Optimizing Transportation Costs: Enhancing Logistics Efficiency and Resource Utilization in Dynamic Environments

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The increasing demand for goods transportation, driven by the expansion of global supply chains and rising customer expectations, underscores the critical need to optimize transportation costs to enhance logistics efficiency. In a rapidly evolving and competitive market, businesses face mounting challenges in managing complex transportation networks, minimizing operational costs, and meeting diverse customer requirements. To address these issues, this paper introduces a solution designed to reduce transportation expenses by optimizing the flow of goods and improving resource utilization. By leveraging advanced optimization techniques and data-driven strategies, the proposed solution identifies inefficiencies, streamlines decision-making, and enhances resource allocation. Initial results demonstrate that this approach not only significantly reduces operational costs but also strengthens the ability of businesses to respond quickly and effectively to fluctuating customer demands, ensuring both cost efficiency and customer satisfaction. However, as the logistics industry continues to grow and transaction volumes increase, transportation scenarios are expected to become more complex, and customer requirements more diverse. This evolving landscape demands further refinement and scalability of the proposed solution to address larger networks, more intricate logistics challenges, and a broader range of customer demands. Future research will prioritize the development of larger-scale models capable of incorporating more variables, improving computational efficiency, and delivering faster, more accurate decision-making to meet the increasing complexity of the logistics sector. Therefore, the proposed solution represents a significant advancement in optimizing transportation costs and improving logistics efficiency. Initial results indicate that this solution can cut down transportation costs by 19.02% to 29.65% and enhance computational efficiency in small- to medium-scale routing tasks (10–20 customers). Despite its potential, more research is required to justify scalability to larger datasets. Hence, our approach provides a solid foundation for logistics optimization, with clear prospects for expansion and adaptation in real-world contexts.

Авторлар туралы

C. Ngoc Anh

University of Economics – Technology for Industries (UNETI)

Email: cnanh@uneti.edu.vn
Giao Tien – Giao Thuy -

T. Bich Thao

University of Economics – Technology for Industries (UNETI)

Email: tbthao@uneti.edu.vn
- -

T. Ba Hung

Vietnam Academy of Science and Technology (VAST)

