Time Range Constraints for Motion Planning for Manipulators
- Authors: Zaitsev A.S1, Yakovlev K.S2
-
Affiliations:
- St. Petersburg State University
- Federal Research Center for Computer Science and Control of the Russian Academy of Sciences (FRCSC RAS)
- Issue: Vol 24, No 4 (2025)
- Pages: 1007-1028
- Section: Robotics, automation and control systems
- URL: https://journals.rcsi.science/2713-3192/article/view/350732
- DOI: https://doi.org/10.15622/ia.24.4.1
- ID: 350732
Cite item
Full Text
Abstract
Keywords
About the authors
A. S Zaitsev
St. Petersburg State University
Email: Dusha.Zaitsev@yandex.ru
University Emb. 7–9
K. S Yakovlev
Federal Research Center for Computer Science and Control of the Russian Academy of Sciences (FRCSC RAS)
Email: yakovlev@isa.ru
Vavilova St. 44/2
References
- Sharon G., Stern R., Felner A., Sturtevant N.R. Conflict-based search for optimal multi-agent pathfinding. Artificial intelligence. 2015. vol. 219. pp. 40–66.
- Shaoul Y., Veerapaneni R., Likhachev M., Li J. Unconstraining multi-robot manipulation: Enabling arbitrary constraints in ecbs with bounded sub-optimality. Proceedings of the International Symposium on Combinatorial Search. 2024. vol. 17. pp. 109–117.
- Ma H., Koenig S. Ai buzzwords explained: multi-agent path finding (mapf). AI Matters. 2017. vol. 3(3). pp. 15–19.
- Stern R., Sturtevant N., Felner A., Koenig S., Ma H., Walker T., Li J., Atzmon D., Cohen L., Kumar T.K., et al. Multi-agent pathfinding: Definitions, variants, and benchmarks. Proceedings of the International Symposium on Combinatorial Search. 2019. vol. 10. pp. 151–158.
- Ma H., Harabor D., Stuckey P.J., Li J., Koenig S. Searching with consistent prioritization for multi-agent path finding. In Proceedings of the AAAI conference on artificial intelligence. 2019. vol. 33. pp. 7643–7650.
- Chan S.-H., Stern R., Felner A., Koenig S. Greedy priority-based search for suboptimal multi-agent path finding. Proceedings of the International Symposium on Combinatorial Search. 2023. vol. 16. pp. 11–19.
- Zhang S., Li J., Huang T., Koenig S., Dilkina B. Learning a priority ordering for prioritized planning in multi-agent path finding. Proceedings of the International Symposium on Combinatorial Search. 2022. vol. 15. pp. 208–216.
- Sharon G., Stern R., Felner A., Sturtevant N.R. Conflict-based search for optimal multi-agent pathfinding. Artificial intelligence. 2015. vol. 219. pp. 40–66.
- Shaoul Y., Mishani I., Likhachev M., Li J. Accelerating search-based planning for multi-robot manipulation by leveraging online-generated experiences. Proceedings of the International Conference on Automated Planning and Scheduling. 2024. vol. 34. pp. 523–531.
- Chen J., Li J., Huang Y., Garrett C., Sun D., Fan C., Hofmann A., Mueller C., Koenig S., Williams B.C. Cooperative task and motion planning for multi-arm assembly systems. arXiv preprint arXiv:2203.02475. 2022.
- LaValle S. Rapidly-exploring random trees: A new tool for path planning. Research Report 9811. 1998.
- Kuffner J.J., LaValle S.M. Rrt-connect: An efficient approach to single-query path planning. Proceedings 2000 ICRA. Millennium conference. IEEE international conference on robotics and automation. Symposia proceedings (Cat. No. 00CH37065). IEEE, 2000. vol. 2. pp. 995–1001.
- Lacevic B., Osmankovic D.. Improved c-space exploration and path planning for robotic manipulators using distance information. 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020. pp. 1176–1182.
- Karaman S., Frazzoli E. Sampling-based algorithms for optimal motion planning. The international journal of robotics research. 2011. vol. 30(7). pp. 846–894.
- Zhang D., Zhu G., Zhang Q. Multi-robot motion planning: A learning-based artificial potential field solution. 2nd Conference on Fully Actuated System Theory and Applications (CFASTA). IEEE, 2023. pp. 233–238.
- Shaoul Y., Mishani I., Vats S., Li J., Likhachev M. Multi-robot motion planning with diffusion models. arXiv preprint arXiv:2410.03072. 2024.
- Aljalbout E., Karl M., van der Smagt P. Clas: Coordinating multi-robot manipulation with central latent action spaces. Learning for Dynamics and Control Conference. PMLR, 2023. pp. 1152–1166.
- Sharon G., Stern R., Felner A., Sturtevant N.R. Conflict-based search for optimal multi-agent pathfinding. Artificial intelligence. 2015. vol. 219. pp. 40–66.
- Ebendt R., Drechsler R. Weighted a search–unifying view and application. Artificial Intelligence. 2009. vol. 173(14). pp. 1310–1342.
- Li J., Ruml W., Koenig S. Eecbs: A bounded-suboptimal search for multi-agent path finding. In Proceedings of the AAAI conference on artificial intelligence. 2021. vol. 35(14). pp. 12353–12362.
Supplementary files


