPIN 代码: 8501-5301
俄罗斯联邦, Novosibirsk; Novosibirsk

Andrey Karpenko

Novosibirsk State University; National Medical Research Center named after academician E.N. Meshalkin

编辑信件的主要联系方式.
Email: andreikarpenko@rambler.ru
ORCID iD: 0000-0002-8064-1857
俄罗斯联邦, Novosibirsk; Novosibirsk

参考

  1. Brutti F, Fantazzini A, Finotello A, et al. Deep learning to automatically segment and analyze abdominal aortic aneurysm from computed tomography angiography. Cardiovascular Engineering and Technology. 2022;13(4):535–547. doi: 10.1007/s13239-021-00594-z
  2. Wickramasinghe U, Remelli E, Knott G, Fua P. Voxel2Mesh: 3D mesh model generation from volumetric data. Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference; 2020 October 4–8; Lima, Peru. doi: 10.1007/978-3-030-59719-1_30
  3. Kong F, Wilson N, Shadden S. A deep-learning approach for direct whole-heart mesh reconstruction. Medical image analysis. 2021;74. doi: 10.1016/j.media.2021.102222
  4. Bongratz F, Rickmann A-M, Polsterl S, Wachinger C. Vox2cortex: fast explicit reconstruction of cortical surfaces from 3D MRI scans with geometric deep neural networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2022; New Orleans, LA, USA. doi: 10.1109/CVPR52688.2022.02011

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».