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Abstract. Deep learning has been instrumental in solving difficult problems by
automatically learning, from sample data, the rules (algorithms) that map an input to its
respective output. Purpose: Perform land use landcover (LULC) classification using the
training data of satellite imagery for Moscow region and compare the accuracy attained from
different models. Methods: The accuracy attained for LULC classification using deep learning
algorithm and satellite imagery data is dependent on both the model and the training dataset
used. We have used state-of-the-art deep learning models and transfer learning, together with
dataset appropriate for the models. Different methods were applied to fine tuning the models
with different parameters and preparing the right dataset for training, including using data
augmentation. Results: Four models of deep learning from Residual Network (ResNet) and
Visual Geometry Group (VGG) namely: ResNet50, ResNet152, VGG16 and VGG19 has been
used with transfer learning. Further training of the models is performed with training data
collected from Sentinel-2 for the Moscow region and it is found that ResNet50 has given the
highest accuracy for LULC classification for this region. Practical relevance: We have
developed code that train the 4 models and make classification of the input image patches into
one of the 10 classes (Annual Crop, Forest, Herbaceous Vegetation, Highway, Industrial,
Pasture, Permanent Crop, Residential, River, and Sea&Lake).

Keywords: neural networks, deep transfer learning, land use land cover classification,
satellite imagery.

1. Introduction. There is no doubt that soon artificial intelligence
(Al) will penetrate every task that requires intelligent decisions based on
learning from the collected data. It will change the way things are done,
from language translation to self-driving cars and plenty of other tasks
essential for a human being. It will have a remarkable effect on our day-to-
day life. In recent years, Al’s success is accelerated by advancement in deep
learning (DL), a subset of Al dealing with learning from experience or data

[1].

There are several reasons why deep learning is spreading across
many fields so fast now. The availability of big data collected so far allows
preparing massive training datasets required for DL applications. The rapid
improvement of hardware and software computer components has enabled
scientists to solve problems that were not solvable a few years ago. Science
and engineering topics that were taken by Ph.D. students to do their
complete thesis now can be addressed with a few lines of code on a decent
computing device. Datasets can be collected online, and state-of-the-art
algorithms can be applied to the same data leading to different outputs [2].
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Meanwhile, the advances in Earth observation (EO) technologies
have significantly improved the spatial, spectral, and temporal resolution of
remotely sensed imagery. These achievements have allowed satellites to
collect big EO data on a global scale related to different application
scenarios. Simultaneously, deep learning is outpacing the other machine
learning techniques in LULC classification tasks on satellite images [2].

Preparing training datasets is arguably the most challenging step in
any machine learning project. EO data’s nature adds additional complexity
to the process because of higher spectral and radiometric resolution and
other specific issues such as cloud and atmospheric noise.

The emergence of Google Earth Engine (GEE), the first publicly
available cloud platform for big EO data analysis, has enabled scientists to
process and analyze geospatial data in a multi-petabyte catalog without
solving technical issues related to big data [3, 4, 5].

The platform proved to be helpful in preparing experiment-ready
images with masked clouds and cloud shadows, snow/ice, and low-quality
pixels, which is necessary for almost all remote sensing-related studies [6].
The increasing attention to GEE from researchers is pictured in Figure 1.
This data is retrieved from an abstract and citation database Scopus with a
search query: (TITLE-ABS-KEY ("earth engine") AND TITLE-ABS-KEY
(google) AND DOCTYPE (ar OR re) AND PUBYEAR < 2022. However,
only 15 from 691 published works relate to deep learning, making
DL-related applications with GEE an urgent research topic.
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Fig. 1. Number of publications of the topic Deep Learning in Scopus
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As it is complicated to construct large-scale well-annotated datasets
due to the expense of data acquisition and labelling, a new DL approach
called deep transfer learning (DTL) was developed allowing to solve the
problem of insufficient training data. In DTL, the training data and test data
are not required to be independent and identically distributed, and the target
model does not need to be trained from scratch, which can significantly
reduce the demand for training data and training time [7].

The technological advancements in both the data collection and
processing have enabled a lot of new applications to pop up for solving real-
world problems. The field of remote sensing has come a long way now to
become very developed in collecting huge amounts of data that cover the
entire earth and with continuous improvements in the quality of collected
data. Even though different platforms can be used to collect remote sensing
data, we are mainly focusing on data collected from satellites as it is the one
which covers the entire earth. These huge continuously collected data have
to be converted into insights to be useful for humanity. The complexity of
the remotely sensed data hinders the extraction of insights out of it. Luckily,
the advancement of technologies in the computing world has been a great
motivation to process these huge data and extracting the right information at
the right time. The recent development in Artificial Intelligence (Al)
together with the progress made in the field of Computer Vision has given a
lot of hope and hype for utilizing the remotely sensed data in different
application areas. However, there is a gap between the continuously
improving rate and quality of the collected data and its utilization for
solving problems. This gap is a challenge, but at the same time, it is also an
opportunity, that if the rate of utilization is improved, many difficult
problems related to Agriculture, Climate, Environment, Economical and
other areas will be tackled in an automated fashion.

