A Novel Approach to EEG Artifact Removal Using ADASYN and Optimized Hierarchical 1D CNN
- Authors: Kokate A.1, Jadhav T.1
-
Affiliations:
- BRACT’s Vishwakarma Institute of Information Technology
- Issue: Vol 24, No 5 (2025)
- Pages: 1408-1443
- Section: Artificial intelligence, knowledge and data engineering
- URL: https://journals.rcsi.science/2713-3192/article/view/350762
- DOI: https://doi.org/10.15622/ia.24.5.6
- ID: 350762
Cite item
Full Text
Abstract
About the authors
A. Kokate
BRACT’s Vishwakarma Institute of Information Technology
Email: ashwini279@gmail.com
Kondhawa -
T. Jadhav
BRACT’s Vishwakarma Institute of Information Technology
Email: tushar.jadhav@viit.ac.in
Kondhawa -
References
- Rashmi C.R., Shantala C.P. EEG artifacts detection and removal techniques for brain computer interface applications: a systematic review. International Journal of Advanced Technology and Engineering Exploration. 2022. vol. 9(88). pp. 354–383. doi: 10.19101/IJATEE.2021.874883.
- Yadav D., Yadav S., Veer K. A comprehensive assessment of Brain Computer Interfaces: Recent trends and challenges. Journal of Neuroscience Methods. 2020. vol. 346.
- Mridha M.F., Das S.C., Kabir M.M., Lima A.A., Islam M.R., Watanobe Y. Brain-computer interface: Advancement and challenges. Sensors. 2021. vol. 21(17).
- Satpathy R.B., Ramesh G.P. Advance approach for effective EEG artifacts removal. Recent Trends and Advances in Artificial Intelligence and Internet of Things. 2020. pp. 267–278.
- Park Y., Han S.H., Byun W., Kim J.H., Lee H.C., Kim S.J. A real-time depth of anesthesia monitoring system based on deep neural network with large EDO tolerant EEG analog front-end. IEEE Transactions on Biomedical Circuits and Systems. 2020. vol. 14(4). pp. 825–837. doi: 10.1109/TBCAS.2020.2998172.
- Thomas J., Thangavel P., Peh W.Y., Jing J., Yuvaraj R., Cash S.S., Chaudhari R., Karia S., Rathakrishnan R., Saini V., Shah N., Srivastava R., Tan Y.-L., Westover B., Dauwels J. Automated adult epilepsy diagnostic tool based on interictal scalp electroencephalogram characteristics: A six-center study. International journal of neural systems. 2021. vol. 31(05). doi: 10.1142/S0129065720500744.
- Rasheed K., Qayyum A., Qadir J., Sivathamboo S., Kwan P., Kuhlmann L., O'Brien T., Razi A. Machine learning for predicting epileptic seizures using EEG signals: A review. IEEE reviews in biomedical engineering. 2021. vol. 14. pp. 139–155. doi: 10.1109/RBME.2020.3008792.
- Kapgate D. Future of EEG based hybrid visual brain computer interface systems in rehabilitation of people with neurological disorders. International Research Journal on Advanced Science Hub. 2020. vol. 2(6). pp. 15–20.
- Raza H., Chowdhury A., Bhattacharyya S. Deep learning based prediction of EEG motor imagery of stroke patients’ for neuro-rehabilitation application. International Joint Conference on Neural Networks (IJCNN). IEEE. 2020. pp. 1–8.
- Mumtaz W., Rasheed S., Irfan A. Review of challenges associated with the EEG artifact removal methods. Biomedical Signal Processing and Control. 2021. vol. 68.
- Anwer S., Li H., Antwi-Afari M.F., Mirza A.M., Rahman M.A., Mehmood I., Wong A.Y.L. Evaluation of Data Processing and Artifact Removal Approaches Used for Physiological Signals Captured Using Wearable Sensing Devices during Construction Tasks. Journal of Construction Engineering and Management. 2024. vol. 150(1).
- Zangeneh Soroush M., Tahvilian P., Nasirpour M.H., Maghooli K., Sadeghniiat-Haghighi K., Vahid Harandi S., Jafarnia Dabanloo N. EEG artifact removal using sub-space decomposition, nonlinear dynamics, stationary wavelet transform and machine learning algorithms. Frontiers in Physiology. 2022. vol. 13. doi: 10.3389/fphys.2022.910368.
- Islam M.K., Rastegarnia A., Sanei S. Signal artifacts and techniques for artifacts and noise removal. Signal Processing Techniques for Computational Health Informatics. 2021. pp. 23–79.
