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AnHoTanusa

B paziaudHBIX ONTHYECKHUX YCTPOUCTBAX YACTO IMPUMEHSIOT CJIOU C TOJIIIUHON, MHOTO MEHBIIEH JIIHbI
BOJIHBL. TakKue CjI0M MOTYT HCIIOJIB30BaThCA B KQ4eCTBE NIPOCBETIIAIOMNX IIJIEHOK, IIOTJIOTUTEJIEH, KaTalu-
3aTOPOB WU (DYHKITMOHAJIBHBIX MOKPBITHI. [l pacuéra OnTUYecKuX CHCTEM, COMEPKAIINX CBEPXTOHKUE
CJIOHM, BaXKHO PA3BUTh UX KOPPEKTHOE OMUCAHKE, BKJIIOYAIOIIee HEOOXOIUMbI MUHUMYM JIEKTPOIMHAMU-
YeCKUX napameTpos. MblI nipenjaraemM onucaHue IPOU3BOJIBHOIO HEOTHOPOIHOI'O CBEPXTOHKOI'O CJIOSI C
TIOMOIIBIO TIOBEPXHOCTHOM JIMIJIEKTPUIECKON TPOHUIIAEMOCTH K, He TpeOyrolnee 3HAHUS TOJIIITHHBI CJIOSI.
[Ipu sTOM MBI TOKA3BIBAEM, YTO K €CTh CKaJISAPHAs KOMILJIEKCHAS BEJIMYINHA, T.€. IIPEIJIOKEHHBII ITOIXO0,
He BKJIIOYAeT B ce0sl PACCMOTPEHNE aHU30TPOIHBIX CBOHCTB CJI0st. JlJIst IOATBEPKACHUS IIPEIJIO?KEHHOTO
MEeTO/Ia MBI IIPOBOINM OOPabOTKY M3MEPEHHBIX CIIEKTPOB JIMIICOMETPUN U MOKA3BIBAEM, UTO OMUCAHUE
CJI04 C IIOMOIIBIO K HE yBEeJINYNBaeT CyIIeCTBEHHO IIOI'PEIIHOCTh 10 CPABHEHUIO C OIIMCAHUEM 4depe3 OIJHO-
POJIHBII CJIOM KOHEYHO TOJIIIUHBI, HO [IPX 9TOM YMEHBIIAET YHCJIO [IapaMeTPOB MO/, Jesas eé bosee
ymobHoI 171 mpuMeHeHust. [loMuMo 9TOro, MbI HAXOIUM CBS3b MapaMeTpa K C MIHPOKO UCIOIb3yeMO mpu
OIMCAHUM TOHKHX CJIOEB BEJIMYMHOI — COIPOTHBJIEHUEM Ha KBaJIPAT.

KurouyeBbie ciioBa: CBEPXTOHKHE MJIEHKHU, FJIITUIICOMETPHsI, KOMILIEKCHBIN MOKAa3aTe/b TPETOMJICHUSI,
ONTUYECKNE KOHCTAHTBI
EDN YTQUYD

doi:10.24412/2949-0553-2024-513-04-13

1. BBenenune

OnHolt M3 BaXKHBIX 3aJla9 ONTUKKA TOHKHX IUICHOK SBJISETCA 3a7a9a ONPEICJICHUS UX ONTUICCKUX
xapakTepuctuk. OCHOBHOI ONTHYECKOH XapaKTePUCTUKON CIIY:KUT KOMILICKCHAs JUIeKTPUUecKas IPOHUTIAC-
MOCTb, KOTOPas B MaKPOCKOIIYECKOM IIPUOJIMZKEHIN OMUCLIBACT B3aMMOJIEHCTBHIE 3IeKTPOMATHUTHON BOJIHBL
¢ BemectBoM. C OIHOI CTOPOHBI, 3HAHUE KOMILJIEKCHOMN TU3JIEKTPUYIECKON IIPOHUIIAEMOCTH HUCIIOJIb3yeTC B
HCCJICIOBAHIN MAaTEPUAJIOB B TAKHX 00JIACTAX, KaK (POTOBOJIBTARKA, (POTOTIOMUHECICHIA B (PU3UKA TTOIYIIPO-
BomHUKOE [1,2]. C mpyTroif CTOPOHBI, ONTHYECKHE XaPAKTEPUCTUKHA TUIEHOK HEOOXOMUMBI I TPOEKTHPOBAHUS
Pa3IMYIHBIX yCTPOiCTB [3].

st onpesieieHnsT ONTUIECKUX XapPaKTEPUCTUK TOHKUX IJIEHOK IMMHUPOKO UCHOJIB3YeTCs CIIEKTPOCKOIIIe-
ckag ssmncomerpus [1,2,4-7]. B ommdune or MeTOZ0B, OCHOBAHHBIX HA U3MEPEHUU MOIIHOCTH CUIHAJIA, TAKUX
KaK CIIEKTPOCKOIHS TIPOITYCKAHNUS, OTPasKeHnsT u morsiomennus [8—10], B KOTOPBIX N3MepSIFOTCs aMILTATYTHBIE
KO3(DPUIUEHTBI, IJIJIUIICOMETPUS TAKXKE HU3MEPSIET PA3HOCTMD (Pa3 KOIPMUIIMEHTOB OTParKeHUsl JJIs JIBYX
HOJISIPU3AIHAIL, UTO JA8T JONOMHUTENbHY 0 nHGOopManuo 06 oobekTe [4]. TpauiuoHHbIH 2/UTHICOMETPIIECKIH
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aHaJIN3 [0JIPA3YMEBAET PACUET JLUIUIICOMETPUIECKUAX MAPAMETPOB 10, A B 3aBUCUMOCTHU OT JINIJIEKTPUIECKON
IIPOHUIIAEMOCTH U IIPUBEJIeHNEe ITUX [1apaMeTPOB B COOTBETCTBUE C KCIEPUMEHTAIBHBIMU JTAHHBIMH IIyTEM
eé Bapuarmu [5]. DTa mporeypa XOpoIno OTIaxkKeHa JJIsl PA3JINIHbIX JUIJIEKTPUIECKUX 1 MEeTAJINIECKUX
IUIEHOK JIOCTATOYHO OOJIBINON, CPABHUMON C JIJIMHON BOJIHBI TOJIIIAHBI.

OpHaKo JjIs CBEPXTOHKHUX ILIGHOK, T.€. TIJIEHOK TOJIIUHON MeHee 10 HM, ompejiesieHue aeKBATHBIX
3HAYEHWUH TOJIIUHBL M AUSJIEKTPUIECKON MTPOHUIIAEMOCTH 3aTpyAHUTENbHO [11-16]. D10 B mepsyo ouepens
CBSI3aHO C CUJILHON KOppeJsIueil MexK Iy STUMU JIBYMs BEJTUIUHAME, KOTOPbIE B CJIydae CBEPXTOHKUX IJIEHOK
U3MEHSIIOTCsT 06PATHO MPOIOPIMOHAIBHO IpyT apyry [11,12]. Kak npaBuiio, CBEPXTOHKHE CJION MOJIETUPYIOTCS
KaK HEKUE OJHOPOJHDIE CJIOK € TOJIIUHON, OpeIessieMoii ¢ MOMOIIbI0 MUHUMU3AIUuY HeBst3Ku [5,6,8-10,17,18].
OjHaKO BO MHOTHX CJIyYasiX CJION He sSIBJISIETCs CILIONIHBIM WJIN IIEPOXOBATOCTDH TOJJIOKKN CPABHUMA C
ero TosmuHON. Bo3uukaeT Bopoc o puU3nIecKOM CMBICIIE TOJIIUHBI TAKOrO cjiosi. Kpome Toro, MuUHUMYM
HEBSI3KN OOBIYHO OKa3bIBAETCS HEIOCTATOYHO PE3KUM, UTO MPUBOIUT K CYIIECTBEHHON OMMUOKe pU ompeie-
JIEHUM TOJIIUHBI ¢jiost. [loaToMy Tpebyercsi mHOe OlMCaHue CBEPXTOHKUX IIJIEHOK, HE MCIIOJIb3YIOIIEee ILJI0XO0
OIPEJIESIEHHBIN ITapaMeTp — TOJIIUHY IIJIEHKU.

B nammnoit pabore mpesioKeHo Takoe oImcanre. BBOINTCH NOBEPXHOCTHAS INJIEKTPUIECKAs IPOHU-
IA€MOCTD, TTO3BOJIAIONIASA XapaKTEePU30BATh B3aNMOJIEHCTBIE TIEHKN C U3JIYICHUEM JTI00O0H TTOISTPU3AITIN,
MAJIAIONTUM ITIOJT IPOU3BOJIBHBIM yIJIOM. [[pUMEHMMOCTD MOIX0/1a TPOBEPEHA CPABHEHUEM C SKCIIEPUMEHTAIb-
HBIME JaHHBIMA. [IpoBesieHo cpaBHEHNE CTAHIAPTHOTO OMUCAHUS CJI0OEM KOHECYHOU TOJIIUHBI C MPE/JIOXKEHHBIM
3/1€Ch IIOJIXOJIOM.

2. Onucanne CBEPXTOHKOI'O CJIOA T-ManI/II_laMI/I

B kadecTBe J1ocTaTOYHO OOINEH TOCTAHOBKHU 33/Ia9H PACCMOTPHUM ITPOXOXKJICHUE TIJIOCKON BOJTHBI Yepe3
HEOJIHOPO/IHDINA TOHKUI CJIOM, HAXOIAIUHACS MEK LY JIBYMsl JU3JIEKTPUKAMHU, 110, IPOU3BOJIbHBIM yryioM (puc. 1).
Hampasum och z TIepHEHINKYIAPHO CIIOI0, OCh T — MAPAJIEIBHO CJIOI0, TaK ITOOBI T2z OBLIa IJIOCKOCTHIO
aJIeHUS.

Z, Nm

Pucynok 1 — l'eomerpusi paccmMaTpuBaeMoil CHCTEMBI U CXEMATUIECKHI BUJI IIPOCTPAHCTBEHHON 3aBUCUMOCTH MHUMOMK

U JIeCTBUTE/IBHON YacTell JU3JIeKTPUIECKOi poHuaeMoctu. st s-monsipusanuu a1, by — KOMIIJIEKCHBIE aMILTUTY/ bl

JIEKTPUIECKOrO IIOJIsI BOJIH CJIEBA OT CJIOs, G2, bo — cupasa oT ciost. st p-monsipusamnuu a1, by — KOMILJIEKCHBIE
aMILTUTYIbl MATHUTHOTO TI0JIsI BOJIH CJIEBA OT CJIOSI, A2, be — CIIpaBa OT CJI0s

st pacyéra MHOTOCJIOMHBIX CUCTEM, KaK IPABUJIO, UCIOJb3yeTcst meron T-marpun [19,20]. Bun
T-MaTpUIHI 3aBUCAT OT IOJISIPU3AIAN, T.€. PA3JIUYIEH JJIsI S- U P-TIOJSIPU30BAHHBIX BOJH. PaccMoTpuMm 06a
BO3MOKHBIX BapUAHTA.

Hauném ¢ s-moasipu3anuu. Y pasHeHne ['eibMrosbia nmeer B

e
dz?

IIpu ycyioBum MaJioit TOJIUHBI CJI0sT OHO JIAET CJIEIYIONINEe TPAHUIHBIE YCIOBUI:

+ (k3e (2) — k2) E = 0. (1)

E(+0) = E(-0) (2)
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% (+0) — % (—0) + k2E (0) /sdz =0. 3)

Takum 06pas3oM, CIOH MOXKET ObITh OXapaKTepH30BaH 6e3pasmepHoti TOBEPXHOCTHON H3JIEKTPHYecKOi
IIPOHUIAEMOCTBIO Kk = ko [ edz.

