THE FORMATION OF RIVER LONGITUDINAL PROFILE UNDER THE SIGNIFICANT INFLUENCE OF SLOPE PROCESSES (ON THE EXAMPLE OF THE WAIPAOA RIVER, NEW ZEALAND)

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The article studies sediment accumulation processes in the upper reaches of a river with abundant sediment supply from slopes and subsequent river incision into the accumulative strata when the supply of slope sediments ceases. The object of study is the upper reaches of the Waipaoa River (New Zealand), where such processes are well studied and morphometric, hydrological and sedimentological information is available. The deformation equation using the Grishanin formula for calculating the transport rate of bedload was solved using numerical methods, regional morphometric relationships and an empirical formula for the rate of sediment supply from slopes to the head of the river. The result is a quantitative description of both sediment accumulation processes and the processes of river incision into them. Under conditions of sediment supply from slopes, a sediment accumulation area was formed, which expanded over time both upwards (regressively) and downwards (transgressively) along the river. The longitudinal profile of the channel straightened along the chord. Subsequent incision upon cessation of sediment supply occurred transgressively, starting from the upper section of the accumulation area. As a result, a cyclic chord terrace with time-transgressive downstream incision was formed. During the incision, sediments accumulated on the surface of the terrace in the middle and lower parts, which, despite subsequent erosion, could be preserved in the section of the alluvial layer. The use of numerical methods allows us to trace the details of the processes of formation of accumulative deposits of cyclic terraces and the incision of river flows into these deposits.

