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Введение 

В современных условиях глобальной финансо-

вой нестабильности проблема волатильности при-

обретает ключевое значение для участников рынка 

капитала. Для институциональных и частных ин-

весторов именно волатильность выступает опре-

деляющим фактором риска, напрямую влияя на 

эффективность инвестиционных стратегий, уро-

вень ожидаемой доходности и надежность систем 

риск-менеджмента. В то время как на традицион-

ных сегментах финансового рынка (фондовом, 

валютном, долговом) действуют механизмы ин-

ституциональной стабилизации – государственное 

регулирование, деятельность центральных банков, 

нормативные ограничения на динамику торгов, – 

рынок криптовалют изначально развивался в 

условиях минимального контроля и дерегулиро-

ванности, что предопределило его уникальные ха-

рактеристики. 

К числу особенностей криптовалютного сег-

мента относятся круглосуточный режим функцио-

нирования без выходных и перерывов, глобальный 

охват с отсутствием единого эмиссионного цен-

тра, ограниченная глубина ликвидности и доми-

нирование розничных инвесторов. Эти характери-

стики формируют качественно иную рыночную 

среду, в которой вероятность возникновения ано-

мальных ценовых движений значительно выше, 

чем на традиционных рынках. Более того, высокая 

чувствительность криптовалют к информацион-

ным потокам, включая новостные сообщения, 

публикации в социальных сетях и спекулятивные 

ожидания, усиливает непредсказуемость динамики 

цен и делает крипторынок особенно подвержен-

ным резким колебаниям. 

Таким образом, актуальность анализа вола-

тильности криптовалютного рынка обусловлена не 

только масштабами и скоростью ценовых колеба-

ний, но и их системным воздействием на поведе-

ние инвесторов, устойчивость финансовых страте-

гий и общую стабильность глобальной финансо-

вой системы. В этих условиях особое значение 

приобретает поиск новых инструментов диагно-

стики и прогнозирования рыночной нестабильно-

сти, учитывающих специфику крипторынка и его 

высокую информационную чувствительность. Од-

ним из таких инструментов выступает энтропий-

ный анализ информационного фона, позволяющий 

количественно оценивать уровень неопределенно-

сти и хаотичности рыночных процессов. 

Материалы и методы исследований 

В современной финансовой науке особое вни-

мание уделяется поиску методов, позволяющих 

объяснять и прогнозировать поведение рынков в 

условиях нестабильности и высокой неопределён-

ности [1, 2]. Высокая волатильность и информа-

ционная чувствительность криптовалютного рын-

ка предопределяют необходимость применения 

методов, способных выявлять скрытую структуру 

хаотичных процессов и количественно измерять 

уровень неопределённости. Одним из таких 

направлений является энтропийный анализ, бази-

рующийся на теории информации и адаптирован-

ный к задачам анализа финансовых временных 

рядов и информационных потоков [3]. Его приме-

нение приобретает особое значение именно на 

рынке криптовалют, специфика которого ради-

кально отличает его от традиционных сегментов. 

С точки зрения количественного анализа, ча-

стые аномальные движения в ценах криптоактивов 

проявляются в необычной статистике распределе-

ния доходностей. В классической финансовой 

теории часто предполагается распределение до-

ходностей близко к нормальному (гауссову). Од-

нако для криптовалют эмпирические исследования 

показывают значительные отклонения от нор-

мальности – асимметрию и тяжёлые хвосты рас-

пределения. Другими словами, экстремальные от-

клонения (далёкие от среднего значения доходно-

сти) происходят намного чаще, чем предполагала 

бы нормальная модель. Один из исследований от-

метил, что распределение доходностей криптова-

лют имеет «fat tails» – тяжёлые хвосты, а сами до-

ходности гораздо более «экстремальные», чем у 

нормального [4]. Это согласуется с наблюдением, 

что на крипторынке аномальные события (крайние 

скачки) – не редкость, а статистически заметное 

явление. Более того, сравнение с другими актива-

ми подтверждает уникальность крипто-

волатильности. Например, по результатам работы 

Н. Дехуша распределение цен биткоина соответ-

ствует тяжёлохвостому закону Парето, тогда как 
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цены золота и индекса S&P 500 демонстрируют 

существенно более тонкие хвосты (т.е. менее экс-

тремальные колебания) [5]. Хотя распределения 

дневных доходностей всех этих активов характе-

ризуются отклонением от нормального (и для ак-

ций, и для золота наблюдаются «толстые хвосты» 

в периоды турбулентности), степень тяжеловесно-

сти хвостов у биткоина заметно выше. Проще го-

воря, вероятность крайне больших изменений це-

ны у биткоина больше, чем у сопоставимых по 

масштабам традиционных инструментов. Это 

означает более высокую частоту аномальных дви-

жений. 

