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Abstract: Creation of biodegradable polymers is one of the most prospective trends aimed at solving problems of polymer 
waste accumulation and processing, and the development of effective oxo-additives for polyolefin raw materials.  
It is considered to be one of the most promising ways to ensure accelerated degradation of polymer waste in natural 
conditions. The present research work studies the effect of nanostructured iron oxide microspheres produced with 
ultrasonic aerosols pyrolysis on accelerated atmospheric aging of polyethylene. Two types of microspheres were used to 
modify polyethylene microspheres consisting of X-ray amorphous Fe2O3 (initial microspheres after synthesis) and 
microspheres, consisting of crystalline Fe2O3 (heat-treated). Samples of polyethylene modified with microspheres were 
aged by simulating cyclic climatic effects (temperature, UV, moisture). After the aging of polyethylene modified with 
microspheres, a higher degree of surface oxidation was discovered using the method of infrared spectroscopy. A strong 
surface erosion of polyethylene was observed with the addition of microspheres after aging at the same time, untreated 
polyethylene was preserved almost unchanged. The present study has shown that modification of polyethylene with iron 
oxide microspheres beyond the end of materials useful life provides its accelerated decomposition under the influence of 
the main components of atmospheric impact: light, temperature and humidity. At the same time, the complex of 
mechanical and technological properties of modified polyethylene remained at the acceptable level, which allows using the 
developed material for the production of packaging, agricultural and landscape films, which will decompose in natural 
conditions after the end of their lifetime. 
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Аннотация: Создание биоразлагаемых полимеров – одно из актуальных направлений в решении проблем 
накопления и переработки полимерных отходов. Разработка эффективных оксодобавок к полиолефиновому 
сырью рассматривается как один из наиболее перспективных способов обеспечения ускоренной деструкции 
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полимерных отходов в природных условиях. Исследовано влияние наноструктурированных микросфер оксида 
железа, полученных методом пиролиза ультразвуковых аэрозолей, на ускоренное атмосферное старение 
полиэтилена. Для модификации полиэтилена были использованы микросферы двух типов: первый тип на основе 
рентгеноаморфного Fe2O3 (исходные микросферы после синтеза), второй тип на основе кристаллического Fe2O3 
(термообработанные). Образцы полиэтилена, модифицированного микросферами, состаривали путем 
моделирования циклических климатических воздействий (температура, УФ, влажность). После ускоренного 
старения модифицированного микросферами полиэтилена методом инфракрасной спектроскопии обнаружена 
более высокая степень окисления поверхности. Показана сильная поверхностная эрозия полиэтилена  
с добавлением микросфер после старения, при этом необработанный полиэтилен сохранялся практически  
в неизменном виде. Представленное исследование показало, что модификация полиэтилена микросферами оксида 
железа после окончания срока службы материалов обеспечивает его ускоренное разложение под действием 
основных компонентов атмосферного воздействия: света, температуры и влажности. При модификации 
микросферами комплекс механических и технологических свойств полиэтилена остался на приемлемом уровне, 
что позволяет использовать разработанный материал для производства упаковочных, сельскохозяйственных  
и ландшафтных пленок, которые после окончания срока службы будут разлагаться в естественных условиях. 
 
Ключевые слова: композиты; микросферы; климатическое старение; рентгенофазовый анализ; инфракрасная 
спектроскопия; термогравиметрический анализ. 
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1. Introduction 
 

Over the past few decades, the demand for 
plastics has increased significantly due to their low 
cost, excellent durability and processability. 
According to The Economist, between 1950 and  
2015 about 8.3 billion tonnes of different types of 
plastics was produced worldwide. Currently, only 
9 % of plastic materials are recycled and 
approximately 12 % are incinerated, while 79 % are 
thrown away as garbage into the environment [1]. 
This fact creates problems of plastic waste 
accumulation, which causes enormous damage to 
various ecosystems. Plastic accumulation is caused 
by its inability to decompose in natural conditions 
due to the presence of antioxidants and stabilizers in 
its composition [2]. 

The use of degradable materials can be a 
solution to reduce the accumulation of waste in the 
environment. These materials can be divided into two 
groups: those that are inherently biodegradable, 
whose chemical structure allows direct action by 
biological enzymes (such as amylase and cellulase), 
and those that become biodegradable after one or 
more physical and/or chemical processes, such as 
hydrolysis, photolysis or pyrolysis [2]. The latter 
group includes polymeric materials containing 
prooxidants/degradants known as oxobiodegradable 
polymers. These materials require oxidative 
degradation under UV light and heat to reduce their 
molar mass and form groups that are more easily 
assimilated by microorganisms [3]. 