Email: tbhung@ioit.ac.vn
Tien Duong – Dong Anh -

T. Thu Huong

East Asia University of Technology

Email: huongtt2@eaut.edu.vn
Dinh Tien – Yen Dinh -

N. Hung

East Asia University of Technology

Email: hungnv@eaut.edu.vn
Ky Phu – Ky Anh -

Әдебиет тізімі

  1. Mageswari M.N. Vehicle routing problem (vrp) using genetic algorithm. Science. 2024. vol. 9. no. 3. pp. 1–3.
  2. Wang Q., Peng S., Liu S. Optimization of electric vehicle routing problem using tabu search. Chinese Control and Decision Conference (CCDC). IEEE, 2020. pp. 2220–2224.
  3. Zhang Q., Wu L., Li J. Application of Improved Scatter Search Algorithm to Reverse Logistics VRP Problem. IEEE 5th International Conference on Power, Intelligent Computing and Systems (ICPICS). IEEE, 2023. pp. 283–288.
  4. Alolaiwy M., Hawsawi T., Zohdy M., Kaur A., Louis S. Multiobjective Routing Optimization in Electric and Flying Vehicles: A Genetic Algorithm Perspective. Applied Sciences. 2023. vol. 13. no. 18.
  5. Ni Q., Tang Y. A Bibliometric Visualized Analysis and Classification of Vehicle Routing Problem Research. Sustainability. 2023. vol. 15. no. 9.
  6. Kim B.S., Mozhdehi A., Wang Y., Sun S., Wang X. Clustering Based Enhanced Ant Colony Optimization for Multi-Trip Vehicle Routing Problem with Heterogeneous Fleet and Time Windows: An Industrial Case Study. Proceedings of the 17th ACM SIGSPATIAL International Workshop on Computational Transportation Science GenAI and Smart Mobility Session. 2024. pp. 46–55.
  7. Gaon T., Gabay Y., Weiss Cohen M. Optimizing electric vehicle routing efficiency using k-means clustering and genetic algorithms. Future Internet. 2025. vol. 17. no. 3.
  8. Gao Y., Wu H., Wang W. A hybrid ant colony optimization with fireworks algorithm to solve capacitated vehicle routing problem. Applied Intelligence. 2023. vol. 53. no. 6. pp. 7326–7342.
  9. Gendreau M., Tarantilis C.D. Solving large-scale vehicle routing problems with time windows: The state-of-the-art. Montreal, QC, Canada: Cirrelt, 2010.
  10. Khan M.M.R, Siddique M.A.B., Arif R.B., Oishe M.R. Adbscan: Adaptive density-based spatial clustering of applications with noise for identifying clusters with varying densities. 4th International Conference on Electrical Engineering and Information Communication Technology (iCEEiCT). IEEE, 2018. pp. 107–111.
  11. Deng D. DBSCAN clustering algorithm based on density. 7th International Forum on Electrical Engineering and Automation (IFEEA). IEEE, 2020. pp. 949–953.
  12. Kulkarni O., Burhanpurwala A. A survey of advancements in dbscan clustering algorithms for big data. 3rd International conference on Power Electronics and IoT Applications in Renewable Energy and its Control (PARC). IEEE, 2024. pp. 106–111.
  13. Ho W., Ho G.T., Ji P., Lau H.C. A hybrid genetic algorithm for the multi-depot vehicle routing problem. Engineering applications of artificial intelligence. 2008. vol. 21. no. 4. pp. 548–557.
  14. Pedram A., Sorooshian S., Mulubrhan F., Abbaspour A. Incorporating vehicle-routing problems into a closed-loop supply chain network using a mixed-integer linear-programming model. Sustainability. 2023. vol. 15. no. 4.
  15. Ding H., Yi P., Ramamurthy B. Cost-optimized reservation and routing for scheduled traffic in optical networks. Journal of Optical Communications and Networking. 2013. vol. 5. no. 11. pp. 1215–1226.
  16. Zong Z., Wang H., Wang J., Zheng M., Li Y. Rbg: Hierarchically solving large-scale routing problems in logistic systems via reinforcement learning. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2022. pp. 4648–4658.
  17. Dhahri, A., Zidi, K., Ghedira, K. Variable neighborhood search based set covering ilp model for the vehicle routing problem with time windows. Procedia Computer Science. 2024. vol. 29. pp. 844-854.
  18. Capucho J.H., Resendo L.C. ILP model and effective genetic algorithm for routing and spectrum allocation in elastic optical networks. SBMO/IEEE MTT-S International Microwave Optoelectronics Conference (IMOC). IEEE, 2013. pp. 1–5.
  19. Konstantakopoulos G.D., Gayialis S.P., Kechagias E.P. Vehicle routing problem and related algorithms for logistics distribution: A literature review and classification. Operational research. 2022. vol. 22. no. 3. pp. 2033–2062.
  20. Zinov V., Kartak V., Valiakhmetova Y. Solving multi-objective rational placement of load-bearing walls problem via genetic algorithm. Informatics and Automation. 2025. vol. 24. no. 2. pp. 464–491.