Причинами столь частых аномалий, как обсуж-

далось выше, являются комплексные особенности 

крипторынка. Ключевые особенности криптова-

лютного рынка: отсутствие строгого регулирова-

ния, круглосуточная мировая торговля, преобла-

дание розничных инвесторов, фрагментированная 

ликвидность. Эти факторы вместе создают пред-

посылки для высокой волатильности и чувстви-

тельности цен к внешним воздействиям (новостям, 

большим ордерам и т.д.). Далее, повышенная во-

латильность и мгновенная реакция на любые раз-

дражители выливаются в то, что на выходе мы 

наблюдаем частые аномальные ценовые движения 

– резкие всплески и обвалы курсов, нехарактерные 

по масштабам для традиционных рынков. Таким 

образом, логически прослеживается связь: специ-

фика крипторынка → повышенная нестабильность 

→ аномалии цен [5]. 

Одним из перспективных подходов к анализу 

неупорядоченных и нестабильных состояний ры-

ночной среды является энтропийный анализ, ос-

нованный на теории информации. 

Энтропия, введённая Клодом Шенноном в 1948 

году, представляет собой количественную меру 

неопределённости или хаотичности системы. В 

финансовом контексте высокая энтропия указыва-

ет на преобладание случайных колебаний, а низ-

кая – на наличие закономерностей в поведении 

рынка [6]. 

В теории информации энтропия представляет 

количественную меру неопределённости или хао-

тичности системы. Концепция энтропии была вве-

дена К. Шенноном и определяется как степень не-

предсказуемости состояния системы или случай-

ной величины. Чем выше энтропия, тем более рав-

номерно и непредсказуемо распределены возмож-

ные исходы, и наоборот – низкая энтропия свиде-

тельствует о том, что система более упорядочена 

или доминируется одним состоянием. Иными сло-

вами, энтропия характеризует разнообразие ин-

формации и разброс вероятностей состояний. Эн-

тропия Шеннона для дискретной случайной вели-

чины с вероятностным распределением определя-

ется как представлено в формуле 1 [7]. 

,   (1) 

где  – возможные состояния системы. 

Например, для случайного процесса с равнове-

роятными исходами энтропия максимальна, а для 

полностью детерминированного сигнала энтропия 

минимальна. В контексте финансовых данных эн-

тропия часто измеряется на основе распределения 

ценовых изменений или новостных сигналов, поз-

воляя количественно оценить уровень неопреде-

лённости рынка. Помимо энтропии Шеннона, в 

финансовом анализе применяются также меры 

permutation entropy, sample entropy и mutual 

information. В частности, permutation entropy поз-

воляет выявлять временные участки со сменой 

динамики, а mutual information – оценивать нели-

нейные зависимости между рыночными индикато-

рами [8]. 

Энтропийные методы применяются для анализа 

свойств информационного фона, особенно в усло-

виях нестабильности криптовалютного рынка. 

Разнообразие метрик позволяет фиксировать ано-

мальные отклонения, не всегда улавливаемые 

классическими показателями волатильности. Эн-

тропия отражает степень беспорядка и использу-

ется для оценки «шума» новостных потоков и вы-

явления нетипичных поведенческих паттернов [8]. 

Резкие изменения её уровня могут указывать на 

структурные сдвиги или рыночные аномалии. В 

финансовом анализе используются различные эн-

тропийные показатели (Шеннона, permutation 

entropy, взаимная информация и др.), что позволя-

ет выявлять скрытые паттерны и изменение режи-

ма рынка. 