The past decade has seen rapid progress in the capacity of DL
especially for detecting objects from an image. In the state-of-the-art
algorithms, the capability of DL has reached the human level, even better in
some situations. But these DL algorithms cannot yield the same results
when applied in remote sensing, and the reason for this is that there are
some differences between these general image types and remote sensing
images. So, there is a need to find the right approach for remote sensing
data to benefit from the current achievement of DL in the general non-aerial
image types. This approach requires understanding the spectral, spatial, and
other characteristics of the remote sensing images, like texture.

With huge collected data and advancements in computational
resources, remote sensing has become one of the beneficiaries of deep
learning. At the same time, remote-sensing data presents some new
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challenges for deep learning, because satellite image analysis raises unique
issues that pose difficult new scientific questions. The authors in [8] discuss
the unique characteristics of remote sensing data saying that it comes from
geodetic measurements with quality controls that are completely dependent
on the adequacy of a sensor, and they are geo-located, time variable and
usually multi-modal, i.e., captured jointly by different sensors with different
contents. These characteristics raise new challenges on how to deal with the
data that comes with a variety of impacting variables and may require prior
knowledge about how it has been acquired. In addition, despite the fast-
growing data volume on a global scale that contains plenty of metadata, it is
lacking adequate annotations for direct use of supervised machine learning-
based approaches. Therefore, to effectively employ machine learning and
deep learning techniques on such data, additional efforts are needed.
Moreover, in many cases, remote sensing is to retrieve geophysical and
geochemical quantities rather than land cover classification and object
detection, which [8] indicates that expert-free use of deep learning
techniques is still getting questioned. Further challenges include limited
resolution, high dimensionality, redundancy within data, atmospheric and
acquisition noise, calibration of spectral bands, and many other source-
specific issues [2, 8].

The success of the methods of DL in applications of remote sensing
imagery depends on both the data and the used DL model. DL is a data-
hungry process that thrives when there is a lot of training data. But there are
many situations where it is very hard to get enough training data. In
situations like this, data augmentation has been used to compensate for the
lack of enough training samples [9].

One thing that we observed from our experiments is the importance
of understanding the data itself. Even though the enhancements in the
algorithms have improved the accuracy of training and testing, at some
point it becomes stagnant that the model almost makes no progress at all.
As a result, we concentrated our focus on the collected training data and we
improved its quality by carefully selecting representative data and its results
with an improvement in the accuracy of the detection.

The remote sensing methods of the Earth together with the
development of the algorithms for processing them are the best combination
to tackle problems that are affecting the Earth we live on. The relevance of
these studies is associated with such challenges as climate change and
predictions, analysis, and recognition of technical objects, infrastructure,
preservation and development of environmental systems that is important
for the global system of Society and ecology as well as for many other
practical tasks.
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With the Petabyte-scale images collected from satellites, information
extraction could be challenging. Deep learning methods, which thrive in
data-driven applications, can be the right tool to create insights out of this
huge collected data. However, the methods require the laborious preparation
of training datasets. The quality of the collected training data is as important
as developing the right deep learning model for attaining high accuracy with
the inferences [10]. This data-centric approach helps to make some
accuracy gains. With this study, we tried to classify land use land cover in
the Moscow region, by using a publicly available EuroSAT dataset. This
dataset is created from European urban areas. The reason that we used this
dataset is that there is a lot of similarity between the Moscow region and the
European urban areas where this dataset is collected from.

In this paper, to create a LULC map of the Moscow region, we
prepared a high-quality annotated test and validation datasets using satellite
imagery in the Google Earth Engine platform. Based on the existing Earth
observation datasets, we train state-of-the-art deep learning algorithms
through transfer learning to distinguish between ten LULC classes. And in
doing so, we made the following contributions:

—  We introduce Moscow patch-based LULC classification dataset
(MoscowSAT) based on Sentinel-2 satellite images. Every image in the
dataset is labeled and geo-referenced.

—  Four models of CNNs namely ResNet-50, ResNet-152, VGG16
and VGG19 were used with the datasets EuroSAT and MoscowSAT for
training and testing respectively. Both datasets are from sentinel-2 red-
green-blue (RGB) images.