作者简介

A. Sidorchuk

Lomonosov Moscow State University, Faculty of Geography

编辑信件的主要联系方式.
Email: fluvial05@gmail.com
Moscow, Russia

参考

  1. Болиг А. (1956) Очерки геоморфологии. М.: Изд-во иностр. лит. 262 с.
  2. Baulig H. (1956) Ocherki geomorfologii (Essays on Geomorphology). Moscow: Inostr. lit. (Publ.). 262 p (in Russ).
  3. Великанов M.А. (1948) Гидрология суши. Л.: Гидрометеоиздат. 530 с.
  4. Velikanov M.A. (1948) Gidrologiya sushi (Hydrology of land). Leningrad: Gidrometeoizdat (Publ.). 530 p (in Russ).
  5. Великанов M.А. (1958) Русловой процесс (основы теории). М.: Физматгиз. 395 с.
  6. Velikanov M.A. (1958) Ruslovoi protsess (osnovy teorii) (Channel process (theory basics)). Moscow: Fizmatgiz (Publ.). 395 p (in Russ).
  7. Виноградова Н.Н., Крыленко И.В., Сурков В.В., Тарбеева А.М. (2010) Ледниковые реки Приэльбрусья — условия руслоформирования и взаимосвязь морфодинамики долин и русел. В сб.: Эрозия почв и русловые процессы. Т. 17. М.: Геогр. ф-т МГУ. С. 96–115.
  8. Vinogradova N.N., Krylenko I.V., Surkov V.V., Tarbeeva A.M. (2010) Glacial rivers of the Elbrus region — conditions of channel formation and the rela­tionship bet­ween the morphodynamics of valleys and channels. In: Eroziya pochv i ruslovye protsessy. Vol. 17. Moscow: Geogr. f-t MGU (Publ.). P. 96–115 (in Russ).
  9. Голосов В.Н., Панин А.В. (1998) Пространственно-временные закономерности деградации речной сети на Восточно-Европейской равнине. В сб.: Труды Академии водохозяйственных наук. Вып. 5. Гидрология и русловые процессы. С. 163–172.
  10. Golosov V.N., Panin A.V. (1998) Space-temporal patterns of river network degradation on the East European Plain. Trudy Akademii vodokhozyaistvennykh nauk. Vyp.5. Gidro­logiya i ruslovye protsessy. P. 163–172 (in Russ).
  11. Гришанин К.В. (1972) Теория руслового процесса. М.: Транспорт. 215 с.
  12. Grishanin K.V. (1972). Teoriya ruslovogo protsessa (Theory of the channel process). Moscow: Transport (Publ.). 215 p (in Russ).
  13. Маккавеев Н.И. (1956) Влияние стока на продольные профили реки. В сб.: Вопросы географии. Сборник статей для XVIII Международного географического конгресса. М. — Л.: Изд-во АН СССР. С. 199–205.
  14. Makkaveev N.I. (1956) The influence of runoff on longitudinal river profiles. In: Voprosy geografii. Sbornik statei dlya XVIII Mezhdunarodnogo geograficheskogo kongressa. Moscow–Leningrad: AN SSSR (Publ.). P. 199–205 (in Russ).
  15. Маккавеев Н.И., Капица А.П., Хмелева Н.В. (1955) Экспериментальные исследования процессов развития продольного профиля реки. Вестник МГУ. Серия физико-математических и естественных наук. № 2. С. 139–151.
  16. Makkaveev N.I., Kapitsa A.P., Khmeleva N.V. (1955) Experimental studies of the processes of development of the longitudinal profile of a river. Vestnik MGU. Seriya fiziko-matematicheskikh i estestvennykh nauk. No. 2. P. 139–151 (in Russ).
  17. Маккавеев Н.И., Хмелева Н.В., Заитов И.Р., Лебедева Н.В. (1961) Экспериментальная геоморфология. М.: Изд-во МГУ. 193 с.
  18. Makkaveev N.I., Khmeleva N.V., Zaitov I.R., Lebedeva N.V. (1961) Eksperimental'naya geomorfologiya (Experimental geomorphology). Moscow: MGU (Publ.). 193 p (in Russ).
  19. Потапов И.И., Снигур К.С. (2019) О решении уравнения Экснера для дна, имеющего сложную морфологию. Компьютерные исследования и моделирование. Т. 11. № 3. С. 449–461. https://doi.org 10.20537/2076-7633-2019-11-3-449-461
  20. Potapov I.I., Snigur K.S. (2019) On the solution of the Exner equation for a bottom with complex morphology. Komp'yuternye issledovaniya i modelirovanie. Vol. 11. No. 3. P. 449–461 (in Russ). https://doi.org 10.20537/2076-7633-2019-11-3-449-461
  21. Самарский А.А. (1983) Теория разностных схем. М.: Наука. 616 с.
  22. Samarsky A.A. (1983) Teoriya raznostnykh skhem (Theory of difference schemes). Moscow: Nauka (Publ.). 616 p (in Russ).
  23. Сидорчук А.Ю. (2025) Процессы формирования продольного профиля реки. Геоморфология и палеогеография. Т. 56. № 2. С. 185–196. https://doi.org/10.31857/S2949178925020017
  24. Sidorchuk A. Yu. (2025) Processes of formation of longitudinal profile of the river. Geomorfologiya i Paleogeografiya. Vol. 56. No. 2. P. 185–196 (in Russ). https://doi.org/10.31857/S2949178925020017
  25. Сидорчук А.Ю., Виноградова Н.Н., Крыленко И.В. (2004) Трансформация продольного профиля р. Баксан у г. Тырныауз после прохождения катастрофического селя. В сб.: Труды VI конференции “Динамика и термика рек, водохранилищ и прибрежной зоны морей”. М.: ИВП РАН. С. 461–464.