Vpasuenus (2) u (3) upexacrapisior coboii IpaBUja CHIMBKU JJIsl S-IIOJISIPUBAIIH, KOTOPOE MOXKHO
HEpeNncaTh 9epe3 KOMILJIEKCHBIE aMILTHTYIbI 3JIEKTPUIECKOTO MOJIA BOJIH, PACIPOCTPAHAIONINXCS BIIPABO U
BJIEBO, CJIeBa OT cJiost (aq, b1) U crpaBa oT ciiost (ag, ba):

a1 + by = as + by, (4)
1ko (ag — bg) — ik (a1 — bl) + koK (Cl1 + by +as+ bg) /2 =0. (5)

Yro6bl cOCTaBUTH MATPUILy IIPOXOKICHUS Uepes3 CJIOH, 3aluilieM CUCTeMy YpPaBHEeHUil s as 1 bo:
as (Zkg + koli/2) + by (—ikz + k‘o/ﬁ/?) =ik (a1 — bl) — kok (Cll + bl) /2,

a1+b1 :a2+62.
ﬂeTepMHHaHT 9TOI CHUCTEMBIL:

det = (Zkg -+ koﬁ/?) — (—ikﬁz + kJoli/Z) = 2iko,

OTKyJla. HETPYIHO IMOJIYYHUTh:
as = [a1 (kl + ko + ikok) + b1 (—k’l + ko + ’L'k‘oﬁ)] / (2k2)
by = [a1 (—kl + ko — ikol@) + by (kl + ko — ikoﬁ)] / (ka)

CooTBeTcTByONMAsT MATPUIIA 38aETCsT BHIPAYKEHUEM:

1 ko + k1 +ikox ko — k1 4+ ikok

S()= 5

k’g — k’l — ikolﬁ kQ + kl - ikoli
Beezném obo3nadenue i agmurranca: Z; = k;/ko. Toraa:

1 ZQ+Zl+iI<L ZQ_Z:[""/L.K/

S(s)=—
225\ 7,— 7, —ix Zo+ 71 —ir

Paccymorpum Teneps p-nosisipu3anuio. /Iia neé ypasuenue ['eTbMrosibiia mMeeT BUT

d 1 dH o ki _
dze(z) dz +<k0 E(z)>H 0. (8)

IIepBoe rpaHnvIHOE YCIOBUE, CBI3aHHOE C HEMPEPBIBHOCTHIO TAHTEHITNAIBHON KOMIIOHEHTHI SJIEKTPHIECKOTO

1011, IMEET BHJL (6 (12) Cfg) (<) = <€ (12) cgj) (+0). (9)

BTOpOQ TPaHNYIHOE YCJIOBHE, OIINCBhIBAIONIECC CKAIOK MarHUTHOI'O IIOJIA, UMEE€T BU/L

+0 +0 +0

H(+0)—H(-0)= [ gy = [ 1dHoq, — (L) [ oqy,
—0 —0 —0
Takum obpazom,
k (1dH
H(+0)—H(-0)=— (== . 10
(o) -1 (-0 = = (1) (10)

3&M€TI/IM, qTo XapaKTepI/ICTI/IKOfI CJIOA KaK JId S-, TaK U JIJIA P-TIOJIAPpU3allun CJAYy2KUT BeJIMIUHA K.

ﬂﬂﬂ Pp-noJIdpu3anil yCJIOBHUE CHINBKU 3allUCBIBACTCA Y€pPE3 KOMIIJIEKCHBIEC aMIIJINTYJAbl MarHUTHOI'O
II0JIL BOJIH, PACIPOCTPAHSIONINXCS BIPABO U BJIEBO, CJieBa OT ¢iod (a, by) u cupasa or ciog (asz, by):

k1 k

Za (a1 —b1) = Z;z (a2 —b2), (11)
Kk |k ik
(az +by) = (a1 +b1) = 5 E—ll(al—bl)—&—g—;(ag—bg) : (12)
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st cocTaB/ieHnsT MATPUIILI IPOXOXKIEHUS YepPe3 CJIOH [IEPENUIeM CUCTEMY YPAaBHEHUN B BU/IE:

ag—bQZ%@Ll—bl), (13)
K Zkg K Zkg o K Zkl KR Zkl
“2(1%05)”2 ”zm)al(”zkoe)”l(lzkoal)' (14)

HerepmunanT cucrembl ypasaennii (13), (14) pasen 2, 0OTKya HETPYIHO TIOJYIUTh:

e1ko ko e1 e1ks ko €1

az = 4 [1+ - +ii’“] +5% [1— By —iﬁﬂ},

e1kz ko €1 e1ke ko €1

bgz%[l—%Jriﬁ}Jr%[H%—ﬁﬂ].

O6o3na4uB umIenancsl Z; = k;/kog;, 3amnmineM MaTpUILy IPOXOXKICHUA depe3 CJIOM:
i i 0<iy

1 ZQ -+ Zl —+ ’iliZ1Z2 ZQ — Zl — iHZ1Z2

A (15)
2 o — I+ 1ikZ1 Ly Lo+ 21 —ikZ1 2y

S (p)

Takum 00pa3oM, IPOIECChl OTPAKEHUS U MIPOILYCKAHNS BOJH OOEUX OJIAPU3AIUN MOTYT OBITH MOJTHOCTHIO
OIUCaHbI C IIOMOIIBIO TOBEPXHOCTHOH JIM3JIEKTPUYECKON ITPOHUIIAEMOCTH

K = ko /5dz. (16)

YHacro cBoiicTBa CBEPXTOHKHUX IIPOBOJAIIUX CJIOEB OIMCHLIBAIOTCHA C HCIIOJIL30BAHUEM TaKOI'O ITapaMeTpa, KaK
COIIPOTUBJIEHNE Ha KBaJIpaT:

R=1/(cd), (17)

rje d — TOMIUHA CJIost, 0 — 00bEMHAsT TPOBOJIMMOCTE, KOTOPas CBA3aHA ¢ MHAMOI 9aCThIO JU3JIEKTPHIECKOL
nponuriaemoctu €’ coornomenueM g’ = o /w, Te.

o= e w. (18)

3zeck ucnosnb3oBana 3anuck B cucreme CH, uTobbl conpornsienne usmepsitoch B equannax Om. Torma,
yunteiBasi Beipaxkenus (17) u (18), umeem R = 1/ (gpe”’wd) = 1/ (cepr’). Hockoabky 1/ (ceg) = Zy ectsb
MUMIEJTAHC BAKYYMa, HOJIYIAM COOTHOIICHHE

R=Zo/x". (19)

Takwmm 0O6pazoM, AeificTBUTEIbHOE 3HAYEHUE COTPOTUBIICHUS Ha KBAIPAT BBIPAXKAETCH YepPe3 MHUMYIO YaCTh
IIOBEPXHOCTHOIN NU3JIEKTPUIECKON ITPOHUIIAEMOCTH.

BameTnm, 9TO MaJIBIM IIAPAMETPOM B HAIIEM IOJXOJE ABJIeTCd BeJuduna kody/€, KOTopas CBI3aHa
C TIOBEPXHOCTHOM JM3JIEKTPUIECKON TPOHUIAEMOCTBIO cooTHOMmenueM kody/e = k/+/e. B wactHOoCTH, B
NIPUBEIEHHOM HUYKE PACIETe JJIs NI IueBoi TSHKY BemanHa kod\/e okaspiBaercst Menbme (.1, Torma kak
K TIPUHUMAET 3HAYUEHUS MOPSIKA €TUHUIIBI.

3. Bepudukanus mero/ia mocpeaCTBOM CPaBHEHUS C SKCHEPUMEHTAJIbHBIMU JIaH-
HBbIMU

Brina npoBesiena oreHKa IPUMEHUMOCTHU OIMCAHUS CBEPXTOHKUX CJIOEB IOBEPXHOCTHOMN JUIJIEKTPHU-
YECKOI MMPOHUIIAEMOCTBIO IMyTEM 00pabOTKU SKCIIEPUMEHTAIBHBIX JAHHBIX. J[IsT 9TOTO OBLIN U3TOTOBJIEHBI
00pa3Ibl CBEPXTOHKUX IIEHOK TAJLIAJH HA CTEKJISHHBIX IOI0KKAX METOJIOM 3JIEKTPOHHO-IyI€BOr0 HAITbI-
Jtenusi. JacTh 00pa3IoB noasepriiack orkury npu temmeparype 600 C.

Ilonywuennbie B 9KCIIEpUMEHTE JIaHHBIE ObLIH 00pabOTaHbI JABYMSI CIIOCOOAMU: C TTOMOIIBIO OTTMCAHUS
IJIEHKU TIAJLIQJIMS CJI0EM KOHEYHOU TOJIIMHBI U IIOBEPXHOCTHO JIM3/IEKTPUYECKON IIPOHUIIAEMOCTHIO.

3.1. O6paboTKa C MCIIOJb30BAHNEM ONMCAHMUSI CUCTEMbI CJI0€M KOHEYHOM TOJIIUHBI

OKCIepUMEHTAIbHBIE JTAHHBIE JIJIS 9UCJIEHHON 00pabOTKU OBLIN MOy YEHBI U3 JINIICOMETPUIECKUX
u3MepeHuii napamMerpos ¥, A (Jajee COBMECTHO IPUBEEHBI JIAHHbBIE s CJIOS AJUIAIIs C OTYKUIOM U 6e3
OT?KHTa). DJIIUICOMETPUsSI CHIMAJIACH IpU yriax najerus 45, 60 u 75 °.
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B xo0mme 06paboTKu IKCIIEpUMEHTAIbLHBIX JAHHBIX ObLIa MPON3BEIeHa MIHUMUBAIMSA (DYHKITUN HEBI3KH,
3aBHUCAIIECH OT PACYETHOIO JUIAICOMETPUIECKOTO IAPAMETPA Piheor = Tp/Ts, IPEICTABIIAIONIETO COBOM
OTHOIIIEHE KOMILIEKCHBIX aMILIUTY/L OTPAXKEHHBIX BOJIH $- U P-TIOJISIPU3AIMI: STOT NAPAMETD Piheor (A, 0, €, d)
3aBUCHUT OT JJIMHBI BOJTHBI T IAIONIEr0 U3JIyIeHUs A, YIJIa TaJeHus 0, Iu3IeKTPUIeCcKOl ITPOHUIIAEMOCTH € 1
TOJIIUHBI uccexyeMoro ciios d. Takum o6pa3oM, HEBsI3KA PABHA

f\e,d) = Z |ptheor(A, 0,6, d) — peap(A, 9)‘2- (20)
0
3IeCh pegp = tg exp (—iA).