—  We have streamlined the models by tweaking the learning rate
hyperparameter for the highest accuracy.

—  The performances of the four models for classifying the 10
classes are displayed in the confusion matrix.

2. Literature review. Lately, after the introduction of neural
networks for solving general computer vision problems, neural networks for
satellite imagery have been included in the hot research topics. The reason
being satellite imagery hosts a lot of information that is very important for
solving problems that span a wide area of fields. Neural networks have
proven to be very important tools for extracting insights from these huge
collected data. Here we have mentioned some of the researches conducted
on the diverse fields of applications.

Before the introduction of deep learning, other machine learning
algorithms were applied to solve different problems. The algorithms
Support Vector Machine (SVM) and Random Forest (RF) were the most
successful classifiers of these types of algorithms [2]. Deep learning is
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different from these other machine learning algorithms in many ways. But
we want to mention the two reasons that make it so popular. One of the
reasons is that in the most problematic domains deep learning gives the
highest classification accuracy, and the second reason is that it doesn’t
require manual feature extraction, and this enables end-to-end connections
which automate feature extraction and perform the classification [2]. And as
a result of its high accuracy and automation of almost the whole process of
learning, it has been applied for solving problems in different application
areas. Remote sensing has been applied successfully to a variety of
classification and detection problems. The researchers in this study [11]
presented an evaluation of fully convolutional neural networks (FCNNs) for
road segmentation in satellite images. The authors’ models show results,
successfully extracting most of the roads in the test data set.

Detecting small objects such as vehicles in satellite images is a
difficult problem. Deep convolutional neural networks (DNNSs) can learn
rich features from the training data automatically, and they have achieved
state-of-the-art performance in many image classification databases. these
authors [12] proposed a vehicle detection method in satellite images using a
Deep Convolutional Neural Network(DNN). On a similar detection
problem, these authors [13] present a hybrid DNN (HDNN) that HDNN
significantly outperforms the traditional DNN for vehicle detection on
satellite images. Still, with the problem of object detection, the authors of
this paper [14] propose a new airport detection framework based on
objectiveness detection techniques (e.g., BING) and Convolutional Neural
Networks (CNN). Similarly, this work [15], proposed a method using
convolutional neural networks (CNNs) for airport detection on optical
satellite images.

Automatic object detection is a fundamental but challenging problem
in the process of interpretation of satellite images. In this paper [16], an
end-to-end multiscale convolutional neural network (MSCNN) is proposed,
which is based on a unified multiscale backbone named EssNet for
extracting features of diverse-scale objects in satellite images.

The paper on [17] describes a method for the effective semantic
segmentation of satellite images and compares different object classifiers in
terms of accuracy and execution time.

Very high resolution satellite imagery and image processing
algorithms allow for the development of remote sensing applications.
Recently, in addition to machine learning algorithms, deep learning
methods have also been used to classify VHR images. In this paper [18], the
authors compare the accuracy of the convolutional neural network (CNN)

968 WHdpopmaTuka 1 aBTomatusauums. 2022. Tom 21 Ne 5. ISSN 2713-3192 (nev.)
ISSN 2713-3206 (oHnainH) www.ia.spcras.ru



ARTIFICIAL INTELLIGENCE, KNOWLEDGE AND DATA ENGINEERING

algorithm with some machine learning methods, for the classification of a
satellite image with 50 cm spatial resolution.

Hyperspectral Satellite Images (HSI) present a rich spectrum of input
data. In this paper [19], the authors propose an approach to the reduction
and classification of HSI using dual Convolutional Neural Networks
(DCNN).

Deep learning with satellite images provides a way to make
predictions about the distribution of poverty. The work in this paper [20]
results in a test accuracy of 76% for the three countries, whose satellite
imagery is used in the research.

The work in this paper [21] aims to perform individual tree
recognition on the basis of satellite images using deep learning approaches
for northern temperate mixed forests in the Primorsky Region of the
Russian Far East. Using U-Net-like CNN, they obtained a mean accuracy
score of up to 0.96. A similar treetop detection proposed in this paper [22]
introduces a framework using the automatically generated pseudo labels
from unsupervised treetop detectors to train the CNNs, which saves manual
labelling efforts.

A deep learning algorithm, the convolution neural network (CNN),
was applied in this research [23] to rapidly extract road blockage
information. The kappa coefficient and the F1 score of the results were
77.60% and 87.95%, respectively.

The success of applying a deep learning algorithm for solving
problems is also dependent on the dataset collected for the purpose of
training. This article [24] focuses on evaluating the available and public
remote-sensing datasets and different techniques for satellite image
classification, using Convolution Neural Networks (CNNSs), precisely,
AlexNet architecture with SVM classifier.

