Оценка состояния агента с динамикой стохастического характера с помощью рекуррентных фильтров
- Авторы: Краснов Д.И1, Волынский М.А1, Гусев А.А1
-
Учреждения:
- Университет ИТМО
- Выпуск: Том 24, № 5 (2025)
- Страницы: 1355-1378
- Раздел: Робототехника, автоматизация и системы управления
- URL: https://journals.rcsi.science/2713-3192/article/view/350760
- DOI: https://doi.org/10.15622/ia.24.5.4
- ID: 350760
Цитировать
Полный текст
Аннотация
Об авторах
Д. И Краснов
Университет ИТМО
Email: dmitriy_krasnov@outlook.com
Кронверкский проспект 49
М. А Волынский
Университет ИТМО
Email: maxim.volynsky@gmail.com
Кронверкский проспект 49
А. А Гусев
Университет ИТМО
Email: gusew@internet.ru
Кронверкский проспект 49
Список литературы
- Кузнецов А.В. Краткий обзор многоагентных моделей // Управление большими системами: сборник трудов. 2018. № 71(5). С. 6–44. doi: 10.25728/ubs.2018.71.1.
- Bernardi S., Scianna M. An agent-based approach for modelling collective dynamics in animal groups distinguishing individual speed and orientation // Philosophical Transactions of the Royal Society B. 2020. vol. 375. doi: 10.1098/rstb.2019.0383.
- Rashid M.M., Seyedi M., Jung S. Simulation of pedestrian interaction with autonomous vehicles via social force model // Simulation Modelling Practice and Theory. 2024. vol. 132. doi: 10.1016/j.simpat.2024.102901.
- Antonelli G. Interconnected dynamic systems: An overview on distributed control // IEEE Control Systems Magazine. 2013. vol. 33. no. 1. pp. 76–88. doi: 10.1109/MCS.2012.2225929.
- Proskurnikov A.V., Fradkov A.L. Problems and methods of network control // Autom Remote Control. 2016. vol. 77. pp. 1711–1740. doi: 10.1134/S0005117916100015.
- Xue Y., Chen W. Multi-Agent Deep Reinforcement Learning for UAVs Navigation in Unknown Complex Environment // IEEE Transactions on Intelligent Vehicles. 2024. vol. 9. no. 1. pp. 2290–2303. doi: 10.1109/TIV.2023.3298292.
- Zhao X., Yang R., Zhong L., Hou Z. Multi-UAV Path Planning and Following Based on Multi-Agent Reinforcement Learning // Drones. 2024. vol. 8. no. 1. doi: 10.3390/drones8010018.
- Shi H., Zhao Z., Chen J., Zhou M., Liu Y. Enhancing Unmanned Aerial Vehicle Path Planning in Multi-Agent Reinforcement Learning through Adaptive Dimensionality Reduction // Drones. 2024. vol. 8. no. 10. doi: 10.3390/drones8100521.
- Podelenyuk, P., Epifantsev I. Modeling the Formation of a Multi-Agent System as a System of Points of a Rigid // IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). 2021. pp. 594–597. doi: 10.1109/ElConRus51938.2021.9396179.
- Cong Y., Feng Z., Song H., Wang S. Containment control of singular heterogeneous multi-agent systems // Journal of the Franklin Institute. 2018. vol. 355. no. 11. pp. 4629–4643. doi: 10.1016/j.jfranklin.2018.04.009.
- Thummalapeta M., Liu Y.-C. Survey of containment control in multi-agent systems: concepts, communication, dynamics, and controller design // International Journal of Systems Science. 2023. vol. 54. no. 14. pp. 2809–2835.
- Luo R., Peng Z., Hu J. On Model Identification Based Optimal Control and it’s Applications to Multi-Agent Learning and Control // Mathematics. 2023. vol. 11. no. 4. doi: 10.3390/math11040906.
- Iarosh D., Reneva G., Kornilova A., Konovalov P. Multiagent System of Mobile Robots for Robotic Football // 26th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS). 2019. pp. 1–3. doi: 10.23919/ICINS.2019.8769365.
- Ribeiro A.F.A., Lopes A.C.C., Ribeiro T.A., Pereira N.S.S.M., Lopes G.T., Ribeiro A.F.M. Probability-Based Strategy for a Football Multi-Agent Autonomous Robot System // Robotics. 2024. vol. 13. no. 1. doi: 10.3390/robotics13010005.
- Dewantara B.S.B., Ariyadi B.N.D. Adaptive Behavior Control for Robot Soccer Navigation Using Fuzzy-based Social Force Model // Smart Science. 2021. vol. 9. no. 1. pp. 14–29. doi: 10.1080/23080477.2021.1871799.
- Du Z., Negenborn R.R., Reppa V. Cooperative Multi-Agent Control for Autonomous Ship Towing Under Environmental Disturbances // IEEE/CAA Journal of Automatica Sinica. 2021. vol. 8. no. 8. pp. 1365–1379. doi: 10.1109/JAS.2021.1004078.
- Bonnet F., Gribovskiy A., Halloy J., Mondada F. Closed-loop interactions between a shoal of zebrafish and a group of robotic fish in a circular corridor // Swarm Intelligence. 2018. vol. 12. no. 3. pp. 227–244. doi: 10.1007/s11721-017-0153-6.
- Kim C., Ruberto T., Phamduy P., Porfiri M. Closed-loop control of zebrafish behaviour in three dimensions using a robotic stimulus // Scientific Reports. 2018. vol. 8. no. 1. doi: 10.1038/s41598-017-19083-2.
- Kopman V., Laut J., Polverino G., Porfiri M. Closed-loop control of zebrafish response using a bioinspired robotic-fish in a preference test // Journal of The Royal Society Interface. 2013. vol. 10. no. 78. doi: 10.1098/rsif.2012.0540.
