PALEOFIRE DYNAMICS OF THE TOBOL REGION (BASED ON THE LAKE-BOG DEPOSITS OF THE OSKINO PEAT BOG)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study investigates the spatiotemporal dynamics of fire regimes in the northern forest-steppe zone of the Tobol region (south of the Tyumen region) over the past 9.6 ka by integrating palaeoecological, archaeological, and paleofire data from the Oskino lake-bog sediments. The site's location, situated within northern forest-steppe zone and surrounded by archaeological sites spanning various periods, allows for the assessment of both natural (climatic) and anthropogenic influences on fire regimes. Changes in the peat properties, radiocarbon dating, and quantification of macrocharcoal particles from the Oskino-21 core were employed. Data were correlated with existing macrobotanical and pollen data from the Oskino-09 core, providing a comprehensive context. The results demonstrate a positive correlation between reduced moisture levels and increased fire activity, along with a correlation between pine forest dominance and fire frequency. Before human settlement of the territory (9.5–8.2 ka BP), high pyrogenic event concentrations suggest a climate—driven fire regime, potentially associated with drier conditions and the prevalence of pine forests. Palynological data from the Neolithic to early Iron Age (up to 4.5 ka BP), reveals minimal human impact on vegetation which could be related to an appropriative economy. However, an increase in fire activity is observed between 5.9 and 4.6 ka BP, potentially linked to human settlement along the lake shore during the Eneolithic and Bronze Age. Between 4.7 and 2.9 ka BP, a shift towards settled pastoralism is observed, accompanied by a decrease in fire frequency. This may be attributed to population migration towards floodplain areas and also increased humidity. The study unequivocally demonstrates a pronounced increase in anthropogenic influence on fire regimes starting at 1.4 ka BP, with economic activities significantly impacting both the background rate of charcoal accumulation and the frequency of fire episodes.

About the authors

E. D Trubitsyna

Tyumen Scientific Center of the Siberian Branch of the RAS

Author for correspondence.
Email: el.yuzh@gmail.com
Tyumen, Russia

A. S Afonin

Tyumen Scientific Center of the Siberian Branch of the RAS

Email: hawk_lex@list.ru
Tyumen, Russia

N. E Ryabogina

Tyumen Scientific Center of the Siberian Branch of the RAS; University of Gothenburg