The authors of this paper [25] proposed an approach that can be used
to extend the footprint of the high-resolution images to generate new time
frames or to downscale the remote sensing imagery based on a distant but
structurally similar training image. And in another domain, this paper
presents [26], the technique of processing satellite images with their
subsequent placement in cartographic services. There are many application
areas where deep learning makes a big impact, and it keeps growing. It can
be said that any problem domain that has a lot of data is suitable to be
solved using deep learning.

3. Materials and Methods. This work has utilized the result
achieved by the authors [27], in which they have created a dataset based on
Sentinel-2 satellite images covering 13 spectral bands constituting (Table 1)
10 classes with in total of 27,000 labeled and geo-referenced images. They
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provided benchmarks for this dataset with its spectral bands using state-of-
the-art deep Convolutional Neural Networks (CNNs) and with the proposed
dataset, they achieved an overall classification accuracy of 98.57%.

Table 1. Sentinel-2 RGB bands and parameters

Sentinel-2 Band Wave(l::rrllgt](:rz(nm) V\?i?j(:rfzgarL) ResglpuattiI(?rI](m)
Band 2-Blue 490 65 10
Band 3-Green 560 35 10
Band 4-Red 665 30 10

The free availability of continuous Earth observation satellite data
has motivated the processing of the data for some insights. This data
processing has resulted in devising solutions to wide area domains
including agriculture, environment, urban planning and disaster recovery.
One part of the processing involves creating structured semantics out of the
data, which is fundamental to creating LULC Classification [28].

LULC classification is an important task that enables us to
understand the relationship between humans and the environment. Land
Cover refers to the physical characteristics of the Earth’s surface, such as
vegetation, water, and soil, while Land Use refers to the purposes for which
humans exploit the Land Cover such as changes made by anthropogenic
activities [29, 30]. Therefore, the aim of LULC classification is to
automatically provide labels describing the represented physical land type
or how a land area is used. LULC changes (LULCC) are a very important
measurement for monitoring man-made changes (e.g., deforestation,
urbanization, and agriculture intensification) or natural phenomenon (e.g.,
droughts, floods, and natural fires). Therefore, LULC data enables the
creation of detailed mappings to enable sustainable development [29].

A. Study Area and Data. The test data for this study is collected from
the Moscow region, Russia (Figure 2). This area is selected for the reason of
applying the EuroSAT dataset as training data, which is created from
European urban areas and using the MoscowSAT as a test area. Since the
Moscow region is on the European side of Russia, we want to investigate
how well the training dataset of EuroSAT fits to the collected testing dataset
from the Moscow region.
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Fig. 2. Region of Interest (ROI) of the study — Moscow region, Russia

To perform this task, we utilize the results achieved by [27] and
apply them to the case of the Moscow region. And to keep everything
similar between the 2 datasets, we have used the same classes for the
classification. The LULC classes used in this study are Annual Crop,
Forest, Herbaceous Vegetation, Highway, Industrial, Pasture, Permanent
Crop, Residential, River, and Sea&Lake.

Generating labelled datasets requires manual work. We created the
test dataset first by gathering satellite images of the Moscow region from
Sentinel-2 and then, we created a dataset of 2,000 georeferenced and
labeled image patches, representing the 10 classes that we sought to
classify. The image patches measure 64x64 pixels and have been manually
checked.

The Sentinel-2 is one of the satellites under the European Space
Agency (ESA) Earth observation mission. ESA has made the continuously
collected satellite images freely available within its Copernicus program.
Besides this, sentinel-2 imagery is preferable for our task of LULC
classification for the following reasons: (1) This satellite image has 13
bands obtained from the MSI (Multispectral Imager) instrument, (2)
Temporal resolution of Sentinel-2 is 10 days performed by one satellite and
5 days performed with two satellites that will make large amounts of
observational data available. This satellite has a spatial resolution from 10
to 60 m. The satellite image is composed of the following bands 4 (red),
bands 3 (green), bands 2 (blue), bands 8 (Near-Infrared) and bands 11
(SWIR, Short-Wave Infrared). Band 4 is useful for identifying types of
vegetation, soil and urban features; band 3 provides excellent contrast
between clear and turbid (muddy) water; band 2 is useful for land and
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vegetation identification, forest type mapping, and identifying human-made
features; while band 11 is useful for measuring soil moisture and
vegetation, and it provides good contrast between various types of
vegetation.