B pesyabrare moTroueuHoOl MUHIMU3ANT (DYHKIIMA HEBA3KHU IO JINHAM BOJIH TIPH (DUKCHPOBAHHOMN
TosmuHe cosi (d = 7 HM) OblTa HallleHa JUCTIEPCUOHHAS 3aBUCUMOCTD £(\), IOCTABIISIONAST HEBI3KE MUHUMYM

(puc. 2).
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Pucynok 2 — 3aBUCHMOCTD JIeiCTBUTEIbHOI (JIeBbIH cTosGen) 1 MHUMOM (IIpaBblil cTOJI6EL) YacTeil AUIeKTPHYeCKOil
NPOHUIIAEMOCTH OT JJIMHBI BOJIHBL ToJIImHA CJ10s1 BeIOpaHa paBHOW d = 7 HM s najuiaaust 6e3 orykura (BepXHsisl
crpoka) u d = 0.3 HM It HaJIaUsl ¢ OT?KUATOM (HIDKHsISI CTPOKA), YTO COOTBETCTBYET MUHUMYMY HEBSI3KI

B npenpiaymux paccyrk/ieHusaxX Ipu MUHUMU3AUU MYHKIIAA HEBSI3KH TOJIIUHA CJIOS ObLiaa (DUKCH-
posana (d = 7 um). st HAXOXKIEHUS YK€ TOJIIUHBL CJIOs, MUHUMHU3UPYIOIIEHl HEBS3KY, HOCTPOUM HOBYIO
GYHKIMIO HEBSIZKY, 3aBUCSIIIYIO0 TOJBKO OT TOJIUHBL. [[Jist 3TOr0 Oy/1eM MUHMMU3NPOBATH 3HAYEHIE HEBSI3KH
110 € U CYMMHPOBATh II0 BCEM JJINHAM BOJIH:

F(d)=>" min f(\,e, d) (21)

OxkasaJ10ch, UTO MOJIyYeHHAs] CyMMapHas BemanHa (21) nMeeT MEHAMYM IIPU HEKOTOPOM 3HAYEHHH TOJIIIUHBL
caiost (puc. 3).

U3 nosnyuennoit 3aBucumoctu € () upu pukcupoBanHoM napamerpe d = 7 HM ObUIM PACCUUTAHDI
JUTAIICOMETPUYECKHE TTapaMeTpbl 1) U A, KOTOpble HAXOMAATCS B XOPOIIEM COOTBETCTBUU C HCXOIHBIMHU
9KCIIEPHMEHTABHBIMY JAHHBIME (pucC. 4).

3.2. O6paboTKa C MCIOJb30BAHNEM IMOBEPXHOCTHOM AUIJIEKTPUIECKON IIPOHUIIAEMOCTH

Jlaytee ObLIa TPOM3BEIEHA YNC/IEHHAS 00pabOTKa TeX YKe JAHHBIX C ITOMOIHIO0 OMUCAHUS CBEPXTOHKOIO
CJI0s1 TIOBEPXHOCTHOM JMIJIEKTPUIECKON TPOHUIIAEMOCTBIO K. 3aMETUM, YTO PACIETHBIN SJUIAIICOMETPUICCKUI
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Pucynok 3 — 3aBucuMocTh HEBSI3KM, CYMMUPOBAHHON IO PA3JIMYHBIM 3HAYEHUSM JIJTMHBI BOJIHBI, OT TOJIIIMHBI A~
IMEBOTO CJIos (3e/IéHbIe KPUBbIE) U He 3aBUCAINEE OT TOJNIMHBI 3HAUYCHUE HEBI3KH, PACCIUTAHHON Yepe3 mapamerp
TOHKOTO CJI0s1 (KpaCHBIE TOPU30HTAJIbHbBIE JIMHUM) &) Il IaJIafus 6e3 oTKura, 6) Jist HajuIaus ¢ OT?KUIOM
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Pucynok 4 — 3HaueHHsI 3JJIMIICOMETPUYECKUX apaMeTpoB ¢ (JeBblii crosben) u A (npaBblil cTosber), HalileHHbIE
TeopeTuvecku (KPUBBIE) M IOJIyYeHHbIe SKCIEPUMEHTAIBHO (TOYKH), JJIsl PA3HBIX yIVIOB HajeHus (IOKa3aHBI [[BETOM):
JUIs TTAJLIa s 6e3 oTkura (BEpXHsAsl CTPOKA) M I TAJUIQIUs ¢ OT2KUTOM (HUZKHsIS CTPOKA)
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Pucynok 6 — 3Ha9eHns 3/UIMIICOMETPAYECKUX TapaMeTpoB ¢ (JeBblii crosben) n A (npasblit crosber), HafiieHHbIE
TeopeTnvecky (KpUBBIE) W [IOJIyYeHHbIE SKCIIEPUMEHTAIBHO (TOYKH), /I PA3HBIX yIVIOB IajeHus ([OKa3aHbI [BETOM):
JUst nasuiaausi 6e3 orykura (BepXHsisl CTPOKa) U IAJIIAJUS] C OT’KUIOM (HUXKHsISI CTPOKA)
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AapaMeTp MPU TAKOM TIOJIXO0/Ie 3aBUCHUT OT JIJTUHBI BOJHBI TIAJAIONIET0 U3JIyIeHUsT A, YIUIa NajieHns 6 u 3Hadenust
HOBEPXHOCTHOM JIM3JIEKTPHYECKON [IPOHUIIAEMOCTH K: Piheor (A, 0, k). IIpu aT0M IIapaMerp p, Kak u GyHKIUs
HEBS3KH, HE 3aBUCHUT OT TOJIIUHBI CJIO:

f()‘7 '%) = Z |pth€0r(>‘v 0, ’i) - pemp(Av 0)|2 (22)
(4

B pesysnbrare nmorovueunoit MuHMMu3anuu (GpyHKIUN HEBs3KWA IIPU KaXKJO#l JJIMHE BOJIHBI ObLIa HaiigeHa
JIUCIIEPCUOHHAs 3aBUCUMOCTD K(\), JocTaBiisomas HeBaske MuauMyM (puc. 5). V13 nosydensoil 3apucuMoctu
K(A) OBLIM paccYnuTaHbl JUIUIICOMETPUYECKUE HIapaMeTphl ¥ U A, KOTOPbIe TaK:Ke HAXOJATCS B XOPOIIEeM
COOTBETCTBUM C MAPAMETPAMU, HAMJIEHHBIMU SKCIEPUMEHTAIBHO (puc. 6).

CyMMI/IpOBaHHaH II0 JJIMHaM BOJIH HEBA3Ka

F= Zmﬁin F\K), (23)

Hal/leHHad IIPU ONMCAHUM 3JIEKTPOJUHAMUYECKNX CBOMCTB TOHKOI'O CJIOS IIOCPEJICTBOM IlapameTpa K, He
3aBUCHAT OT TOJIIUHBI cJjios. st ymoberBa cpaBHEHUS C IPEILLIVIIAME Pe3yJIbTaTaMU BEJMYHHA ITOH
CYMMapHOI HEBA3KHM OTMeYeHa Ha PUC. 3.

MO»XXHO 3aMETUTH, UYTO ONUCAHUE, UCIOIL3YIONIEe TapaMeTpP TOHKOIO CJIOS K, TaéT HECKOJBKO OOJIBIIYIO
HOTPEIIHOCTD 110 CPABHEHUIO CO CTAHIAPTHLIM onucanueM (paszest 3.1), 0JHAKO 9TO KOMIEHCUPYETCs IPOCTOTOI
HCIIO/Ib30BAHUS JAHHOTO MTO/IXO/IA, & TAKXKe OTCYTCTBUEM B HEM M30OBITOYHBIX IIAPAMETPOB.

4. 3akJ/ao4dyeHue

Boi1 npeutozken KavueCcTBEHHO HOBBIHM ITOIXO/] K OIMCAHUIO JIEKTPOMATHUTHBIX CBOWCTB CBEPXTOHKUX
CJI0€B, OCHOBAHHBIN Ha WCIOJIH30BAHUN [TOBEPXHOCTHOMN MUIJIEKTPUIECKON TPOHUIIAEMOCTH BMECTO 00bEMHOIA.
OcCHOBHOE TIPEMMYIIIECTBO JIAHHOTO METOJa COCTOUT B TOM, YTO OH HE TpeOyeT ydIéTa TaKOro TPYIHO MHTEPIIPe-
THPYEMOTO ITapaMeTpa, KakK TOJIIAHA CBEPXTOHKOIO CJIOsl, U, KaK CJieJIcTBHe, 6ojiee yI00eH JIjisl IPUMEHEHUsI
Ha mpakTuke. Bojiee TOro, OTCyTCTBHE JIMITHUX IAPAMETPOB CHUXKAET CKJIOHHOCTH METOJA K «IIepeo0ydeHUIO>.
[IpumeHMOCTD JAHHOTO METOJA IIPOJIEMOHCTPUPOBAHA Ha, pUMepe 00pabOTKH SJITUIICOMETPUIECKHUX JTAHHBIX
JIJIsT CBEPXTOHKUX IMMAJUIAUEBhIX INIEHOK Kak ¢ orkurom pu Ttemmeparype 600 °C, tak u 6e3 orkura. B obomux
CJIy9astX MOJIy9IeHO XOPOIiee COBIIAIEHIE 3HAYCHUH SJIUIICOMETPIUIECKHAX TapaMeTpoB 1) 1 A, MOy IYeHHbIX U3
9KCIIEPUMEHTA U HANJEHHBIX TEOPETUYIECKH IIPU IIOMONM MUHUMEI3AIU GyHKInN HeBsa3ku. Hecmorpsa Ha TO,
YTO KJIACCUYECKHIA ITO/IX0J] K OIUCAHUIO CBONCTB CBEPXTOHKHUX CJIOEB JAET MEHBIIYI0 abCOJIIOTHYIO OIUOKY IIpH
OTIPEJIEJIEHNHU JLIUIICOMETPUIECKUX [TAPAMETPOB 110 CPABHEHUIO C TIOAXOO0M, IIPEJJIOYKEHHBIM B HAIlel CTaTbe,
pocToTa U (prusndecKass 0O0CHOBAHHOCTD IMTOCJIEIHErO JIAI0T OCHOBAHUE II0JIAraTh, YTO OH MMEET OOJIBITHe
MIEPCIEKTUBBI [IJIsi IMUPOKOIO ITPAKTHIECKOrO IIPUMEHEHNUS.
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Abstract

Slabs of width much smaller than the wavelength are of high importance in many areas
of electrodynamics. Such slabs are widely used as antireflection films, absorbers, catalysts
and functional coatings. For treating optical systems involving ultrathin films, it is crucial
to propose their proper description considering only necessary parameters. We provide
a theoretical characterization of an arbitrary inhomogeneous ultrathin slab using surface
permittivity s, which does not require knowledge of the slab thickness. Moreover, we show
that k is a scalar complex value, i.e. the proposed approach does not include consideration
of the anisotropic properties of the slab. We process experimentally measured ellipsometry
spectra to confirm the reliability of proposed method. We also show that the description of
the slab using x does not significantly increase the discrepancy comparing to the description
through a homogeneous layer of finite thickness, at the same time reducing the number of
model parameters making it more convenient to use. In addition, we find a relation between
the parameter x and the resistance per square widely used in the description of thin conducting
layers.

Key words: ultrathin films, ellipsometry, complex refractive index, optical constants
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Abstract

We study the scattering of edge excitations of 2D topological insulator (TI) in the uniform external
magnetic field due to edge imperfections, ubiquitous in realistic 2D TIs. Our previous study shows the
possible existence of oscillations of reflection amplitude in a weak magnetic field. In this paper, we
address yet another general class of edge deformation profiles and also discover quantum oscillations
of the scattering coefficient in one more general situation of low momentum carriers. The semiclassical
Pokrovsky-Khalatnikov approach is used to obtain reflection coefficient with pre-exponential accuracy.

Kurouesnie ciioBa: Topological Insulators, semiclassical scattering

EDN JFUKPW

doi:10.24412/2949-0553-2024-513-14-24

1. Introduction

Topological insulators (TIs) are novel materials that cannot be continuously converted into semiconductors
or conventional insulators. They are distinguished by gapless edge or surface states and a complete insulating
gap in the bulk. Time reversal (TR) symmetry protects the edge (in 2D TIs) or surface (in 3D TIs) states
from elastic scattering. Error-tolerant quantum computing [1,2] and low-power circuits [3] are two potential
uses for TI.