Особое направление применения связано с ис-

следованием новостного фона, формирующего 

ожидания инвесторов. Под информационным фо-

ном понимается совокупность новостей СМИ, со-

общений в социальных сетях, поисковых трендов, 

отчётов и слухов, которые определяют информа-

ционную среду крипторынка. Она отличается вы-

сокой скоростью распространения сведений и де-

централизацией источников, что усиливает чув-

ствительность цен к медийным импульсам. Пока-

затели внимания (например, частота поисковых 

запросов) отражают насыщенность информацион-

ного фона и коррелируют с динамикой цен. 

Энтропия информационного фона выступает 

количественной мерой разнообразия и неопреде-

лённости информационных сообщений. Низкие её 

значения соответствуют однородным и предсказу-

https://eb-journal.ru/


Экономический вестник         2025, Том 4, № 5     ISSN 2949-4648 

Economic Bulletin    2025, Vol. 4, Iss. 5 https://eb-journal.ru 

  
 

7 

емым сигналам, высокие – противоречивым и хао-

тичным потокам, повышающим неопределённость 

и провоцирующим колебания цен. В эмпириче-

ских исследованиях показано, что рост энтропии 

предшествует нестабильности на рынках ETF, ак-

ций и криптовалют [9]. 

Таким образом, энтропийный анализ представ-

ляет собой перспективный инструментарий для 

количественной диагностики нестабильности как 

ценовых, так и информационных параметров фи-

нансового рынка. Его интеграция в аналитические 

и торговые модели может способствовать повы-

шению чувствительности к предкризисным инди-

каторам и усилению адаптивности стратегий 

управления рисками. 

Одной из ключевых гипотез, выдвигаемых в 

рамках данной статьи, является предположение о 

наличии устойчивой взаимосвязи между аномали-

ями в информационном фоне и аномальными це-

новыми движениями на рынке криптовалют. В 

условиях высокой чувствительности крипторынка 

к внешним сообщениям, особенности которых по-

дробно проанализированы в предыдущих пара-

графах, представляется целесообразным формали-

зовать и количественно оценить степень этой вза-

имосвязи. 

Основным объектом анализа в данном контек-

сте выступают новостные аномалии – резкие от-

клонения в структуре информационного фона, вы-

ражающиеся в увеличении информационной эн-

тропии либо изменении параметров тональности 

сообщений. Эти отклонения рассматриваются как 

потенциальные триггеры нестабильности, способ-

ные провоцировать ценовые всплески и обвалы 

криптоактивов [10]. В то же время реакция рынка 

на информационные импульсы может быть как 

мгновенной, так и инерционной, что требует при-

влечения методов временного и лагового корреля-

ционного анализа. 

Методологическая основа исследования фор-

мируется на стыке информационной теории и фи-

нансовой диагностики. Центральное допущение 

состоит в том, что аномальные ценовые колебания 

криптовалют могут быть не только результатом 

фундаментальных факторов или технических осо-

бенностей рынка, но и следствием структурных 

сдвигов в новостном фоне. В условиях высокой 

чувствительности криптовалютного сегмента к 

информационным воздействиям именно энтро-

пийные метрики позволяют формализовать и ко-

личественно зафиксировать эти изменения, высту-

пая инструментом диагностики рыночной неста-

бильности. 

Для количественной оценки новостного фона в 

каждый момент времени ttt агрегируются все со-

общения (новости СМИ, публикации в социаль-

ных сетях, регуляторные заявления, поисковые 

тренды), поступившие за фиксированный времен-

ной интервал Δ\DeltaΔ. На этой основе строится 

распределение токенов (слов или тематических 

категорий): 

 ,    

где  – число вхождений слова  в корпусе со-

общений дня ; 

 – общее количество токенов; 

 – размер словаря; 

– параметр сглаживания (Лапласовское сгла-

живание). 

Для выявления аномалий текущее распределе-

ние сравнивается с «фоновым» состоянием но-

востного потока, усреднённым за предыдущие пе-

риоды: 

 ,    

где  – частота токена www в корпусе фоновых 

сообщений; 

 – общее количество токенов в корпусе. 

Ключевой метрикой выступает дивергенция 

Кульбака–Лейблера (KL-divergence), которая из-

меряет степень неожиданности текущего новост-

ного состояния: 

 ,  

Если значение  близко к нулю, структура 

новостей соответствует «нормальному» фону. Рез-

кий рост метрики сигнализирует о статистически 

значимом информационном сдвиге. 