Email: nataly.ryabogina@gmail.com
Tyumen, Russia; Göteborg, Sweden

References

  1. Ogorodnov E.A. (Ed.) (1971) Atlas Tyumenskoi oblasti (Atlas of the Tyumen Region). Moscow, Tyumen: Glavnoe upravlenie Geodezii i Kartografii pri Sovete Ministrov SSSR (Publ.). 171 p (in Russ).
  2. Bakulin V.V., Kozin V.V. (1996) Geografiya Tyumenskoi oblasti (Geography of the Tyumen Region). Ekaterinburg: Sredne-Ural'skoe knizhnoe izdatel'stvo (Publ.). 240 p (in Russ).
  3. Volkov E.N. (2007) Kompleks arkheologicheskikh pamyatnikov Ingal'skaya dolina. (Complex of archaeological monuments Ingalskaya) Novosibirsk: Nauka (Publ.). 224 р (in Russ).
  4. Mikhailenko V. Ya. (Ed.) (1976) Karta rastitel'nosti Zapadnoi Sibiri mastshtaba 1 : 1500000 (Vegetation map of Western Siberia on a scale 1 : 1500000). Moscow: GUGK (Publ.). 4 p (in Russ).
  5. Kremnetski K.V., Tarasov P.E., Cherkinskiy A.E. (1994) History of the island pine forests of Kazakhstan in the Holocene. Botanicheskii zhurnal. Vol. 79. No. 3. P. 12–29 (in Russ).
  6. Molodin V.I. (Ed.) (2008) Landshafty golotsena i vzaimo­deistvie kul'tur v Tobolo-Ishimskom mezhdurech'e (Holocene landscapes and interaction of cultures in the Tobol-Ishim interfluve). Novosibirsk: Nauka (Publ.). 212 p (in Russ).
  7. Maslennikova A.V., Udachin V.N., Deryagin V.V. (2014) Paleoekologiya i geokhimiya ozernoi sedimentatsii golotsena Urala (Paleoecology and geochemistry of lacustrine sedimentation of the Holocene of the Urals). Ekaterinburg: RIO UrO (Publ.). 136 p (in Russ).
  8. Matveeva N.P., Larina N.S., Berlina S.V. et al. (2005) Kompleksnoe izuchenie uslovii zhizni drevnego naseleniya Zapadnoi Sibiri (Comprehensive study of living conditions of the ancient population of Western Siberia). Novosibirsk: SO RAN (Publ.). 228 p (in Russ).
  9. Nasonova E.D., Rudaya N.A. (2015) Palaeoenvironmental Conditions of Human Habitation in Pritobolye: from the Neolithic to the Middle Ages: (Based on the Pollen Data from Settlement Oskino Boloto). Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Geoarkheologiya. Etnologiya. Antropologiya. Vol. 13. P. 96–105 (in Russ).
  10. Nasonova E.D., Rudaya N.A. (2016) Palynological method as a way of stratification of archeological objects: Сase study Oskino Boloto. Dinamika okruzhayushchei sredy i global'nye izmeneniya klimata. Vol. 7. No. 1. P. 93–100 (in Russ).
  11. Nasonova E.D., Ryabogina N.E., Afonin A.S. et al. (2019) Vegetation and climate of the Iset–Tobol interfluve from the Eneolithic to the Early Iron Age: New palaeoecological data on the Oskino 09 swamp. Vestnik arkheologii, antropologii i etnografii. No. 4 (47). P. 15–27 (in Russ). https://doi.org/10.20874/2071-0437-2019-47-4-2
  12. Pupysheva M.A., Blyakharchuk T.A. (2024) Reconstruction of the Holocene paleo-fire history in the middle taiga subzone of Western Siberia according to the macro-­charcoal analysis of lake sediments. Geosfernye issledovaniya. No. 1. P. 135–151 (in Russ). https://doi.org/ 10.17223/25421379/30/8
  13. Tkachev A.A., Tkacheva N.A. (2006) Cultural complexes of the Oskino Boloto settlement (based on materials from excavations in 2005). Vestnik arkheologii, antropologii i etnografii. No. 7. P. 241–248 (in Russ).
  14. Khozyainova N.V. (2000) Features of flora and vegetation of protected areas of the northern forest-steppe of the Tyumen region. Problemy vzaimodeistviya cheloveka i prirodnoi sredy. Iss. 1. P. 85–89. (in Russ)
  15. Bondur V.G., Mokhov I.I., Voronova O.S. et al. (2020) Satellite monitoring of Siberian wildfires and their effects: Features of 2019 anomalies and trends of 20-year changes. Dokl. Earth Sci. Vol. 492. P. 370–375. https://doi.org/10.1134/S1028334X20050049
  16. Chambers F.M., Beilman D.W., Yu Z. (2010/11) Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics. Mires and Peat. Vol. 7. No. 7. P. 1–10.
  17. Feurdean A., Florescu G., Tantau I. et al. (2020) Recent fire regime in the southern boreal forests of western Siberia is unprecedented in the last five millennia. Quat. Sci. Rev. Vol. 244. P. 106495. https://doi.org/10.1016/j.quascirev.2020.106495
  18. Finsinger W., Bonnici I. (2022) Tapas: An R package to per­form trend and peaks analysis. Zenodo. https://doi.org/10.5281/zenodo.6344463
  19. Goldammer J.G., Furyaev V.V. (1996) Fire in Ecosystems of Boreal Eurasia. Ecological Impacts and Links to the Global System. In: Fire in Ecosystems of Boreal Eurasia. Dordrecht, Boston, London: Kluwer academic publishers. P. 1–20.
  20. Hamilton D.S., Hantson S., Scott C.E. et al. (2018) Reas­sessment of pre-industrial fire emissions strongly affects anthropogenic aerosol forcing. Nat. Commun. Vol. 9. No. 1. P. 1–12. https://doi.org/10.1038/s41467-018-05592-9