The features of TIs have piqued the interest of the scientific community due to experimental observations
of surface states [4] in BisSes crystals and transport by edge states in HgTe quantum wells (QW) [5]. The
edge states are either 2D states on the boundaries of 3D TI (as in the case of BisSes [6]) or 1D states on the
boundaries of 2D TI (e.g., HgTe quamtum well). With the exception of HgTe [7], 2D and 3D TI samples are
typically comprised of distinct compounds. Other realizations of 1D topologically protected states are found
on step edges [8,9] and on the edges between 3D T1I surfaces [10].

The most striking feature of edge states in 2D TT is that, as a result of spin-momentum locking, the
scattering event—which, in the case of a 2D TI edge, is always a back-scattering inevitably involves the
quasiparticle’s spin flipping. Consequently, the elastic scattering of the edge states is prohibited in the absence
of magnetic impurities or other TR - violating contributions. This is the well-known manifestation of TR -
symmetry in these kinds of systems [11]. Another important peculiarity of TT compounds is the pronounced
spin-orbit interaction (SOI), [12,13].

In paper [14], we introduced a model edge Hamiltonian describing the influence of SOI on edge
imperfections. The edge imperfection is controlled by the deformation angle profile (see Fig. 1(a)). The elastic
scattering becomes possible in the presence of the uniform magnetic field orthogonal to the edge. This model
predicts an interesting effect. At not very strong magnetic fields the reflection coefficient exhibits pronounced
oscillations as a function of magnetic field. In this paper we expand our study and discover new type of
quantum oscillations of the reflection coeflicient for another general type of potentials at Zeeman energies
close to the energy of quasiparticles. We also extend the previous study on the deformation potential of yet
another analytical structure. As usual, for the smooth deformation profiles the poweful Pokrovsky-Khalatnikov
method [15] is used to obtain the analytic reflection amplitude with pre-exponential accuracy.

* ABTOp, OTBETCTBEHHBIN 3a nepenucky: Ya. I. Rodionov, yaroslav.rodionov@gmail.com
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1

Puc. 1: A schematic illustration of a geometric imperfection on the edge of a 2D topological insulator sample

The paper is organized as follows. Section 1 is dedicated to the initial model and main approximations
of the problem. Section 2 introduces the principle points of semiclassical Pokrovsky-Khalatnikov procedure.
Section 3 deals with its application to the an important class of scattering potentials for slow moving edge
excitations. Section 4 generalizes the previous treatment of the same problem to the wider class of potentials.
Section 5 discusses the exact solution of the magnetic-field-free problem and presents the perturbation (in
magnetic field) theory, as well as the matching of perturbative and semiclassical limit. We summarize the
results in Section 6.

1 The model

The Hamiltonian of a 2D TI for the edge excitations has the following form [16]:

H = Hy+ H,,, Ho=vpopsdy, He =aFxp-V. (1)

Here, Hj is the effective Hamiltonian of edge states moving along x-axis (y=0) and & = (04, 0y, 0,) are Pauli
matrices in the spin 1/2 basis and vgg is a bare Fermi velocity.

The spin-orbital interaction Hamiltonian Hy, is derived in paper [17] where a 2D electron gas was
addressed; p is electron’s momentum, v is a unit normal to the surface of the TI (or to an interface in a
heterostructure), and « is Rashba parameter. The latter depends on the external electric field (the gate
voltage) [12,13] as well as the material. The former causes the splitting in energy bands due to electron’s spin
(Rashba splitting), which is pronounced in energy band structure of TI materials [13,18].

It is crucial to note here how the normal vector’s v direction should be fixed. Essentially, the right
direction may be inferred from the original TI Hamiltonian, which we won’t show here. Nevertheless, we rely
on article [18], which demonstrates that a TT’s Fermi velocity increases as Rashba’s coefficient « decreases.
The orientation shown in Fig. 1(a) corresponds to the correct direction of v, as we will see below.

Let us consider a deformation at the edge, as depicted in Fig. 1(a). The tangent profile of the sample
edge is bent in yz plane and determined by the function ¢(z). This deformation leads to a transformed
spin-orbit interaction

Hso = _aﬁz&y + ﬁ(ﬂ?), [j(.’l}) = %[ﬁm‘?(@ + ¢($)ﬁm]05 (2)

for smooth and shallow defects (¢(x) < 1). To preserve the hermicity of the initial SOI Hamiltonian (1) we
introduced the anti commutator (due to the z-coordinate dependence of the normal vector v). The first term
in (2), —ap,0, is a simple renormalization of the Fermi velocity, as we see from the initial Hamiltonian (1).
The latter term in (2) is supposed to be treated as an elastic potential profile of the problem. In what follows,
it would be convenient to incorporate the parameter « in the profile deformation function: ¢ = a¢.

The potential profile function U in (2) alone will not cause backscattering of the edge states, since U
does not break TR - symmetry. However, that is not the case in the presence of the uniform magnetic field,
since the latter does break the TR - symmetry. Therefore, we apply magnetic field in the vertical direction
(z-axis) (i.e. orthogonal to the plane of the TI sample). The suitable gauge of vector-potential is as follows:
A= (Hy,0,0). We note here, that y - coordinate remains constant in our case y = const/. Therefore, it can
be safely put equal to zero (alternatively, for constant y the vector potential can be removed from Dirac’s
equation via elementary gauge transformation). Thus, the only change of the Hamiltonian brought by the
magnetic field is the addition of a Zeeman term:

H'P(2) = vppyoy, + po, + U(z). (3)
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Here, vp = vpg — « is a renormalized Fermi velocity and p = ppgH, g is the edge electron’s g-factor [19]. We
consider the application of the transverse magnetic field only. As shown in [20], the in-plane magnetic field
can be eliminated by a gauge transformation of the electron field operators.

As a result, we end up solving the scattering problem for the following equation:
|vrpao, + o + U(@)] v(a) = eth(a) (1)

As one readily sees, even in the absence of deformation potential lA](x) the Zeeman term po, leads to a gap
in the spectrum of edge state of the width u. Therefore, the unbound states always obey the condition:

e > U. (5)

2  Methods

The Dirac equation (4) comprises two first order differential equations on the pair ¢ = (¢1, 13). The
most convenient approach to its analysis surprisingly happens to be the reduction of system (4) to a 2nd
order differential equation on a single function vy :

1
22 (<p2—|—1)041//1’+2ih[h2 (@24—1) o +pa (2,u—3ih<p’)]wi + 5055(0[ — 2ihg’) + dehPpp” |1 =0,  (6)

_ 20 (P +1) Y] — inpB(2)
B a(x) '

Here a(x) = 2(u+¢) — ihy', B(x) =2(p —¢€) + ihy'.

The derivation of (6) is straightforward and presented in [14]. Due to its complexity, differential
equation (6) cannot be solved exactly. We are going to approach it from two different limits:
(i) semiclassical approximation, corresponding to the smooth deformation ¢(z) of the edge;
(ii) perturbation theory in magnetic field strength (Zeeman energy) u. For the wide class of potentials we are
going to show how these two approaches match.

P2 (7)

2.1 Semiclassical approximation

First, we need to determine the small parameter of the problem. Physically speaking, semiclassical
treatment corresponds to the case of smooth (on the scale of de Broglie wavelength) deformation potential
(z). The characteristic scale at which the potential changes is denoted as ag. The smoothness of the potential
then means:

A
aon gap

I
F <1 (semiclassical approximation) (8)

The semiclassical scattering in the problem is structured in a way that, as we will see in the study that follows,
the semiclassical momentum never vanishes on the real axis in view of condition (5), rendering the scattering
an over-barrier event. Therefore, Pokrovsky-Khalatnikov [15] (P-Kh) method seems to be the most adequate
approach to the task. For convenience, we use i = vy = 1 units system throughout the rest of the paper,
restoring them when needed.

2.2 Pokrovsky-Khalatnikov approach

The concept of the method can be condensed to the following key steps (see also the work by M.
Berry [21]):

(i) Perform the analytical continuation of the semiclassical solution into the complex plane along a so
called anti-Stokes line, Im f;ﬂ k(z) dz = 0 where k(z) is the semiclassical momentum and zy is the so called
turning point in the complex plane.

(ii) Construct the exact solution of the Schrodinger equation around the turning point zg, when the
differential equation substantially simplifies due to the Taylor-expansion of momentum k(z).

(iii) Determine the exact solution’s asymptotics on the anti-Stokes lines that extend from the turning
point to the left and right.
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(iv) Presuming that there is a non-empty intersection of the range of existance of the asymptotics of
exact and semiclassical solutions (the striped region in Fig. 1(b)) match the semiclassical and exact solutions
in the mentioned range on anti-Stokes lines.

(v) Build an analytic continuation from the anti-Stokes line running to —oo on the real axis 1(z) — ().

We are going to implement the outlined program step by step explaining all the nuances in the rest of
the paper.

2.3 Semiclassical solution
Let us make the exponential substitute ¢» — €*5/" for the wave function and employ the standard

semiclassical expansion in the powers of i adapted to the equation (6):

Y= (i;) ;12 =exp (Z;S;O +1iS1,2 + ) : )

In the zeroth order in & (i.e. discarding all terms with derivatives of ¢ in Eq. 6) we obtain the following
expression for Sy [14]:

So(z) = /qi(x')dx', (10)

_Wpip PYI)
= = 1) — p? 11
=50 P e2(p? +1) — p?, (11)

where ¢4 is interpreted as semiclassical momentum. The regular branch of p is chosen in such a way that
p — /€2 — 2. Then, retaining the next terms of order i (S7 2 in the substitute (9)), and plugging it

r—+00
back in (6) we obtain the pre-exponential semiclassical terms for the wave function :

Y1,+(z) = 51,ﬂ:(flf)€%fqi Wty = \/m
g (12)

_ . EpTFDP
o+ (x) = Zwl’iE-Hf

The square roots entering the definition of &; + are assumed to be positive at  — 4-00. To clear out which of
the solutions corresponds to the right (left) moving carriers we need semiclassical currents:

2
je = vloyy = %(e — ), g = F2Ae—p). (13)

— 00

In the last equation in (13) we take into account that deformation function ¢(z) — 0 at x — oo

2.4 Transformation from Dirac to Schrédinger equation.

To make the analogy between Dirac equation Eq. 6 and Schrédinger equation explicit, we get rid of
the first derivative in (6) via a standard substitute [22]. Therefore, the equation is transformed according to:

V() + n(z) (x) + s(x)Y(z) =0 =

0" (z) + n*(2)0(x) = 0 (Schrédinger equation) (14)
0(x) = e} ] 108y (g), (15)
7(x) = 5(a) — 1 () — 7). (16)

The expression for 72(x) is quite cumbersome. Nevertheless, its is important, since it plays the role of the
semiclassical momentum in the problem. Therefore, it is instructive to write down 7(z) and 72(z) discarding
all the derivatives of the potential field ¢(x) (zeroth semiclassical approximation) as well as semiclassical
solution. This way the connection with the initial semiclassical relations (10), (11) becomes transparent:

_ 2 pp(x) I s Ve
(z) = EW’ 7T2($) = W (17)

0. (z) = ;(x) exp (iz’ / jw(t)dt). (18)

In the last equation point xg needs to be chosen on the real axis. This way both functions 4+ have the same
modulus. Apart from this x( is quite arbitrary and is picked from convenience considerations.
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3 The reflection coefficient for the slow edge excitations

Now we would like to address quite a striking case of the over-barrier scattering in TI insulator.
Suppose, the energy of the edge excitations is close to the Zeeman gap pu, so that the condition

le —pl < e (19)

is satisfied. It corresponds to the case of carriers with small momenta vpp < p. This ought to be a realistic
situation at temperatures much lower than Zeeman energy p. As we are going to see, this situation also leads
to a specific analytic structure of the momentum 7(z). Indeed, let us rewrite momentum (z), defined in

Eq. 17 in a slightly different form:
e/or(a) +
- = (20)

T z) =
©*(2) +1

The last formula, in view of condition (19), shows that function 7(z) has two coalescent branch points
positioned near the complex root of ¢(zp) = 0.