Для удобства интерпретации вводится бинар-

ный индикатор новостной аномалии : 

,   

где  и  – среднее и стандартное отклонение 

метрики  за референсный период, 

 ∈[1.5;2.5] – коэффициент чувствительности. 

Индикатор  позволяет в каждый день раз-

делять рынок на два режима. Если значение равно 

1, это значит, что новостной поток был настолько 

необычным и хаотичным, что можно ожидать рост 

нестабильности цен. Такие дни трактуются как 

периоды повышенного риска и требуют более 

осторожных торговых решений. Если же , 

значит информационный фон остаётся в пределах 

нормы, и рынок движется относительно спокойно. 
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Таким образом, новостной фон формализуется 

как динамическая вероятностная система, а инди-

катор  фиксирует моменты статистически 

значимых отклонений, трактуемых как потенци-

альные источники ценовой нестабильности. 

Для реализации модели использовались два 

массива данных: 

1. Информационные данные: 

− агрегированные новостные сообщения о 

криптовалютном рынке (агентства, СМИ, про-

фильные сайты), 

− данные социальных сетей (Twitter, Reddit), 

− поисковые тренды (Google Trends), 

− сообщения регуляторов и публичных ком-

паний. 

2. Финансовые данные: 

− котировки биткоина (цены закрытия, лога-

рифмические доходности), 

− объёмы торгов, индексы ликвидности. 

Выбор Bitcoin обусловлен его репрезентатив-

ностью и объёмом данных, однако методика мо-

жет быть расширена на другие криптоактивы 

(Ethereum, Litecoin), что позволит провести кросс-

проверку устойчивости гипотезы 

Такой набор источников обеспечивает ком-

плексное покрытие как информационного, так и 

ценового измерения исследуемого рынка. 

Финансовая часть анализа строится на сопо-

ставлении энтропийных индикаторов новостного 

фона с динамикой цен биткоина. Для этого ис-

пользуется модель ARIMA(1,1,1), позволяющая 

прогнозировать краткосрочные доходности: 

,    

где  – цена в момент времени t. 

Для выбора базового инструмента прогнозиро-

вания была проведена сравнительная оценка не-

скольких популярных моделей. Результаты сведе-

ны в табл. 1. 

Таблица 1 

Сравнение методов прогнозирования временных рядов. 

Table 1 

Comparison of time series forecast methods. 
Модель Преимущества Ограничения 

ARIMA 

Хорошо работает на коротких горизонтах, требу-

ет только исторических цен, стандарт финансо-

вого анализа. 

Чувствительна к выбору параметров, плохо 

улавливает долгосрочные тренды. 

LSTM 

(нейросеть) 

Может учитывать сложные нелинейные зависи-

мости, сильна на больших массивах данных. 

Требует много данных и ресурсов, склонна к 

переобучению, трудна в интерпретации. 

Prophet 
Удобен для бизнес-рядов с сезонностью, мало 

настроек. 

На хаотичных данных криптовалют часто 

даёт искажения, недооценивает резкие скач-

ки. 

GARCH Хорошо описывает волатильность и её кластеры. Прогнозирует дисперсию, но не сами цены. 

 

Выбор в пользу ARIMA объясняется её надёж-

ностью на ограниченных данных и удобством для 

выявления отклонений от «нормальной» динами-

ки. Модель хорошо описывает краткосрочные за-

висимости, а любое расхождение прогноза с фак-

тическими значениями легко трактуется как ре-

зультат внешнего воздействия – новостного шока 

или информационной аномалии [11, 12]. При этом 

параметры ARIMA понятны и интерпретируемы, 

что делает её удобным инструментом для финан-

сового анализа и риск-менеджмента. 

Ошибка прогноза интерпретируется как пока-

затель «ненормальной доходности»: 

.    

Если  существенно отклоняется от нуля, 

это рассматривается как проявление внешнего 

воздействия, не учтённого моделью ARIMA, и, 

следовательно, как потенциальный результат но-

востного шока. 

Таким образом, рост энтропийных метрик 

трактуется как проявление информационного шо-

ка, который влечёт за собой изменение рыночного 

режима и, как следствие, ценовую аномалию. 

Ошибка ARIMA при этом фиксирует количе-

ственный эффект этого воздействия. 