The development of materials that are able to 
decompose under the influence of environmental 
factors with the assistance of oxo-additives at the end 
of their lifetime is one of the promising industrial 
approaches to the problem of polymer waste 
accumulation in the environment. As usual, transition 
metal compounds: Fe, Mn, Co added in stearates 
form or other organic complexes are used as oxo-
additives whose function is to assist the degradation 
of the material [4, 5]. Inclusion of polar groups and 
reduction of molecular weight in polymer chains 
promotes interaction with microorganisms in the 
environment, turning them into biodegradable 
materials [3, 4]. 

The paper by Francisco J. Arráez and colleagues 
[5] considered the oxidation process of impact 
resistant polystyrene with the addition of 1.5 and  
3 wt. % oxidizable raw material d2w as a pro-
oxidant. The active components of this additive are 
Fe and Mn stearates (metal content (56.71 ± 0.41) 
and (6500 ± 200) ppm respectively). The authors 
showed that compositions with 1.5 % oxo-additive 
exhibited faster degradation than samples with 3 % 
oxo-additive at temperatures of 50 and 55  °C.  
A complete loss of mechanical properties of the pro-
oxidant samples was noted and the changes were 
faster with increasing temperature. 

The paper [3] investigated the effect of the pro-
oxidant additive PDQ-H containing manganese at a 
concentration of 0.8 wt. % on the accelerated 
degradation of linear low density polyethylene 
(LLDPE) and low density polyethylene (LDPE).  
It was found that for both accelerated degradation and 
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environmental degradation a complete loss of 
mechanical properties was obtained. Also, by FTIR 
spectroscopy it was found that due to the 
simultaneous presence of different degradation 
products containing carbonyl groups, the carbonyl 
band becomes wider with increasing degradation 
time, indicating a significant break in the polymer 
chains. 

The analysis of the literature data shows that 
a common problem of using oxo-additives is the 
partial degradation during processing because of 
elevated temperatures [6, 7]. Thermal stability of 
samples with oxo additives, which in most studies / 
papers [8–10] was evaluated by TGA, naturally 
decreased due to oxodegradation processes leading to 
the formation of low molecular weight impurities.  
In this regard, the search for new materials that can 
perform the role of oxo-additives is an important 
scientific direction. 

Not only the nature of the active metal and its 
compound, but also the dispersity and distribution of 
the additive as well as its morphology and specific 
surface area influence the effectiveness of oxo-
degrading additives. In this case, hollow and porous 
oxide and metal microspheres are considered as  
a functional additive to various polymeric materials, 
characterized by a high specific surface area, 
processability and ease of creating composites with  
a uniform distribution in a wide range of 
concentrations and imparting a variety of functional 
properties [5, 11–16]. The introduction of 
microspheres based on metals and their compositions 
used as oxo-additives can provide a similar effect and 
reduce the period of natural decomposition of 
polymer composites.  

In this regard, the purpose of this article is to 
investigate the effect of hollow iron oxide 
microspheres on the accelerated climatic aging 
processes and the basic mechanical properties of PE. 

 
2. Materials and Methods 

 
2.1. Sample production technology 

 

LDPE in granules (LB7500N LP408294, LG 
Chem, South Korea) was used as a tested polymer 
matrix material. 

Hollow iron oxide microspheres were obtained 
by ultrasonic spray pyrolysis at 900 °C. Fe(NO3)3-
9H2O (chemical grade, RusChem, Moscow, Russia) 
was used to prepare a 20 % aqueous solution of iron 
nitrate. The solution was prepared and filtered using  
a paper filter, and then poured into the tank of  
a domestic ultrasonic atomizer. The flow rate of the 

dispersed solution through the steel tube reactor was 
maintained using an air compressor. A continuous 
supply of aerosol was carried out until the precursor 
in the tank was finished. After completion of the 
process and cooling down the plant elements, a dark 
red powder was extracted from the filter.  

The resulting powder was divided into two equal 
parts for further removal of unreacted salt residues. 
The first part was placed in a muffle furnace for 
further afterburning of salts and recrystallization of 
microspheres. The second part of the powder was 
washed with distilled water; an ultrasonic 
homogenizer was used to better dissolve the iron 
nitrate in water. The resulting stable suspension was 
separated by centrifugation. Additionally, the powder 
was washed with acetone and air dried.  

The compositions were prepared by rolling on 
the laboratory rollers UBL-6175-BL (PRC).  
The compositions of the tested samples are presented 
in Table 1. 

The duration of mixing the composition was  
15 min at roller temperatures of 150  and 140 °C and 
the gap between the rolls of 0.5–1.0 mm. Having 
mixed the composition, it was cooled and crushed on 
a rotary knife mill “Vibrotehnik” (Russia). Then the 
sample of the composition was dried in a drying 
cabinet for 30 min at t = 90 °C and pressed on a hand 
press RPA-12 at 180 °C and 150 MPa to obtain 
homogeneous films of thickness 1.2 mm. The 
samples of LDPE composites containing 1.25, 2.5, 
5.0 wt. % of heat-treated and initial iron microspheres 
were prepared. 