The semiclassical condition breaks down near these two coalescent branch points and we can employ
step 2 from P-Kh method. We expand the semiclassical momentum near the point zg, as follows:

2
72(20 +¢) = —52% + 2dee, (21)

where ( = z — zy. Here, parameter a can be strictly speaking, complex. However, its modulus sets the
characteristic scale of change of the potential. Therefore, one may assume that |a| ~ ag, where ag is the scale

of the deformation introduced in Eq. (8). This way, the Dirac equation (6) is turned into parabolic cylinder
equation:

2 > ¥1(¢) = 0. (22)

The anti-Stokes directions are given by the equation

¢ 2
Im/ m(t)dt = ERec—zo = arg(zﬁ—&-arga—&—wn, n € 7. (23)
0 ¢ 2a 4

—o0 2

As a result, we choose the anti-Stokes lines with angles —7/4+arga/2 and —37/4+arga/2. Substituting (21)
into semiclassical expressions (10), (12) we obtain the semiclassical solution in the vicinity of point zq

_a
2 1

2 31 is2 _imy _im y—1 2 is2 | imy  im Y
be(s) = VB[ 2T E R o0 T, ve ) = VE[ ] R o

EAE imy _im _ y—1 y—1
Yo i (5) = V2 [fs ] R e I
(24)

Now, to proceed further we need to find exact solutions of Eq. (22)

3.1 Exact solution at the double branch point. Match with semiclassical wave functions.

Introducing variable change: ( = y/a/ ese~""/% we obtain the differential equation
U4 (5% = 2idea/e)yy = 0. (25)

The standard change: ¥ (s) = e~/ 2y turns it into an equation with linear coefficients:

0
X" —2isxy' —ivyx, y=1+ ZEa;E. (26)
Laplace procedure yields:
: 1 im 9 1/4 e’YTl
)= A [eTApE gy Ao e FO ()T 27
x(e) C/ V2 a/  (y-1)i7d 0
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where contour C' is chosen in such a way that function V = est+it*/447/2 assumes identical values on its end
points. The choice of the contour and the branch cut is dictated by the asymptotic behavior. Using saddle
point approximation we obtain for the asymtptics on the right anti-Stokes line:

PR . '
— e g e L ) 712 (28)
arg (=—3mi/4 2 sV/2

= \/7(23) l,

arg (=—im/4

Matching exact solutions with semiclassical solutions (24) we obtain:

- (2 1=
Pe(s)=e® <Z¢< + +2SIDL; \/(2173 {7261} 7/1<,_> . (29)

which gives us the reflection coefficient in the form

2ade
2 made 1 ade )\ |?| ade |For Ve (e? +1)
R = =|cos? I(-+— —=I 30
T o8 ( hvp ) (2 + vph> ehvp eXp ( m/ e?+1 ’ (30)

where we restored vy and Planck’s constant 7 from dimensional considerations. Here, point xy as was
mentioend before, should be chosen somewhere on the real axis (a particular choice of xy doesn’t affect the
imaginary part of the integral). Eq. (30) is one of the main results of the paper. Due to the presence of the
pre-exponential factor, the reflection coefficient R reveals quantum oscillations as a function of the energy of
the incident particle e for general type of analytic potentials. It is important to stress, that result (30) cannot
be continued to the case of small or vanishing magnetic fields y — 0, since de = ¢ — p < ¢ and € > fpr

4 Potential with a second-order pole

In this part of the paper we would like to expand the treatment in paper [14] on the case of a yet
another type of deformation profile. In paper [14] only the potentials with the first order pole in the complex
plane were considered. These are the so-called Lorentzian-type potentials. Now we would like to expand
this treatment and consider the case of the potential which has the second-order pole on the complex plane.
Eventually, our method paves the way for the treatment of the potential possessing the pole of any order in
the complex plane. However, as the order of the pole gets higher, the respective analytic expressions become
quite cumbersome. Therefore, we restrict our attention to the doable case of the second order pole. As in [14]
we perform the Laurent expansion near the pole:

As before, the complex parameter a sets the scale of the deformation profile: |a| ~ ag. Next, according to
step 2 of the P-Kh method, we proceed with the semiclassical study of the respective Dirac equation in the
vicinity of the pole z,.

4.1 The semiclassical solution in the vicinity of the pole

The equation for anti-Stokes lines is easily obtained in the vicinity of point z, along the lines outlined
in step 2 of P-Kh procedure. With the help of potential expansion (31) we obtain:

¢ ; ¢ R 3 2
Im W(t) dt = Im l—f/ tzdt‘| = —5325 =0 = argc — arg a — E 4+ @, n e Z. (32)
0 0

Here, as before ( = z — z,. We see that anti-Stokes lines form 7/6 directions (up to the rotation by arga)
with the real axis. Finally, we are ready to write down the semiclassical solutions:

e+ pu( sty 8y am C ile—m sy in
Vipz =~ gVe— pe 3 R 2(e —p)Ze s e (33)

4.2 The exact solution in the vicinity of the pole. Match with semiclassical solutions.

The principal and most nontrivial part of the solution is to obtain the exact solution near the pole. The
differential equation in the vicinity of the pole has a quite terrifying appearance. However, due to the presence
of initial external initial TR -symmetry, the educated substitutes drastically simplify it. The semiclassical
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solution of the differential equation looks as follows: ¥5(¢) =  exp[(e — 1)¢3/(3a?)]. As a result, the substitute
¥1(¢) = ¥s(Q)¥(C) leads to a much simpler equation

a®¢y"(¢) [o® = Clu+ )] = ¢'(¢) [a" = 26> (2u + 3€) + 2¢%(u + €)] = 0. (34)

Eq. (34) is integrated in quadratures:

Ble—p 3 3
D (C) = Ce o ﬂ {QF (; 2; > 3(5+1)F(2’2€L2€>}+CQ]’ (35)

where I'(a, 2) = [°t*"te~"dt is the incomplete T' - function.

Now we need to find the asymptotics and match it with semiclassical solutions. The asymptotics read:

Sute
Sew 22393ey (Ce(p+e)) e sa2
- e —
Y1(C) oo cage’ s (ac)*/3 (36)
To the right of the pole we have the transmitted wave only, hence:
. 1 — 1
=0, ¢ =—em/4 £k (37)

22/345/3 9 92/331/3"

Once we switch from the anti-Stokes line ¢ — |¢]e™*™/® (transmitted wave) to the anti-Stokes line ¢ —
|Cle=57/6 (incident wave) we analytically continue I'(a,z). We see that the argument: 2¢%¢/(3a?) rotates
by —27 as ¢ changes from —7/6 + (2/3)arga to —57/6 + (2/3)arga and the corresponding change in the
asymptotics of the incomplete I' - function:

r (a, ye_5’”/2> = e70™/2ya=LieW 4 T(a)e™ ™20 sin ma. (38)

This way, we find the following asymptotics of the solution:

; ] 2 o= 22/331/3 3 ..
P(() =a [QBM/B@F (3> zesad — 37 (e +p)z e_£§23] (39)

/32173

Next, the solution can be matched with the semiclassical waves to get:

1/6
DO =<+ (F()ng ) (40)

left

As a result, we match the solution with the semiclassical waves (33) to obtain the reflection coefficient:

VTR ) "

xo SD +1

Eq. (41) complements result (30) for the case of not very slow edge excitations: € ~ p. However, the value of
result (41) lies in the fact, that it can be continued to the case of a zero magnetic field, where, according to

TR-symmetry the reflection coefficient must strictly vanish. And indeed, we see, that at R —>0 0. To check
n—

the consistency of the result we complement our study with the perturbation theory in  in what follows. Our
goal is to match result (41) with the perturbative calculation for the case of smooth deformation.

5 Perturbation theory in u.

We need to analyze the scattering problem in the weak magnetic field limit y < €, restricting ourselves
to the first Born approximation. TR-symmetry of the problem gives us a nice present here. Surprisingly, we
have found an exact solution of the Dirac equation (4) in the absence of the magnetic field u = 0 for any
deformation potential [14]. Expectedly, due to TR-symmetry, the exact solution is reflectionless. Now we are
going to see, how even the slightest magnetic field affects the analytical structure of the solution and leads to
non-zero reflection in the problem.
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5.1 Exact solution

Let us rewrite the initial Hamiltonian in the absence of magnetic field:

Oz

H = vpoyp+ (9P + Pp) (42)
It happens one can contrive a unitary transformation
U(x) =U@)d(x), U(x) = explif(z)o,], tan26(z) = ¢ ' (2),, (43)
turning Hamiltonian (42) to much simpler form [14]:
-1
A = S (0h + po)o, (34)

where v(x) = vp\/@?(z) + 1. Hamiltonian (44) has the following exact eigenfunctions (see the derivation

in [14]):
0= = (). ww = (0), (45)

xT xT
/ dz’ / dxz’

v(x! 2( ! 1 ’
J (z") J V(e +
And one clearly sees that the forward moving exact solution in (45) remains such in the entire real axis and
we have the reflectionless situation expected from the TR symmetry of the system.

(46)

5.2 Perturbation theory in pu.
To build the perturbation theory, we need the Green’s function for the transformed Hamiltonian (44) [14]:

; ie|T(2)—7(2")]
Gle;z,2') = —= (1 + sign[r(z) — 7(2')]o.) —, (47)
2 v(z)o(z’)
where sign (z) is a sign function. Then we consider the perturbation created by magnetic field; in the initial
basis it is V' = po,. Under the unitary transformation U it becomes:

V@) = iy @ ol (48)

Then, the reflected wave is given by the perturbation theory:

oo

Pref(T) = — / G(e;x,x’)‘?(m’)%(m')dm'. (49)

Plugging the transformed scattering potential (48), the Green’s function (47) into (49), we obtain
(after some simple algebra) the reflected wave in the first order perturbation theory:
621'87—(1') 0’ 50
ref = TYPe(T), T = PR YR
v =@, r=n [ o (50)

—00

where r is the final reflection amplitude in Born approximation. A shrewd reader is going to immediately
notice that the integral defining r is divergent. It can be easily argued that, one should understand this
integral as a taken along the inclined directions —oo — 00e’™ % and co — ooe’ where § is an arbitrarily
small positive angle.

Now we need to match the perturbative result (50) with the semiclassical relation (41). To this end we
perform integration in the integral entering (50) in the saddle point approximation. Indeed, the semiclassical
case corresponds to the large parameter e7(x) in the exponent of the integrand in (50). The saddle point
analysis of the integral in question pleasantly resembles the semiclassical treatment undertaken in the previous
section. The saddle of the 7(z) is the pole of the function ¢(z). Since the pole of the second order, so is the
saddle.

Zp +¢ dt <3

5 \/W =7(2p) + =5 + ... (51)

T(zp + Q) = 7(2p) + 3ia?
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We have thee steepest descent lines sprawling from the saddle at directions ¢ = 7/3 4 (2/3)arga + 27n/3.
Choosing the direction n = —1 and n = 1 we obtain the two I'-function-type integrals. As a result, the saddle
point approximation yields:

T 2ier(a) 1T (2 2/3 , 9\ 5/3
/eidx':—— 23) (;’) (“) e~/ exp [2ieT(zp)] - (52)

14 p2(z') at €

— 00

which up to a phase coincides with the reflection amplitude in (40). As a result, the reflection coefficient
presented by perturbation theory (50) coincides exactly for the case of smooth potential with the weak field
limit p < € of the semiclassical expression (41) which presents a pleasant twofold corroboration of our study.