Так как новостной поток содержит тысячи слов 

и тем, использовать их все в модели невозможно и 

неэффективно. Чтобы выделить действительно 

важные сигналы, применяется метод отбора при-

знаков, основанный на принципах «генетического 

алгоритма». Идея заключается в том, чтобы посте-

пенно, через последовательные комбинации и «от-

бор лучших», выделить наиболее значимые токе-

ны (например, «ETF», «SEC», «обвал», «инфля-

ция»), которые чаще всего связаны с изменением 

цен. Такой подход помогает убрать «шум», избе-

жать переобучения и сосредоточить анализ на 

ключевых информационных факторах, реально 

влияющих на рынок. В результате формируется 
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компактный набор признаков, который использу-

ется в финальной классификационной модели. 

Метод отбора признаков на основе генетического 

алгоритма используется в качестве дополнения к 

традиционным статистическим методам валида-

ции, что позволяет минимизировать переобучение 

и сосредоточить анализ на ключевых факторах 

В рамках эмпирического анализа часто исполь-

зуется корреляционный подход для установления 

статистической взаимосвязи между показателями 

информационного фона и изменениями рыночных 

цен. Однако в контексте исследования аномаль-

ных событий на криптовалютном рынке такой 

подход имеет ряд существенных ограничений, 

связанных как с природой данных, так и с целями 

анализа. 

Коэффициенты линейной (Пирсона) или ранго-

вой (Спирмена) корреляции позволяют оценить 

степень связи между двумя переменными – 

например, энтропией новостного фона и измене-

нием цены актива. Однако они не учитывают клю-

чевых особенностей динамики крипторынка: 

• Нелинейность и нестационарность вре-

менных рядов; 

• Запаздывающие (лаговые) реакции цен на 

информационные импульсы; 

• Неопределённость направления влияния 

(новости влияют на цену или наоборот). 

В этой связи представляется более перспектив-

ным применение энтропийно-информационного 

подхода, в частности, метода передачи энтропии 

(Transfer Entropy), позволяющего выявить направ-

ленные связи между временными рядами. Этот 

метод не только фиксирует факт информационной 

зависимости, но и определяет, в каком направле-

нии происходит передача сигнала – от новостей к 

ценам или наоборот. Кроме того, он устойчив к 

нелинейным эффектам и применим в условиях 

нестационарной рыночной среды. 

Алгоритм объединения новостных индикаторов 

и модели прогнозирования представлен на рис. 1. 

 

 
Рис. 1. Этапы алгоритма формирования торгового решения на основе энтропийного анализа новостного 

фона и модели ARIMA. 

Fig. 1. Stages of the algorithm for forming a trading decision based on entropy analysis of the news background 

and the ARIMA model. 

 

Реализация описанной методологии позволяет 

выявлять скрытые новостные аномалии, предше-

ствующие росту волатильности, диагностировать 

периоды рыночной нестабильности на основе ин-

формационных сигналов и интегрировать энтро-

пийные индикаторы в систему риск-менеджмента 

для повышения качества прогнозирования и адап-

тивности торговых стратегий. Энтропийные инди-

каторы могут применяться не только для фильтра-

ции аномальных дней, но и для диагностики пере-

ходных режимов и предкризисных состояний 

рынка [13]. 

Таким образом, методология исследования со-

четает в себе построение энтропийных индикато-

ров новостного фона и их сопоставление с резуль-

татами базовой модели ARIMA, что позволяет 

формализовать и количественно оценить влияние 

информационных аномалий на ценовую динамику 

криптовалют. Выбранный подход обеспечивает 

более глубокое понимание механизмов трансля-

ции новостных сигналов в рыночные колебания и 
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формирует основу для перехода к эмпирическому 

анализу, в рамках которого будет проведена про-

верка гипотезы на данных о динамике биткоина и 

ключевых информационных событиях. 

Результаты и обсуждения 

Для оценки работоспособности разработанной 

архитектуры была проведена апробация модели на 

исторических данных криптовалютного рынка 

(Bitcoin) в условиях, максимально приближенных 

к реальным. Иными словами, алгоритм был проте-

стирован в режиме, имитирующем ежедневное 

прогнозирование динамики рынка без ретроспек-

тивных подсказок, аналогично тому, как он при-

менялся бы в реальной торговле. Результаты рабо-

ты объединенной модели оценивались как задача 

бинарной классификации – правильно ли алгоритм 

предсказал направление суточного изменения це-

ны Bitcoin (рост или падение) для каждого дня те-

стового периода (результаты прогнозирования 

ARIMA представлены на рис. 2). 