  26. Sidorchuk A. Yu., Vinogradova N.N., Krylenko I.V. (2004) Transformation of the longitudinal profile of the Baksan River near the town of Tyrnyauz after the passage of a catastrophic mudflow. In: Trudy VI konferentsii “Dinamika i termika rek, vodokhranilishch i pribrezhnoi zony morei”. Moscow: IVP RAN (Publ.). P. 461–464 (in Russ).
  27. Срибный М.Ф. (1960) Формулы средней скорости течения рек и их гидравлическая классификация по сопротивлению движению. В сб.: Исследование и комплексное использование водных ресурсов. М.: Изд-во АН СССР. С. 204–220.
  28. Sribny M.F. (1960) Formulas for the average flow velocity of rivers and their hydraulic classification by resistance to movement. In: Issledovanie i kompleksnoe ispol'zovanie vodnykh resursov. Moscow: AN SSSR (Publ.). P. 204–220 (in Russ).
  29. Чернов А.В. (1994) Заиление русел малых рек Европейской России и сопредельных государств. Геоморфология. № 1. С. 100–107.
  30. Chernov A.V. (1994) Silting of small river channels in European Russia and adjacent countries. Geomorfologiya. No. 1. P. 100–107 (in Russ).
  31. Шамов Г.И. (1959) Речные наносы. Л.: Гидрометеоиздат. 378 с.
  32. Shamov G.I. (1959) Rechnye nanosy (River sediments). Leningrad: Gidrometeoizdat (Publ.). 378 p (in Russ).
  33. Berryman K., Marden M., Eden D. et al. (2000) Tectonic and paleoclimatic significance of Quaternary River terraces of the Waipaoa river, east coast, North Island, New Zealand. N. Z.J. Geol. Geophys. Vol. 43. Iss. 2. P. 229–245. https://doi.org/10.1080/00288306.2000.9514883
  34. Exner F.M. (1920) Zur physik der dünen. Akad. Wiss. Wien Math. Naturwiss. Klasse. Vol. 129 (2a). P. 929–952.
  35. Fuller I.C., Basher L., Marden M., Massey C. (2011). Using morphological adjustments to appraise sediment flux. J. of Hydrology (New Zealand). Vol. 50. No. 1. P. 59–79. https://search.informit.org/doi/10.3316/informit.3151 72004256339
  36. Gomez B., Eden D.N., Peacock D.H., Pinkney E.J. (1998) Floodplain construction by recent, rapid vertical accre­tion: Waipaoa River, New Zealand. Earth Surf. Processes Landforms. Vol. 23. P. 405–413. https://doi.org/10.1002/(SICI)1096-9837(199805) 23:5<405:: AID-ESP854>3.0.CO;2-X
  37. Gomez B., Rosser B., Peacock D.H. et al. (2001) Downstream fining in a rapidly aggrading gravel bed river. Water Resour. Res. Vol. 37. Iss. 6. P. 1813–1823.
  38. Hicks D.M., Shankar U., McKerchar A.I. et al. (2011) Suspended sediment yields from New Zealand rivers. J. of Hydrology: New Zealand. Vol. 50. Iss. 1. P. 81–142.
  39. Marden M., Mazengarb C., Palmer A. et al. (2008) Last glacial aggradation and post glacial sediment production from the non-glacial Waipaoa and Waimata catchments, Hikurangi margin, North Island, New Zealand. Geomorphology. Vol. 99. Iss. 1–4. P. 404–419. https://doi.org/10.1016/j.geomorph.2007.12.003
  40. Marutani T., Brierley G., Trustrum N., Page M. (Eds.) (2001) Source-to-sink sedimentary cascades in Pacific Rim geo-systems. Matsumoto Sabo Work Office, Japan: Ministry of Land, Infrastructure and Transport. 184 p.
  41. NIWA Hydro Web Portal for Hydrometric and Water Quality data [Electronic data]. URL: https://hydrowebportal.niwa.co.nz (access date: 05.09.2024).
  42. Rosser B.J., Jones K.E. (2022) Application of LiDAR differencing to assess sediment load in the upper Waipaoa River, 2005 to 2019. GNS Science Consultancy Report 2021/102 September 2022 [Electronic data]. URL: https://www.envirolink.govt.nz/assets/Envirolink (access date: 01.08.2024).
  43. Trimble S.W. (1999) Decreased rates of alluvial sediment storage in the Coon Creek basin, Wisconsin, 1975–93. Science. Vol. 285. Iss. 5431. P. 1244–1246. https://doi.org/110.1126/science.285.5431.1244.
  44. Trustrum N.A., Gomez B., Page H.J. et al. (1999) Sediment production, storage and output: the relative role of large magnitude events in steepland catchments. Zeitschrift für Geomorphologie (Suppl.). Vol. 115. P. 71–86.
  45. Weather and Climate [Electronic data]. URL: https://weatherandclimate.com/new-zealand/gisborne/te-karaka (access date: 05.09.2024).
  46. Willgoose G.R. (2005) Mathematical modeling of whole landscape evolution. Annu. Rev. Earth Planet. Sci. Vol. 33. P. 443–459. https://doi.org/10.1146/annurev.earth.33.092203.122610

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».