Reflection coefficients (30) and (41) are the main results of our paper. The former predict the emergence
of quantum oscillations of the 1D Landauer conductance of the slow edge excitations at uniform external
magnetic field for the deformation profile of a general type.

6 Discussion

To conclude, we studied analytically the scattering of the quasiparticles on edge imperfections of 2D
TT in the uniform magnetic field. We used two mutually complementing approaches: Pokrovsky-Khalatnikov
method and perturbation theory in magnetic field. We obtained the reflection coefficients for two important
physical situations and made sure the results obtained match in the shared domain of validity of both
treatments. The study reveals the nontrivial interconnection between TR symmetry and the analytical
properties of the reflection amplitude.

Our results may also be checked experimentally. The perturbation theory results are obviously valid
for sufficiently small external magnetic field. The semiclassical parameter A/ag = fivp/(cap) is easy to
estimate from typical experimental data. For 2D TI formed in gated HgTe quantum well, the Rahsba splitting
parameter a ~ 10 eVA, [23], the Fermi velocity vp ~ 2 eVA, [24]. We see that Rashba parameter « is
approximately of the same order as Fermi velocity o ~ vg. Therefore, for the typical experiment, the 1um size
edge defect exceeds by far the quasiparticle wave length A ~ 100A, [25] which justifies the use of semiclassical
approximation. Next, we would like to estimate the magnetic field at which the quantum oscillations predicted
by the expression for the reflection coefficient (30) can be observed. The g - factor for helical edge states
under the transverse magnetic field was measured in [26]: g & 50. Therefore, assuming the typical deformation
scale as ~ 1 pm, the needed magnetic field is H ~ vph/(gupag) ~ 0.07 T.
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PACCEAHUNE HA JTEOOPMINPOBAHHOM KPAE B TOITIOJIOTMYECKNUX
N30JIATOPAX B OJITHOPO/ITHOM MATTHUTHOM IIOJIE

Pomnonos S1.11.1*

! MacturyT TeopeTnuecKoil W NPUKJIaIHOM 31ekTpomuHaMukn, Mocksa, 125412, Poccus
* yaroslav.rodionov@gmail.com

Annoranusa

Uccmenyercst paccestHme KpaeBbIX BO30YKIEHHWII Ha KpPaeBBIX AedeKTax JIBYMEPHOTO
Tonosorundeckoro usosaropa (TU) B ompopogHoil BHemHeM MarHuTHOe mose. Kpasesble
nedekTsl moBceMecTHO BeTpedatorcss B peasmcrudHbix 2D TU. Hamum npenpiagymme uccite-
JOBaHUsI MOKA3BIBAIOT BO3MOYXKHOCTH CYIECTBOBAHUS KOJIEOAHUI aAMILIUTYIbI OTPAYKEHWS
B cJlabOM MAarHUTHOM I10Jie. B 3Toif craThbe Mbl pacCMaTpUBaEeM ellle OJWH OOIIMil KJiacc
mpoduieil KpaeBoit gedopMalum, a TakK»Ke MPeCKa3bIBAEM HOBBbIE KBAHTOBBIE OCIIUJLISIIIAN
K03 DUIMEHTa PACCEsTHUS B €€ OHOM OOIell CUTYyAIIN HOCUTe el MaJIoro nMmysbca. s
MOJIy9eHUs KO3 PUITMEHTa OTPAXKEHUsI C MPEIIKCIOHEHIINAIBHON TOYHOCTHIO UCIIOIb3YeTC s
KBasuKaccuueckuit moaxos Ilokposckoro-XasaTrHUKOBA.

Kimouesnie ciosa: Tomosorngeckue HU30JIATOPBI, KBa3UKJIaCCUIECKOE pacCcedaHunue
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Abstract

We investigate metal-dielectric metasurfaces composed from periodic metal nanostrips deposited on
a dielectric substrate. The metasurface can be termed as plasmon zebra (PZ). The metasurface operates
as a set of open plasmon resonators. The theory of plasmon, excited in the open, interconnect resonators,
is developed. The large local electromagnetic field is predicted for optical frequencies when plasmon is
exited. The reflectance of PZ is much enhanced at the frequency of plasmon resonance and PZ ascribe
the color corresponding to the resonance frequency. We propose PZ as simplest but easy tuning plasmon
painting.

Keywords: plasmon resonance, nanopaint, SERS
EDN VAUPVG

doi:10.24412/2949-0553-2024-513-25-36

1. Introduction

Optical surface waves, known as surface plasmons (SP), can get excited in metal films. The metal
permittivity €, = €},, + £/, is mainly negative for good optical metals like silver or gold where €/, < 0 and
el & |em|. SP, which is electromagnetic field bounded with electric charges, can propagate in the metal
nanofilms that thickness 2h is much less than the wavelength A. For example, the symmetric SP, where
surface charges have the same signs on both film sides, propagates in a metal nanofilm. The wavevector ¢
of the symmetric SP is proportional to ¢ ~ —e4/(emh), recall that e/, < 0. The esteem is obtained for the
thin film (d < A) by considering the film as an inductive plane. Mean free-path estimates as I, = 1/Sg ~
hlem|? /(eql,) > h, so that it is much larger than the film thickness. The incident light cannot excite SP
in the unbound, infinite metal plane since SP velocity is always less than the speed of light. Yet, SP can be
easily excited in any finite peace of the of the metal film since SP transfers momentum to the environment
by reflecting from the edges. The propagating SP reflects from the edges of the metal film and forms a
standing wave. That is a finite patch of the metal film operates as an open plasmon resonator in optical and
infrared frequency bands. For example, the simple system of the parallel metal strips operates as a set of the
interconnecting plasmon resonators. This plasmon zebra (PZ) system is shown in Fig. 1. SP being excited
in x direction, which is perpendicular to the PZ strips, reflects from edges of a strip. It can also jump from
one strip to the neighboring strips. That is SP propagates in the transversal direction (z direction in Fig. 1).
The phase speed of the transversal SP depends on the PZ parameters. Therefore its wavevector ¢ can be
fitted to an arbitrary value by varying the width, thickness of the metal strips as well as by change the gap
between strips. The reflectance has maximum(s) at the resonance(s). Being illuminate by natural light PZ
ascribe the color in reflection corresponding to the frequency of the plasmon resonance.

To simplify the consideration the quasistatic approximation is used that conveys the main features of
the plasmon resonance. We assume that the PZ period is less than A/2. Then the incident light does not
diffract at the PZ but just produces reflected and transmitted EM waves. The evanescent waves, localized
around the subwavelength PZ, are mainly due to excitation SP in the PZ. EM properties can be discussed
in terms of the effective permittivity €., i.e., the film conductance Y., and effective permeability p.. Note

*Amrop, orBeTcTBeHHBI 3a nepenucky: Caperaes Anapeit Kapiosud, sarychev andrey@yahoo.com
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Puc. 1: Metal plasmon zebra (PZ) composed from parallel metal strips (gray color) with thickness 2h and
width 2d that are separated by interstrip gates with width 2g; period of PZ equals to 2(d+g). Light is incident
from above at angle 6 to the normal. The metal strips are staffed between substrate with permittivity €4
and upper dielectric protective layer with permittivity e..

the permeability . almost equal to one for the thin PZ. Optical reflectance from PZ achieves maximum
when SP is excited in PZ strips. The natural light is composed from EM waves of various wavelengths. The
light reflected from PZ is composed mainly from the wavelengths corresponding to the SP resonances. That
is metal subwavelength PZ has a color that depends, in general, on the angle of the incidence and light
polarization. By fitting the parameters of PZ can be used as a plasmon painting with any wanted color and
almost zero thickness. The glass coloring by plasmon nanoparticles was known from the time of the ancient
Egypt (see, e.g., Lycurgus Cup in the British museum [1]). One can see the plasmon paintings does not fade for
many centuries. Plasmon structures are considered as main ingredient responsible for the beautiful European
cathedral-stained glass windows [2]. Recent nanotechnology pave the way for mass production of the light,
flexible, nanothin and almost eternal plasmon paintings. Moreover, plasmon paintings are environmentally
friendly since they do not contains dies, which are very often rather toxic [3]. Various technologies were studied
[4-6] including electron beam lithography [7—15] ion milling, [8,16-18] and nanoimprint lithography [7]. In
recent work of Shalaev’s group [19] a sustainable, lithography-free process is demonstrated for generating
non fading plasmon colors with a prototype device that produces a wide range of vivid colors. The extended
color palette is obtained through photo-modification by the heating of the localized SP under femtosecond
laser illumination [20]. The proposed printing approach can be extended to other applications including laser
marking, anti-counterfeiting, and chrome-encryption.

In this paper we present analytical theory for propagating or localized SP in PZ, which is the simplest
possible periodic plasmon metasurface consisting of the parallel metal nanostrips. The explicit equations are
derived for the reflectance as well as for the local EM field. We use the GOL approximation [21,22] considering
EM field around PZ in self consistent way. SP propagating in the lateral directions along the metasurface are
incorporated in GOL approach. The developed theory gives the value of the resonance local electric field that
can be enhanced by orders on magnitude compared to the impinged light. The reflectance, local field and
SERS were found in the system of silicone bars covered by the silver film shown in Fig. 2 [23-26]. Since the
resonance fields are much enhanced in the silver bars of this PZ, it is used as SERS substrate. The smooth
spatial structure of the film is convenient for the analyte deposition and can be tuned for effective adsorbing
and sensing microscopic objects like protein molecules or viruses [27-29].
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EHT = 10.00 k¥

Puc. 2: Scanning electron microscopy image of the silver zebra on silicone substrate (reprint from [24]).

2. Quasistatic Theory of Plasmon Resonance

We consider the interaction of a nanothin-thin metal film with thickness 2h with an incident light.
As it was mentioned above the metal permittivity e,, = €/, + £/ is mainly negative, namely, ¢, < 0 and
gl & |em|. The film is deposited on the dielectric substrate with the permittivity €4 and it is covered with
a protective dielectric layer .. The thickness 2h of the metal film is chosen in such a way that the incident
light infiltrate in the substrate. The propagation of SP in the metal film that thickness 2h is less than the
skin layer can be considered in the quasistatic approximation. In this case the electric field E of SP can be
find in terns of the electric potential ¢ so that F = —V . The electric potential is a solution of the Laplace
equation Ay = 0.