 
2.2. Analytic methods 

 
The structure of microspheres and composite 

was studied by scanning electron microscope (SEM) 
Tescan Vega 3, TESCAN, Brno, Czech Republic 
with EDX analyzer. 

In this paper, the X-ray phase analysis (XRD) 
was performed on an ARL X'TRA diffractometer 
(Thermo Scientific, Switzerland) using CuKα 
radiation (λCuKα = 0.15412 nm) in the 2θ angle 
range (5–60 degrees). Bregg-Brentano measurement  
 

Table 1. LDPE-based composites modified  
with iron oxide microspheres 

 

Microsphere 
type Microsphere content, wt. % 

Initial 1.25 2.5 5.0 

Heat-treated 1.25 2.5 5.0 
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Table 2. Physical and mechanical properties of composites 
 

Tested materials Microsphere  
content, wt. % 

Relative elongation at 
the point Fmax (εmax), % 

Yield strength σs, 
MPa 

Modulus  
of elasticity E, MPa 

Initial LDPE 0.00 576 8.00 128 

LDPE filled with heat-treated 
microspheres Fe2O3 

1.25 294  5.90 184 
2.50 267 5.86 200 
5.00 140 5.84 162 

LDPE filled with initial 
microspheres Fe2O3 

1.25 255 5.90 167 
2.50 376 5.90 139 
5.00 411 6.00 168 

 
geometry, step scanning mode (0.02 degree step)  
at 1.2 was used. XRD based on CuKα radiation and 
Bregg-Brentano geometry is the most popular of the 
X-ray phase spectroscopy methods. 

The accelerated weathering test was performed 
via three-factor climatic chamber ATLAS UV-Test 
(USA) according to ASTM D5208 (cycle B).  
The single 12-hours test cycle consisted of 4-hour 
condensation at 50 °С, and then irradiation with UV 
light for 8 hours at 70 °С. The wavelength of UV 
lamp was 340 nm and the irradiance was 1.35 W⋅m–2 
with humidity of 90–100 %. The total time of 
weathering was 168 hours (14 cycles). 

The IR spectra of the compositions and the 
initial LDPE before and after exposure in an 
environmental chamber were recorded using a Bruker 
Lumos FT-IR microscope macromodule in the 
spectral range of 4000–600 cm–1.  

The thermogravimetric analysis (TGA) was 
carried out using a synchronous thermal analysis 
device (TGA/DSC3+, Mettler Toledo, Greifensee, 
Switzerland) in the temperature range of (+25–+800) °С 
at a heating rate of 10 deg⋅min–1 in air (100.0 mL⋅min–1). 
For measurements, a 150 μL aluminum oxide 
crucible was used; the sample weight was 4–6 mg. 
The results were processed using the Star SW Lab 
Mettler software version 16.10 (Greifensee, 
Switzerland). 

The processes of glass transition, cold 
crystallization, and melting of LDPE and composites 
were studied by a differential scanning calorimeter 
DSC 214 Polyma (NETZSCH-Geratebau GmBH, 
Selb, Germany) according to ISO 11357-3:2018.  
The heating of the samples was carried out in the 
temperature range of 20–200 °С at a scanning speed 
of 10 °С⋅min–1. The weight of the samples was 
(8 ± 0.5) mg. A temperature scale and an enthalpy of 
melting were calibrated against indium, zinc, and 
stannic standard samples. 

The analysis of physical and mechanical 
properties of the compositions was carried out using a 

universal testing machine DVT (Devotrans, Turkey). 
For the tests on the pneumatic punching press  
GT-7016-AR (Gotech testing Machines Inc., Taiwan) 
the samples of compositions with size 100×10 mm 
were cut out. A total of 21 samples were prepared:  
3 samples for each composition (n = 7). The results of 
relative elongation, yield strength and modulus of 
elasticity were obtained automatically from 
geometrical parameters of samples in Devotrans CKS 
v2.1.4 software system by a series of at least  
5 measurements (samples) as shown in Table 2. 

 
3. Results and Discussion 

 
The phase composition and structure of 

microspheres powder was investigated with the X-ray 
diffraction technique (Fig. 1). 

The diffractogram of microspheres without 
annealing does not contain sharp peaks (Fig. 1 – 
curve a), which indicates that the material of the 
microspheres is amorphous. The diffractogram of 
annealed microspheres shows high crystallinity of the 
material (Fig. 1 – curve b). The interpretation of the 
XRD data showed the presence of one phase – 
hematite Fe2O3.  