- Swain D.T., Couzin I.D., Ehrich Leonard N. Real-Time Feedback-Controlled Robotic Fish for Behavioral Experiments with Fish Schools // Proceedings of the IEEE. 2012. vol. 100. no. 1. pp. 150–163. doi: 10.1109/JPROC.2011.2165449.
- Landgraf T., Bierbach D., Nguyen H., Muggelberg N., Romanczuk P., Krause J. RoboFish: increased acceptance of interactive robotic fish with realistic eyes and natural motion patterns by live Trinidadian guppies // Bioinspiration & Biomimetics. 2016. vol. 11. no. 1. doi: 10.1088/1748-3190/11/1/015001.
- Collignon B., Séguret A., Halloy J. A stochastic vision-based model inspired by zebrafish collective behaviour in heterogeneous environments // Royal Society Open Science. 2016. vol. 3. no. 1. doi: 10.1098/rsos.150473.
- Mwaffo V., Anderson R.P., Butail S., Porfiri M. A jump persistent turning walker to model zebrafish locomotion // Journal of The Royal Society Interface. 2015. vol. 12. no. 102. doi: 10.1098/rsif.2014.0884.
- Zienkiewicz A.K., Ladu F., Barton D.A.W. Data-driven modelling of social forces and collective behaviour in zebrafish // Journal of Theoretical Biology. 2018. vol. 443. pp. 39–51. doi: 10.1016/j.jtbi.2018.01.011.
- Tuqan M., Porfiri M. Mathematical Modeling of Zebrafish Social Behavior in Response to Acute Caffeine Administration // Frontiers in Applied Mathematics and Statistics. 2021. vol. 7. doi: 10.3389/fams.2021.751351.
- van Dam E.A., Noldus L.P.J.J., van Gerven M.A.J. Deep learning improves automated rodent behavior recognition within a specific experimental setup // Journal of Neuroscience Methods. 2020. vol. 332. doi: 10.1016/j.jneumeth.2019.108536.
- Grieco F., Bernstein B.J., Biemans B. et al. Measuring Behavior in the Home Cage: Study Design, Applications, Challenges, and Perspectives // Frontiers in Behavioral Neuroscience. 2021. vol. 15. doi: 10.3389/fnbeh.2021.735387.
- Segalin C., Williams J., Karigo T. et al. The Mouse Action Recognition System (MARS) software pipeline for automated analysis of social behaviors in mice // eLife. 2021. vol. 10. doi: 10.7554/eLife.63720.
- Hsu A.I., Yttri E.A. B-SOiD, an open-source unsupervised algorithm for identification and fast prediction of behaviors // Nature Communications. 2021. vol. 12. doi: 10.1038/s41467-021-25420-x.
- Ru Z., Duan F. Hierarchical Spatial-Temporal Window Transformer for Pose-Based Rodent Behavior Recognition // IEEE Transactions on Instrumentation and Measurement. 2024. vol. 73. pp. 1–14. doi: 10.1109/TIM.2024.3379081.
- Weinreb C., Pearl J.E., Lin S. et al. Keypoint-MoSeq: parsing behavior by linking point tracking to pose dynamics // Nature Methods. 2024. vol. 21. pp. 1329–1339. doi: 10.1038/s41592-024-02318-2.
- Donnarumma F., Prevete R., Maisto D. et al. A framework to identify structured behavioral patterns within rodent spatial trajectories // Scientific Reports. 2021. vol. 11. doi: 10.1038/s41598-020-79744-7.
- van Dam E.A., Noldus L.P.J.J., van Gerven M.A.J. Disentangling rodent behaviors to improve automated behavior recognition // Front. Neurosci. 2023. vol. 17. doi: 10.3389/fnins.2023.1198209.
- Краснов Д.И., Волынский М.А., Гусев А.А. Предобработка траекторий ключевых точек скелета в задаче автоматизации регистрации поведения лабораторных животных // Научно-технический вестник информационных технологий, механики и оптики. 2025. Т. 25. № 2. С. 295–302.
- Buizza C., Fischer T., Demiris Y. Real-Time Multi-Person Pose Tracking using Data Assimilation // IEEE Winter Conference on Applications of Computer Vision (WACV). 2020. pp. 438–447. doi: 10.1109/WACV45572.2020.9093442.
- Svensson D. Derivation of the discrete-time constant turn rate and acceleration motion model // Sensor Data Fusion: Trends, Solutions, Applications (SDF). 2019. pp. 1–5. doi: 10.1109/SDF.2019.8916654.
- Yuan H., Han Y., Zhou Y. et al. State of Charge Dual Estimation of a Li-ion Battery Based on Variable Forgetting Factor Recursive Least Square and Multi-Innovation Unscented Kalman Filter Algorithm // Energies. 2022. vol. 15. no. 4. doi: 10.3390/en15041529.
- Huang J., Zhu Z., Guo F., Huang G. The Devil Is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation // IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020. pp. 5699–5708. doi: 10.1109/CVPR42600.2020.00574.
- Lyu C., Zhang W., Huang H. et al. RTMDet: An Empirical Study of Designing Real-Time Object Detectors. 2024. arXiv preprint arXiv:2212.07784.
- Wan E. A., Van Der Merwe R. The unscented Kalman filter for nonlinear estimation // Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373). 2000. pp. 153–158. doi: 10.1109/ASSPCC.2000.882463.
- Волынский М.А., Гуров И.П., Скаков П.С. Рекуррентный алгоритм обработки интерферометрических сигналов на основе мультиоблачной модели предсказания // Научно-технический вестник информационных технологий, механики и оптики. 2014. Т. 14. № 4. С. 18–22.
Дополнительные файлы