We consider the metal film placed at the plane z = 0. SP propagates over the film in = direction with
wavevector ¢. The electric field is invariant under translation in y direction (see Fig. 1). SP field exponentially
decays away from PZ. Electric potential ¢, above the film (z < —h) equals to p. = Aexp(igx) exp(gz), the
potential below film (z > h) equals to ¢4 = Bexp(iqr) exp(—qz). Inside the metal film (—h < z < h ) the
solution of the Laplace equation has the form ¢,, = exp(iqx)[C] exp(gz) + C2 exp(—qz)]. To find the electric
field F in SP that is the coefficients A, B, Cy, and Cs we use the boundary conditions

Ee,ac = Em,xa geEe,z = 5mEm,z; z=—h, (1)

Ed,a: = Em,z7 ngd,z = ngm,z; z = h7 (2)

where E., E,,, and E; are the electric fields in the protective layer, metal film, and dielectric substrate
correspondingly. Equations (1) and (2) have nontrivial solution if and only if the corresponding determinant
Det equals to zero. Thus the SP wavevector ¢ is obtained from the equation Det = 0

_ 1 (ce —€m) (€a —&m)
=g log (e +em)(€atem)]’ 3)

Recall the optical metal permittivity is mainly negative Re,, < 0. In the limit |e,,| > €., £4, which is typical
for the visible and infrared range, the SP wavevector approximates as

. Ee t+ €4
2hem,

q = (4)
, In any case we suppose that the film thickness 2A is much smaller than the SP wavelength that is hq < 1.
Then the electric field inside the metal film F,, does not depend on the normal coordinate ”z” and the
electric current J(x) is function of ”2”, which is a solution of the wave equation for SP, namely,

d*J(x)

727 +¢*J(z) = ¢*SE.(2), (5)

where the external field E. is added to the r.h.s. The term X in r.h.s. of Eq. (5) is in general a linear operator
which gives spatial harmonics of the electric nearfield when the external field E. is an arbitrary function
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of the coordinate ”z”. To simplify the consideration we take into account the field modulation due to the
o . WEm,
SP excitation only and approximate as ¥ ~ 2ho,,, where o, — @

is the metal conductivity. When the

™
spatial scale of the external field E.(z) is much larger than the plasmon wavelength )\, = 27/q the current
J(x) = 2ho, Eo(2). That is we assume that the film current follows the external field and this approach can
be called one mode approximation.

The plane EM wave excites SP in the metal nanostrip that have finite width 2d and thickness 2h < 2d.
Suppose that the strip is illuminated by the light which is incident under the angel € in respect to the normal
to the x, y plane of the film (see Fig. 1). First we consider the plane of incidence, which is perpendicular to the
metal strips, that is the wave vector k = n.w/c, (ne = y/.) has x and z components k = k {sin, 0, — cos 0}.
In P polarized light the incident electric field has component Ey , = Ejcosf and the external electric field
in Eq. (5) takes the following form E. = Ej , exp(ik,x), where Ey ., and k, are the projections of the field
Ey and the wave vector k = n.w/c of the impingement light. Assuming that |e,,| > e.,eq4 we apply zero
boundary condition J(£d) = 0 at edges of a strip (see discussion in the next section) and Eq. (5) gives

J(x) = Ji(z) + J2(z), (6)
where the current

2hqom,
Jl(l‘) = EeEe, 26 = m, (7)
does not depend on the edge boundary conditions, and the current

e~ [ sind (ky + q) — e " sind (ky — q)]
sin 2dgq

Jo(x) = —E.X, (8)

is the current due to the reflection of the plasmon from edges of the strip.

The PS wavevector ¢ = q1 + 7¢2 is in general a complex value, where the imaginary part ¢, estimates
from Eq. (3) as
er (ca+ee) ()2 — eqee) 9
o EF D) () ©)

m

q2 =

It is easy to check that g2/q1 ~ €ll,/|em| < 1. We obtain from Eq. (8) “odd” plasmon resonances where
qg()d)d = (7/2)m, m =1,3,5... and “even” resonances where qgev)d = (7/2)m, m = 2,4,6.... The electric
field Epax in even and odd SP resonance estimates as

2imq3 mmk
E% = _Fy,———t _ cos(qiz) cos ( x) 10
max 0, Tmaqs (kE — q%) (ql ) 2Q1 ( )
wd B _ R 2imq} in (quz) si Tmk, 1)
= ————— —sin(qiz) sin
max 0,z Tmgs (kg _ q%) q1 2q1

correspondingly. Since we consider narrow strips where d < A, i.e., ¢ > k, the odd resonances estimate as
|EcY /Eo x| ~ |ki/g2| and it is much less than the even resonances |ES. /Eo | ~ q1/q2 ~ |en,/em| > 1 .
When the light is impinged normal to the thin metal strip, i.e., k; = 0 the even resonances get excited only.
In S polarization when the electric field is perpendicular to the plane of incidence the external electric field
{0, Ey, 0} is aligned with the strip direction. Then the current J, = ¥.E, flows along continuous nanothin
metal strip.

For example, we consider the strip embedded in the dielectric host with permittivity €. = 4. The

condition for the first resonance gd = 7/2 can be rewritten by substituting the wavevector ¢ from Eq. (4),

.. _Emh 2 . . . .
obtaining Ld = —. This result close to the well known quasistatic result for the plasmon resonance in the
Ed ™

prolate metal 2D ellipsoid (semi-axes h < d ) which resonates when im—g =1 (see, e.g., [30]).
d
The similar consideration holds when {y, z} is the plane of incidence. That is EM wave is impinged
along the strip. In this case S polarized EM wave excites SP since the S electric field is directed across
the strip whereas the resonance conditions remains the same. Thus we obtain that the natural light, which
contains EM waves with various polarization, excites SP in a metal strip for any direction of the incidence.
Above equations are derived for a single metal strip.

Consider now PZ composed from the periodic system of the parallel metal nanostrips. It is still
assumed that the strip thickness 2h is much less than the skin depth so the electric field does not depend
on the coordinate z in the metal strip. Recall the width of a strip equals 2d, the gap between neighboring
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strips equals to 2g (see schematic Fig. 3), so the PZ period equals to 2d 4+ 2g < A\/2. Conductance of PZ is
anisotropic: The conductance in y direction equals to 3,, = X.p, where p = d/(d + g) is the part of the
z = 0 interface, which is covered by the metal strips, the surface conductance X, is given by Eq. (6).

To find the conductance ¥, across the strips it is necessary to find the electric current when the
transverse external field E, is applied. The current inside the strip is still given by Eq. (6). However, the
current J(z) does not now vanish at the edges of the strip since two neighboring strips have the capacity
connection. The interstrip capacitance connects neighboring metal strips that results in collective response of

—_||_+d_||___||_

-d-2g  -d d+2g

Puc. 3: Lumped circuit of plasmon zebra with period 2d + 2g; electric current J(z) flows in metal nanostrips
that are connected via interstrip capacitance C.

PZ to the external field. The interstrip capacitance C' shown in Fig. 3 we approximate as capacitance between
two thin strips made of perfectly conducting metal. Two perfectly conducting strips are placed at interface
z = 0 between upper half space z > 0 with permittivity €. and lower half -space z < 0 with permittivity 4.
First perfect strip has width 2d and it is centered at the origin of the coordinate. Second perfectly conducting
also has width 2d and its center is at the coordinate x = 2(d + g). The gap between right and left edges of
the strips equal 2¢g. To find the capacitance C' we suppose left strip has the electric charge @) and right strip
has charge —@Q. Then the electric field is elementary found from complex variable theory. We introduce the
complex variable u = x —d — g + iz, then the complex electric field Ey(u) = Eg,(u) + iEgy(u) equals to

E()g d(2d + g)
V(@ —u?)((2d +g)? —u?)’

where E,, and E,, take real values that are proportional to the charge ). The complex electric field E, is
an analytical function. Therefore their components Ey, (u) and Eqy,(u) are solutions of the Laplace equation.
The branch of the analytical function Eg(u) is chosen so that E,(0) = Ey4. The electric field E, has only

” L0

z” component on the surface of the metal plates. Therefore, the electric charge equals to

. 9 4d(d + g)> (Sd)
= i« FE,(u)du = FEy,agK | ———= | ~ Ey ,aglog | — 13
@i=ia [ Byudn= ook ()~ By tox (13)

Ey(u) = Ega(u) — iBy.(u) = (12)

_ EeTtEd

for the electric field E, given by Eq.(12), where a = . The last esteem holds for the narrow slit

between the strips when g < d. The electric charge Q2 on the right strip has the opposite sign Q2 = — Q1.

The electric field E; has  component only in the gap —g < u < g between the metal plates. The
electric field E; at the edge of the strip is estimated assuming that the strip thickness 2h is much smaller than
the gap width, i.e., g > h. Strictly speaking the field given by Eq. (12) goes to infinity exactly at the edges
where u = £g. Since a metal strip has the finite thickness 2h we substitute the coordinate u; o = £(g — 2h)
in Eq. (12) obtaining

(2d+g) /g

Ero= Ey(u12) = FEyg— ot 9 [ 14
12 = Eg(u1,2) 0.0 Tar oV h (14)

where the condition g > h is taken into account. The current flows out of the edge us equals to Jo = (o, +
4 The ratio of the derivative of the charge with respect to time —dQ/dt = iwQ1

N \/di—&—g\/> (4dd+g) (15)

(2d + g) (2d + g)2

It is a dimensionless quantity, which depends on the geometry of the system, namely, the strip width 2d,
strip thickness 2h and the gap 2g between the neighboring trips.

o4)hEs, where 0 g = —i

to the current J equals to

On the other hand the electric charge @ at the edge of the strip (see Fig. 3) estimates from the charge
I dJ(z)

conservation law as

»—q» Where the current J(z) is given by Eq.(5), [ is the characteristic

iw
length for the charge distribution. The capacity connection between the metal strips in PZ is important
at the plasmon resonances when the number of maxima of the current |J(z)| equals to the order m of the
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resonance. Then the length ! could be estimated as [ ~ d/m, where m = 1,2,3,... is the order of the
resonance. We obtain the following boundary condition for the electric current at the strip edges.
d dJ(x) d dJ(z)
J(x) dr |,_, J(x) dx |,__, o 5, (16)

where v is a numerical coefficient. The value of v cam be obtained by comparison with computer simulation.
Bellow, to simplify consideration, we put v = 1. The important parameter 5 approximates as 8 ~ 2mw+/d/h
for the isolated strips when the gap g > d. It is independent on the gap value g and much larger than
one B > 1, which corresponds to the boundary conditions J(£d) = 0 used in the previous section. In the

opposite case of a narrow slit between the strips ¢ < d the boundary parameter 8 ~ Qﬁ log <8d> so it is
again much larger than one since we consider narrow strips which thikness h < g, d. !

The plasmon current is obtained from the solution of Eq. (5) with Eq. (16) boundary conditions
A(g)e'®® — A(—gq)e™"®

J(x) = Ji(z)+ Ja(x), Jo(z)=—E.X. 3Dy (@) Daa) , (17)
Alq) = (B*—d’qk,)sin(d (ks + q)) + Bd (ks + q) cos (d (kz + q)) , (18)
Di(q) = PBeos(dg) — dgsin(dg), D2(q) = Bsin(dq) + dq cos(dg), (19)

where the current J; (z) and the conductance ¥, are given by Eq. (7). The plasmon current J(z) has evident
resonance when the projection of the wavevector k, of the incident light equals to the plasmon wavevector
Rq = k. It could happen in so-called Kretschmann geometry where the upper half space (z < 0) permittivity
€. is larger than the lower half-space permittivity e, > €4 and also the angle of incidence 6 (see Fig. 1) is

w
large enough so that k, = sin —,/e. = q. Then EM wave, which is incident from above, excites plasmon in
c

a metal film.