 

 
 

Fig. 1. Diffractograms of heat-treated  
and initial microspheres 
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(a) (b) 
 

Fig. 2. Structure of Fe2O3 microspheres (a)  
and LDPE-based composite (b) containing 5.0 wt. % Fe2O3 microspheres (brittle fracture) 

 
The obtained microspheres had a hollow 

structure and an average size from 1 to 4 microns 
(Fig. 2a). In the composite, the spheres were well 
blended with the binder and, when examining the 
brittle chip surface (Fig. 2b), they cannot be 
practically detected on the surface. The analysis of 
the SEM data also did not reveal the presence of 
aggregates of microspheres. Individual particles are 
statistically distributed throughout the composite. 

The introduction of functional fillers often leads 
to a decrease in the complex of mechanical 
properties, so the study of strength properties of the 
investigated composites was carried out (Table 2). 
According to the Table 2 it was found that the 
introduction of microspheres in the whole 
investigated range of concentrations (from 1.25 to  

5 wt. %) does not significantly affect the strength 
characteristics of polyethylene. Considering the 
preservation of standard values of physical and 
mechanical properties when introducing 
microspheres into the composition of LDPE, as well 
as their small size and lack of aggregates, the 
obtained compositions can be used in the production 
of consumer goods, for example, packaging films, 
bags. 

The main negative influence of traditionally 
used oxo additives is the reduction of properties and 
degradation at elevated temperatures during the 
processing of composites and manufacturing of 
products from them. Thus, the influence of 
microsphere-based additives on the heat resistance of 
polyethylene was investigated (Fig. 3). 

 

 
 

Fig. 3. TGA/DSC curves initial LDPE and LDPE filled with heat-treated microspheres Fe2O3 
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showed that the degree of crystallinity slightly 
increased after exposure in the climatic chamber as a 
result of prolonged treatment at elevated temperature. 
At the same time, the melting range shows a peak at 
lower temperatures (76–85 °C), which may be 
responsible for the melting of partially destructed 
fragments of branched macromolecules with a lower 
degree of order and reduced molecular weight. At the 
same time, the main peak shifted slightly to higher 
temperatures, which may be due to both measurement 
error and the possible formation of cross-linked 
structures that hinder primary melting. 

The surface of the samples before and after 
aging was examined by optical microscopy (Fig. 7).  

Microphotographs (Fig. 6) show significant 
surface erosion after exposure in the climatic 
chamber. This erosion is presumably related to the 
oxidation of the polyethylene surface and the 
occurrence of microcracks and spalling of the 
oxidized material as a result of cyclic heating and 
cooling. 

Comparing the results with similar approaches, it 
should be noted that introduction of various additives 
into the composite composition affects mechanical 
properties. The aging of polypropylene (PP) 
composites reinforced with date palm nanofiber was 
studied by Basheer A. Alshammari and colleagues 
[26]. In this study [26] the authors showed similar 
results: strain at break decreased in the modified 
composites. The paper [27] analyzed the use of the 
most common metal stearates as additives initiating 
oxidative degradation of polyolefins. The study found 
that calcium stearate is most susceptible to oxidative 
degradation in contrast to zinc and magnesium 
stearates. The effect of accelerated weathering on 
poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) 
and PHBV-based nanocomposites with rutile  
titanium (IV) dioxide (PHBV/TiO2) was investigated 
in paper [28]. In this case the addition of TiO2 
enhanced the mechanical properties of the 
nanocomposites, the nucleation effect retarded the 
degradation process under photo and moisture 
exposure, shifting the degradation process to longer 
periods of time. Thus, addition of various modifiers 
to polymer compositions is relevant, and the properties 
of the developed composites may differ depending on 
the sphere of application of such material. 

 
4. Conclusion 

 
The present study showed a promising 

possibility of using nanostructured iron oxide 
microspheres obtained by spray-pyrolysis of 
ultrasonic aerosols as an additive accelerating 
atmospheric aging of polyethylene. 

After climatic tests of the original polyethylene 
and polyethylene modified with microspheres,  
a higher degree of surface oxidation was observed in 
the case of the modified material. 

The study of the influence of the crystalline 
structure of iron oxide in the composition of the 
synthesized filler on the rate of atmospheric aging of 
polyethylene showed that the use of heat-treated 
(crystalline) microspheres slightly more effectively 
increased the intensity of the C=O bond peak on the 
IR spectra of the composite after aging in the climatic 
chamber, compared to the X-ray amorphous (initial) 
spheres. 

Optical microscopy of the surface of 
polyethylene samples before and after aging showed 
strong surface erosion for polyethylene modified with 
microspheres, which may contribute to the active 
reproduction of microorganisms, provoking more 
intensive biodegradation compared to the original 
polymer. 

The introduction of up to 5 wt. % of microspheres 
into PE did not lead to a significant change in the 
properties of the material, as shown by our studies, in 
connection with which it can be assumed that the 
developed material can find a wide application for the 
manufacture of packaging, agricultural and landscape 
films, which will decompose in natural conditions after 
the end of the service life. 
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