- Mahmood D., Nisar H., Voon Y.V. Removal of physiological artifacts from electroencephalogram signals: a review and case study. IEEE 9th Conference on Systems, Process and Control (ICSPC). 2021. pp. 141–146.
- Jindal K., Upadhyay R., Singh H.S. Application of hybrid GLCT-PICA de-noising method in automated EEG artifact removal. Biomedical Signal Processing and Control. 2020. vol. 60.
- Kotte S., Dabbakuti J.K. Methods for removal of artifacts from EEG signal: A review. In Journal of Physics: Conference Series. IOP Publishing. 2020. vol. 1706. no. 1.
- Ranjan R., Sahana B.C., Bhandari A.K. Ocular artifact elimination from electroencephalography signals: A systematic review. Biocybernetics and Biomedical Engineering. 2021. vol. 41(3). pp. 960–996.
- Sheela P., Puthankattil S.D. A hybrid method for artifact removal of visual evoked EEG. Journal of neuroscience methods. 2020. vol. 336.
- Kaur C., Bisht A., Singh P., Joshi G. EEG Signal denoising using hybrid approach of Variational Mode Decomposition and wavelets for depression. Biomedical Signal Processing and Control. 2021. vol. 65.
- Vallabhaneni R.B., Sharma P., Kumar V., Kulshreshtha V., Reddy K.J., Kumar S.S., Kumar V.S., Bitra S.K. Deep learning algorithms in EEG signal decoding application: a review. IEEE Access. 2021. vol. 9. pp. 125778–125786. doi: 10.1109/ACCESS.2021.3105917.
- Pawar D., Dhage S.N. Feature extraction methods for electroencephalography based brain-computer interface: a review. Entropy. 2020. vol. 1(4).
- Ahmed M.A., Qi D., Alshemmary E.N. Effective hybrid method for the detection and rejection of electrooculogram (EOG) and power line noise artifacts from electroencephalogram (EEG) mixtures. IEEE Access. 2020. vol. 8. pp. 202919–202932.
- Mathe M., Padmaja M., Krishna B.T. Intelligent approach for artifacts removal from EEG signal using heuristic-based convolutional neural network. Biomedical Signal Processing and Control. 2021. vol. 70. doi: 10.1016/J.BSPC.2021.102935.
- Syamsundararao T., Selvarani A., Rathi R., Vini Antony Grace N., Selvaraj D., Almutairi K., Alonazi W.B., Priyan K.S.S., Mosissa R. An efficient signal processing algorithm for detecting abnormalities in EEG signal using CNN. Contrast Media & Molecular Imaging. 2022. vol. 2022. doi: 10.1155/2022/1502934.
- Faiz M.M.U., Kale I. Removal of multiple artifacts from ECG signal using cascaded multistage adaptive noise cancellers. Array. 2022. vol. 14.
- Prasad D.S., Chanamallu S.R., Prasad K.S. Optimized deformable convolution network for detection and mitigation of ocular artifacts from EEG signal. Multimedia Tools and Applications. 2022. vol. 81(21). pp. 30841–30879.
- Behera S., Mohanty M.N. A Machine Learning Approach for Artifact Removal from Brain Signal. Computer Systems Science & Engineering. 2023. vol. 45(2).
- Lopes F., Leal A., Medeiros J., Pinto M.F., Dourado A., Dümpelmann M., Teixeira C. Automatic electroencephalogram artifact removal using deep convolutional neural networks. IEEE Access. 2021. vol. 9. pp. 149955–149970.
- Ghosh R., Phadikar S., Deb N., Sinha N., Das P., Ghaderpour E. Automatic eyeblink and muscular artifact detection and removal from EEG signals using k-nearest neighbor classifier and long short-term memory networks. IEEE Sensors Journal. 2023. vol. 23(5). pp. 5422–5436.
- He H., Bai Y., Garcia E.A., Li S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. IEEE international joint conference on neural networks (IEEE world congress on computational intelligence). 2008. pp. 1322–1328.
- Kiranyaz S., Ince T., Gabbouj M. Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE transactions on biomedical engineering. 2015. vol. 63(3). pp. 664–675.
- Saremi S., Mirjalili S., Lewis A. Grasshopper optimisation algorithm: theory and application. Advances in engineering software. 2017. vol. 105. pp. 30–47.
- Kirkpatrick S., Gelatt Jr C.D., Vecchi M.P. Optimization by simulated annealing. Science. 1983. vol. 220(4598). pp. 671–680. doi: 10.1126/science.220.4598.671.
Supplementary files