Yet, we consider in this paper the EM that propagating in all the space. The resonance can happen
for any k., i.e., for any incident wave when the discriminant Dj(q)D2(q) in Eq. (17) vanishes. Consider the
plasmon electric field of the first order resonance where m = 1. To simplify the consideration we assume that
k, = 0 that is the light is incident normal to the PZ plane, i.e. z = 0 plane. Then the dimensionless plasmon
electric field |E(z)|* = |J(z)/(E.2ho.,)|” reaches its maximum at the centers of PZ strips. Substituting the
plasmon current from Eq. (17) we obtain

2

BO) = ]1 e

The real part of the discriminant D; vanishes exactly at the resonance when D1 (¢ = ¢,) =0, ¢, = gr1 + igr2
. Expanding D;(g,) in series of g2 we obtain the maximum resonance field

64
d2q2, (B + B+ d2g3,)” sin (dg,1)°
The wavelength A, of the plasmon is on the order of the width 2dof a strip, that is dg.1 ~ d/X ~ 1 in the

resonance. On the other hand the parameter § given by Eq. (16) is proportional to 5 ~ 1/4/g/h and it could
be rather large for a thin metal film, where the thickness h is much smaller than the inter strip gap g > h.
The dispersion equation D1(gr1) = 0 is expanded in reciprocal powers of 8, which gives

1_6_1+6_2)a (22)

(20)

(21)

2
~
| maw' —

™
qr1 = ﬁ (
and the maximum field estimates as Enax ~ 1/(dgy2)?. Substituting here imaginary part g.o from Eq. (9)
we obtain the following

2 (02 2\2 (2 _2)2 14 2
‘Ema;c|22 4h (Em Ed) (Em 56) Ngm <d(2h)> , (23)

€202 (g + )2 (€2 —eqee) 2 €2 €d+€e

where the last esteem holds for red and infrared spectral range where the metal permittivity is typically
large |e;n| > 1. For example, the silver permittivity estimates as 4, ~ —30 + i0.38 [31], therefore, the
factor e/t /"2 > 106 is huge in Eq.(23). Note the electric field enhancement in metal nanoparticles is
typically restricted by the radiation loss that rapidly increases with the particle size. Yet, a radiation loss
is almost zero for the fully periodic PZ, the radiation loss happens due to the manufacturing imperfections
only. We speculate that the result for the huge resonance field enhancement obtained above in quasistatic
approximation holds up to diffraction limit. The electric field E,,., in PZ is shown in Fig.4. It can be
observed that local electric field can be enhanced in PZ for any part of visible spectrum.
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2d=180,100,60 nm; 2 h =10 nm

|Epax)[?

1000 -
500 -

A A, nm
400 500 600 0

Puc. 4: Electric field enhancement in PZ illuminate by light impinged normal to PZ plane; metal strip
thickness 2h = 10nm, interstrip gap 29 = 40nm, strip width 2d = 180, 100,60 nm (red, green, blue);
amplitude of incident light Ey = 1.

3. Reflectance and Color of Plasmon Zebra

It is save to suppose that even thin PZ effectively reflects the light, which wavelength correspond to
the plasmon resonance. That is the color of PZ corresponds to the resonance wavelength. The reflectance of
PZ is defined by its effective surface conductance X(¢)| which is anisotropic in this case X(¢f) = {5}
The effective surface conductance is obtained by average of the electric current over the PZ plane ¥, =
pfild J(z)/E(x)dz/2d, ¥, = pX., where p = d/(d + g) is the fraction of z = 0 plane, which is covered by
the metal strips. Integration of the electric current given by Eq. (17) gives the effective x conductance

sindk,  sindq (dk, sindk, — 8 cos dk,)

Ea) - Ee 5
P k. dqD1 (q)

(24)

which resonates as it is shown in Fig. 5. The PZ permittivity resonate when the discriminant D;(gq) ~ 0,
i.e., for the odd plasmon resonances. In this sense the even resonances (Dy(¢q) = 0) are so-called dark
resonances [32].

©
Sx

Q)

|“’Ag|

A, nm

Puc. 5: Ratio of real and imaginary parts of the effective zebra permittivity sge) = 5;(6) + isg(e) to silver
permittivity €44; red and dark red strip width 2d = 180nm, green and dark green 2d = 100 nm, blue and
dark blue 2d = 60 nm; metal strip thickness 2h = 10 nm, interstrip gap 2g = 40 nm.
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We consider here, for simplicity, the case when the natural light is incident normal to the plane of
PZ. The reflectance r of a thin metal film, which thickness is less than the skin depth, is defined by the
surface conductance (see, e.g., [33,34]) or effective surface permittivity e(¢/) = —i27%¢/hw. The effective
surface permittivity is anisotropic ¢ = {52, 55} for a PZ. Recall we consider PZ composed of parallel metal
strips, which are aligned with y axis as it is shown in Fig. 1. The reflectance r is obtained by matching
the incident EM wave in the upper half space, where the electric field E, ~ Ej [exp(ikcz) + 7 exp(—ik.z)]
and the transmitted wave in the lower half space E4 ~ Eot exp(ikqz), where ¢ is the transmittance of PZ;
wavevectors of the incident and transmittance waves equal to k., = nck and kg = ngk, where n, = /e, and
nqg = \/€4. That is we extrapolate EM field to PZ surface, i.e., to the plane 2 = —h (see Fig. 1). By the same
token we extrapolate farfield in the lower half space E4 ~ Egtexp(ikyz) to the lower PZ boundary z = h.
Among all EM spatial harmonics excited in PZ we take into account those that are due to the plasmon
resonance. The field of SP is added to the fields E, and E4. This approach is similar to GOL method [21,22]
and can be called one mode GOL approximation.

The vector of the electric field Ey = {Eo,, Eoy, Eoz, } is determined by the polarization of the incident
light. To find the reflectance r and transmittance ¢ of a thin film we equate the electric field of the incident
light, electric field in the film, and the field in the transmitted light in the middle of the film at the plane
z = 0. The reflectance r is defined by the polarization of the incident light when the direction of EM wave is
normal to the film. Then solution of the Maxwell equations and matching the magnetic fields at the interfaces
of the film gives

. Ne —Ng + Wy (si’y — ndne) (25)
oy ng +ne — Wy (ag,y + ndne) ’

where

W,y = itan (2hk\/25 ) /\/2% 4, (26)

2
where the effective surface permittivity 7 , = 1—7; {¥.,%,} is obtained from Eq. (24), wavevector k = w/c.
’ w

The reflectance of PZ is shown in Fig. 6. The maxima of the reflectance correspond to the maxima of the
effective PZ permittivity (Fig.5). Note the reflectance of PZ with the strip width of 200 nm has two maxima

R(2)
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0.8
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0.4

0.2

450 500 550 600

— A, nm
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350 400 650

Puc. 6: Reflectance of silver zebra with thickness 2h = 10 nm, interstrip gap 2g = 40nm, that is deposited
on glass substrate e, = 1, ¢4 = 2; red and dark-red are = and y reflectances of PZ with strip width
2d = 180 nm, green and dark-green are x and y reflectances with width 2d = 100 nm, blue and dark-blue
are x and y reflectances with width 2d = 60 nm; gray line is reflectance of bulk silver plate.

that correspond to the first m = 1, A ~ 650 nm and third m = 3, A\ >~ 370 nm plasmon resonances.

The reflectance of PZ is anisotropic as well as surface conductivity as it is shown in Figs.5 and
6. We consider the color of PZ when it is illuminated by the natural light, which is composed from EM
of various polarization. We assume that photons of different polarization are incoherent. Therefore, the

total reflection coefficient being averaged over the polarization equals to R(A) = (|r$ N+ |7“y()\)|2) /2.

We are interested in the PZ color, which is determined by behavior the reflection R(\) as function of the
wavelength. The coloring is well established problem discussed, for example, in the recent papers [19,35-38].
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Yet, everybody sees her /his own a color shadow. For qualitative consideration we adopt the simplest possible
approach. All visible spectrum is divided on three parts: red Ag1 < A < AR, green Ag2 < A < Ag1, and
blue Ap < A < Aga2, where Agp = 680 nm, Ag1 = 590 nm, Ag2 = 480 nm, and A = 390 nm. We calculate
the {R,G,B} color as R = W [ R(A)d\, G = Wa [ R(\)d), and B = W3 [ R(A) dA, where the
color weights Wy, Wy, and W3, are chosen to mimic real color. We consider here the silver PZ, then the color
weights {W1, W2, W3} = {0.80,0.83,0.85} are chosen in such a way that {R,G,B} color of the bulk silver,
calculated from the reflectance in Fig.6 has the silver color indeed as it is shown in Fig. 7. The silver PZ

RGB Plasmo

Puc. 7: Color of silver zebra with thickness 2h = 10 nm, interstrip gap 2g = 40 nm, that is deposited on glass
substrate e, = 1, ¢4 = 2; 1, 2, 3 — color of PZ with strip width 2d = 200 nm, 2d = 120 nm, and 2d = 80 nm,
4-bulk silver plate.

has various colors in Fig. 7 that depends of the parameters that can be easily changed in the process of the
manufacturing. Yet, thus obtained plasmon colors are not pure enough since the PZ reflectance has rather
wide maxima at resonance wavelength.

4. Conclusions

The simple analytical theory is presented for the plasmon resonances in the system of thin periodical
metal strips and patches. In particular plasmon resonance are analytically calculated for the system of parallel
metal strips we called plasmon zebra (PZ). The frequencies of the plasmon resonances correspond to the
maxima of PZ reflectance. Simple PZ with all the strips of the same width gives RGB colors. Combination
the metal strips of different parameters could produce the plasmon painting of arbitrary color.
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SEBPA-IIJTASMOHHBIE PESOHAHCHBI 1 HAHOKPACKA
A. K. Capsrues'*, A.B. Usanos', /1. Beprman?, P. ®an®, A.®. Cmbik?

I ®enepasbHOe TOCYIAPCTBEHHOE GIOMKETHOE YUIPEKIeHIe HAYKN VIHCTUTYT TeOpeTHIecKoil i
MIPUKJIATHOM 3/IeKTponHaMuKu Poccuiickoit akagemun nayk, Mocksa, Poccus
2 Tenb-ABuBCKUI yHEBepcHTET, 3pamis
3 Konnemx Hayk 06 okeane n mmxkeHepuw, Ilanxaiickuit Mopckoit yausepcuter, [lanxaii, Kurait
4 000 «[xeitmc Pusep Bpamua», Mocksa, Poccus
* sarychev_andrey@yahoo.com
AnHoTanus

MI)I uccienyeM MeTajlI-JUJICKTPUYIECKNEe METAIlOBEPXHOCTHU, COCTOAIMHne U3 IIepuo-
JAUYIECKUX MeTaJIJIMYECKUX HAHOIIOJIOCOK, HaHECEHHbIX Ha AUJIEKTPUYICCKYIO IIOJJIOXKKY.
MeTranoBepxHOCTh MOXKHO Ha3BaTh Iula3MoHHON 3e6poii (II13). MeranosepxHocTs paboraer
KaK HabOp OTKPBITHIX IJIA3MOHHBIX PEe30HATOpOB. Pazpaborana Teopus MIa3MOHA, BO30YK-
JaeMOT0 B OTKPBITBIX PE30HATOpPAaX, COEJIUHEHHBIX MeKIy coboit. Ilpemckazano 6oibImoe
JIOKaJIBHOE 3JICKTPOMAIrHUTHOE IIOJIE JJIsd OIITHUYIECKUX YacCTOT, COOTBETCTBYIOIIUX BO36y)K-
nennio mwia3mona. OTpaxKarespHas crtocobHOCTh 113 3HAUMTETBHO ycHIMBAeTCs Ha IACTOTE
IUIA3MOHHOIO pe3oHaHca, u [13 mpunuchBaioT 1BeT, COOTBETCTBY IO PE30HAHCHOI YacToTe.
Msr npegnaraem 113 kak npocreiinnyio, HO JIEFKO HaCTpanBaeMyIo IIJIA3MOHHYIO HAHOKPACKY.

KuaroueBbie ciioBa: 3e0pa-IIa3MOHHBIH DPE30HAHC, YCHJIEHWE 3JIEKTPOMATHUTHOTO TIOJIs,
HaHOKPAacCKa
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