  21. Kim B.S.S. Clustering-based improved ant colony optimization for the multi-trip vehicle routing problem with heterogeneous fleet and time windows: An industrial case study. 2025.
  22. Gharbi A., Ayari M., El Touati Y. Intelligent agent-controlled elevator system: Algorithm and efficiency optimization. Informatics and Automation. 2025. vol. 24. no. 1. pp. 30–50.
  23. Lin Y.-K., Chen C.-F., Chou T.-Y. Applying cluster analysis to the vehicle routing problem. International Conference on Flexible Automation and Intelligent Manufacturing. Springer, Cham, 2024. pp. 358–365.
  24. Li J. Research of density based spatial clustering of applications with noise on TCM patent law evaluation. IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE). IEEE, 2021. pp. 463–466.
  25. Vidal T., Battarra M., Subramanian A., Erdogan G. Hybrid metaheuristics for the clustered vehicle routing problem. Computers & Operations Research. 2015. vol. 58. pp. 87–99.
  26. Frias N., Johnson F., Valle C. Hybrid algorithms for energy minimizing vehicle routing problem: Integrating clusterization and ant colony optimization. Ieee Access, 2023. vol. 11. pp. 125800–125821.
  27. Argiolas L. Cluster-based approach for route planning optimization of electric vehicles. Ph.D. dissertation, Politecnico di Torino. 2023.
  28. Keerthika A., Berlin Hency V. Reinforcement-learning based energy efficient optimized routing protocol for WSN. Peer-to-Peer Networking and Applications. 2022. vol. 15. no. 3. pp. 1685–1704.
  29. Granada-Echeverri M., Toro E.M., Santa J.J. A mixed integer linear programming formulation for the vehicle routing problem with backhauls. International Journal of Industrial Engineering Computations. 2019. vol. 10. pp. 295–308.
  30. Yu X., Liu K. A spatial decision support system for large scale vehicle routing. International Conference on Measuring Technology and Mechatronics Automation. 2009. vol. 3. pp. 444–449. doi: 10.1109/ICMTMA.2009.270.
  31. Yin C., Fang Q., Li H., Peng Y., Xu X., Tang D. An optimized resource scheduling algorithm based on ga and aco algorithm in fog computing. The Journal of Supercomputing. 2024. vol. 80. no. 3. pp. 4248–4285.
  32. Mandziuk J. New shades of the vehicle routing problem: Emerging problem formulations and computational intelligence solution methods. IEEE Transactions on Emerging Topics in Computational Intelligence. 2019. vol. 3. no. 3. pp. 230–244.
  33. Kumar M., Kumar D. Green logistics optimization model for forward and reverse logistics using genetic algorithm. IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). IEEE, 2015. pp. 717–720.
  34. Ransikarbum K., Chaiyaphan C., Pataratanased R. Analysis of logistical aspect of food-safety system in the green supply chain using vehicle routing problem model. Research, Invention, and Innovation Congress: Innovation Electricals and Electronics (RI2C). IEEE, 2021. pp. 48–53.
  35. Leu J.-D., Krischke A., Lee Y.-P., Lee L.J.-H., Huang Y.-W. A green vehicle routing method for the regional logistics center. IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). IEEE, 2018. pp. 71–75.
  36. Garside A.K., Ahmad R., Muhtazaruddin M.N.B. A recent review of solution approaches for green vehicle routing problem and its variants. Operations Research Perspectives. 2024.
  37. Ester M., Kriegel H.-P., Sander J., Xu X. et al. A density-based algorithm for discovering clusters in large spatial databases with noise. kdd. 1996. vol. 96. no. 34. pp. 226–231.
  38. Pulido-Gaytan L.B., Tchernykh A., Nesmachnow S., Cristobal-Salas A., Avetisyan A., Barrera H.E.C., Hernandez C.J.B. Multiobjective optimization of vehicle routing with environmental penalty. Supercomputing: 10th International Conference on Supercomputing in Mexico (ISUM). Springer, Cham, 2019. vol. 1151. pp. 147–162.
  39. Cao N.A., Phan T.H., Chinh N.T., Tran D.Q., Nguyen H.N., Trang N.T.T., Choi G.S. Optimizing delivery routing problem for logistics companies based on integer linear programming method. International Journal of Internet, Broadcasting and Communication. 2022. vol. 14. no. 4. pp. 212-221.
  40. Maroof A., Ayvaz B., Naeem K. Logistics optimization using hybrid genetic algorithm (hga): a solution to the vehicle routing problem with time windows (vrptw). IEEE Access, 2024.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».