 

 
Рис. 2. Результаты прогнозирования цены ARIMA моделью. 

Fig. 2. Results of price forecasting using the ARIMA model. 

 

Далее финальный прогноз, полученный в ре-

зультате работы обоих частей описанного алго-

ритма, сравнивался с фактическим направлением 

изменения цены. На основе этого сравнения соби-

ралась статистика правильных и ошибочных пред-

сказаний, формировалась матрица ошибок 

(confusion matrix), и рассчитывались метрики ка-

чества классификации. 

Апробация показала, что предложенный ком-

бинированный подход способен предсказывать 

направление изменения цены Bitcoin с точностью 

около 69%, то есть в 69 случаях из 100 модель 

корректно определяла дневной тренд. Для провер-

ки была взята выборка в 100 дней, из которых 50 

дней характеризовались ростом и 50 – снижением 

цены. Модель прогнозировала рост в 51 случае, 

где 35 прогнозов оказались верными и 16 – оши-

бочными; для падения верными оказались 34 из 49 

прогнозов, при этом 15 были ошибочными. 

Детальный анализ качества классификации по-

казал сопоставимые метрики для обоих классов: 

для роста Precision составил 0.69, Recall – 0.70, F1-

score – 0.69; для падения Precision достиг 0.69, 

Recall – 0.68, F1-score – 0.69. Таким образом, алго-

ритм демонстрирует сбалансированность и не 

проявляет смещения в пользу одного направления, 

обеспечивая умеренную надёжность как при про-

гнозировании восходящих, так и нисходящих 

трендов. 

Важно подчеркнуть, что достигнутая точность 

(69%) подтверждает жизнеспособность подхода, 

комбинирующего ARIMA и новостную энтропий-

ную оценку. Однако, результаты тестирования вы-

явили ряд моментов в работе алгоритма при при-

менении на реальных данных. Прежде всего, 31% 

неверных прогнозов – такой уровень ошибок 

означает, что почти каждая третья дневная реко-

мендация модели оказывается неверной. Анализ 

ошибочных прогнозов показал наличие устойчи-

вых сценариев, при которых модель демонстриро-

вала недостаточную точность. 

Во-первых, значительная часть ошибок возни-

кала при противоречии сигналов ARIMA и но-

востного анализа: статистическая модель экстра-

полировала тренд, тогда как новостной фон фик-

сировал шок противоположного направления. Это 

приводило к компромиссным прогнозам и ошиб-

кам типа FP или FN. 
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Во-вторых, ограничения связаны с природой 

ARIMA: модель адекватна при умеренной вола-

тильности, но плохо отражает тяжёлые хвосты и 

редкие экстремальные скачки, характерные для 

криптовалют. 

В-третьих, проблемой стала недостаточная 

адаптивность: при обучении на фиксированном 

интервале между структурным сдвигом и пере-

обучением возникал лаг, усиливающий расхожде-

ния прогноза с фактической динамикой. 

Наконец, ошибки усугублялись ограниченно-

стью признаков: использовались только ценовые 

ряды и агрегированный новостной фон, тогда как 

часть движений определялась внешними техниче-

скими и информационными факторами. 

Выводы 

Проведённый анализ выявил основные недо-

статки текущей реализации: 

1. чувствительность к противоречивым сигна-

лам (конфликт ARIMA и новостного анализа), 

2. слабая реакция на экстремальные события, 

3. фиксированные параметры и ограниченный 

набор признаков, снижающие адаптивность моде-

ли. 

В качестве направлений развития предложено: 

– адаптивная корректировка весов значимых 

текстовых и ценовых признаков для снижения 

влияния шумов; 

– расширение корпуса новостей за счёт допол-

нительных каналов и языков; 

– применение более продвинутых методов NLP 

для обработки коротких текстов; 

– использование перекрёстной проверки и ан-

самблей для повышения робастности. 

Апробация показала практическую эффектив-

ность архитектуры в детектировании аномалий на 

крипторынке, а предложенные улучшения позво-

лят повысить точность и полноту прогнозов без 

изменения её базовой структуры. 
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