  21. Harrison S.P., Marlon J.R., Bartlein P.J. (2010) Fire in the Earth system. Changing climates, earth systems and society. Springer. Dordrecht. P. 21–48. https://doi.org/10.1007/978-90-481-8716-4_3
  22. Haslett J., Parnell A. (2008) A simple monotone process with application to radiocarbon–dated depth chronologies. J. of the Royal Statistical Society. Series C. Applied Statistics. Vol. 57. Iss. 4. P. 399–418. https://doi.org/10.1111/j.1467-9876.2008.00623.x
  23. Heiri O., Lotter A.F., Lemcke G. (2001) Loss on ignition as a method for estimating organic and carbonate content in deposits: reproducibility and comparability of results. J. of Paleolimnology. Vol. 25. P. 101–110. https://doi.org/10.1023/A:1008119611481
  24. Kelly R.F., Higuera P.E., Barrett C.M. et al. (2011) Signal-to-noise index to quantify the potential for peak detection in sediment – charcoal records. Quat. Res. Vol. 75. No. 1. P. 11–17. https://doi.org/10.1016/j.yqres.2010.07.011
  25. Kharuk V.I., Ponomarev E.I., Ivanova G.A. et al. (2021) Wild­fires in the Siberian taiga. Ambio. Vol. 50. P. 1953–1974. https://doi.org/10.1007/s13280-020-01490-x
  26. Krivonogov S.K., Takahara H., Yamamuro M., et al. (2012) Regional to local environmental changes in southern Western Siberia: Evidence from biotic records of mid to late Holocene sediments of Lake Beloye. Palaeogeogr., Palaeoclimatol., Palaeoecol. Vol. 331–332. P. 177–193. https://doi.org/10.1016/j.palaeo.2011.09.013
  27. Mooney S., Tinner W. (2001) The analysis of charcoal in peat and organic sediments. Mires and Peat. Vol. 7. P. 1–18.
  28. Payne R.J., Blackford J.J. (2008) Peat humification and climate change: a multi-site comparison from mires in south-east Alaska. Mires and Peat. Р. 1–11.
  29. R Core Team – R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing [Электронный ресурс]. URL https://www.R-project.org/ (дата обращения: 24.03.2025)
  30. Reimer P.J., Austin W.E.N., Bard E. et al. (2020) The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal BP). Radiocarbon. Vol. 62. Iss. 4. P. 725–757. https://doi.org/10.1017/RDC.2020.41
  31. Rudaya N., Nazarova L., Nourgaliev D. et al. (2012) Mid-late Holocene environmental history of Kulunda, southern West Siberia: Vegetation, climate and humans. Quat. Sci. Rev. Vol. 48. P. 32–42. https://doi.org/10.1016/j.quascirev.2012.06.002
  32. Ryabogina N.E., Afonin A.S., Ivanov S.N. (2020) Late Glacial and Holocene in the south of Western Siberia: geochemical indices and pollen data in Kyrtyma Lake sediments. IOP Conference Series: Earth and Environmental Science. Vol. 438. 012023. 10.1088/1755-1315/438/1/012023' target='_blank'>https://doi: 10.1088/1755-1315/438/1/012023
  33. Ryabogina N.E., Afonin A.S., Ivanov S.N. et al. (2019) Holocene paleoenvironmental chances reflected in peat and lake sediments records of Western Siberia: Geochemical and plant macrofossil proxies. Quat. Int. Vol. 528. P. 73–87. https://doi.org/10.1016/j.quaint.2019.04.006
  34. Ryabogina N.E., Nesterova M.I., Utaygulova R.R. et al. (2024) Forest fires in southwest Western Siberia: The impact of climate and economic transitions over 9000 years. J. of Quat. Sci. Vol. 39. Iss. 3. Р. 432–442. https://doi.org/10.1002/jqs.3593
  35. Van Oldenborgh G.J., Krikken F., Lewis S. et al. (2021) Attribution of the Australian bushfire risk to anthropogenic climate change. Natural Hazards and Earth System Sci. Vol. 21. No. 3. P. 941–960. https://doi.org/10.5194/nhess 21-941-2021
  36. Wang Z., Huang J.G., Ryzhkova N. et al. (2021) 352 years long fire history of a Siberian boreal forest and its primary driving factor. Global and Planetary Change. Vol. 207. P. 103653. https://doi.org/10.1016/j.gloplacha.2021.103653
  37. Yuzhanina E.D., Ivanov S.N., Afonin A.S. et al. (2022b) Mid to late Holocene paleoenvironmental changes in the southern forest border of Western Siberia inferred from pollen data. Palaeogeogr., Palaeoclimatol., Palaeoecol. Vol. 588. 110800. https://doi.org/10.1016/j.palaeo.2021.110800
  38. Yuzhanina E.D., Ryabogina N.E., Afonin A.S. (2022a) Lake-swamp transition in the West–Siberian forest–steppe: pollen and plant microremains indicators of wetland ecosystem. IOP Conference Series: Earth and Environmental Sci. Vol. 1093. 012014. 10.1088/1755-1315/1093/1/012014' target='_blank'>https://doi: 10.1088/1755-1315/1093/1/012014
  39. Zhilich S., Rudaya N., Krivonogov S. et al. (2017) Environ­mental dynamics of the Baraba forest-steppe (Siberia) over the last 8000 years and their impact on the types of economic life of the population. Quat. Sci. Rev. Vol. 163. P. 152–161. https://doi.org/10.1016/j.quascirev.2017.03.022

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».