B. Deep transfer learning for image classification. In this study, we
have used state-of-the-art deep learning algorithms with transfer learning
(Figure 3) for finding the optimal algorithm that gives high accuracy. This
is implemented using a jupyter notebook equipped with a TensorFlow GPU
computing environment. We have used “Differential learning rates”, which
means different learning rates for different parts of the network during our
training. The purpose of this is to divide the layers into various layer groups
and set different learning rates for each group so that we get the best results.

Source Target
model model
~ - Random -» o Train from
utput layer initialization utput layer scratch
co
Layer L - 1 . 2 S = LayerlL-1
Pretrain T 1

.....Copy - Fine-tune

L Layer1  }----- a7 S - Layer 1

Source dataset Target dataset

Fig. 3. Transfer Learning

This study used a supervised approach — creating training samples
from input images as an automatic classification process. The final result of
this process is a labeled dataset for training a classifier. The process starts
by collecting data and ends by making predictions of the data into its
respective classes. This process is depicted in Figure 4. And from the
process implementation side, it can be summarized as: loading data from
hard disk, data splitting into training and testing dataset, training CNN
model, and evaluating model performance.
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Fig. 4. Training process of the LULC classification

We divided the dataset into a training set (80%), validation set (10%)
and test set (10%), in order to perform the training, validation and testing,
respectively. We have used ResaNet 50 with transfer learning to train the
model. This artificial neural network is basically composed of a 7x7
convolutional layer with 64 output channels and a stride of 2 followed by
the 3x3 maximum pooling layer with a stride of 2. The batch normalization
layer is added after each convolutional layer. Finally, the layers are
preceded by one Flatten Layer, two Dense Layers and a Softmax Layer. The
model architecture is depicted in Figure 5.

Max- ~N PPl ® Rl l- w s
* % o x| x| Xk k[ X -
pool I A0S 2SR Avg pool
O OO olooSo02
N Bl EEEPEEE
=
S 2R RIRRERRRR
N ~EER o 5 B
anfn - aa% gf—\‘ng
o @ N (SIS DSIDNIES
> 3x 4x 6x 3x

Fig. 5. ResNet 50 Model Architecture
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4. Results and Discussion. We run the classification algorithms
ResNet 50, ResNet 152, VGG 16 and VGG 19 with transfer learning using
the EuroSAT dataset and then continue training models with MoscowSAT
dataset for the specifics related to the Moscow region. The used model and
the dataset are crucial to achieving high accuracy. We have carefully
created the MoscowSAT dataset to reflect the ground truth so that this part
of the learning will be specific for the region. The results of our code
analysis in the confusion matrix are displayed in Figure 6 from a to d. The
confusion matrix is the results of the fine tunned training on the test dataset
MoscowSAT using satellite images in the RGB color space. We discovered
that ResNet 50 gives the highest accuracy, which is 98% in the training and
97.5% in the testing. As can be seen in the confusion matrix, there was high
precision for almost all of the classes except there was some miss
classification between permanent and annual crops (Figure 7). The
comparison of the results of the three NN algorithms used is displayed
in Table 2.

Table 2. Comparison of accuracy
ResNet50 ResNet152 VGG16 VGG19
0.975292588 0.932193944 0.952134497 0.968265

Accuracy

Ann Crop (ORI 0.00 0.01 0.00 0.00 0.00 0.03 0.00 0.10 0.00
Forest 0,00 |gte] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

B vegetation 0.00 0.01 [#EH]0.00 0.00 0.04 0.00 0.00 0.00 0.00 08
% Highway 0.00 0.00 0.00 [¥X:r8 0.00 0.00 0.00 0.00 0.02 0.00
;‘ industral 0.00 0.00 0.00 0.00 [W8=31 0.00 0.00 0.03 0.00 0.00 06%
g Pasture 0.01 0.00 0.02 0.00 0.00 juels] 0.00 0.00 0.00 0.00 ) @
E percrop 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 04
DL Residential 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
River 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 02
seadlake (.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 00

R e 0 P @ o® et e
,,.t,\"c" {_ﬂa:aéd@\\i\ @.ﬁ:\ 0&“\"9 "”"w(qe‘o‘:&\ BE.;\\\"{;N’ o8
True Label
a) ResNet-50
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Fig. 6. Results of the fine tunned training on the test dataset MoscowSAT using
satellite images in the RGB color space
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Fig. 7. ResNet-50 sample prediction output. The text displays the actual and
predicted levels of each image. The permanent crop is confused with annual crop
in this sample output

5. Conclusion. Regional land use planning and monitoring remain to
be an important process that enables appropriate and optimal usage of
resources. Despite many proposed models in the studies, the task remained
a challenging problem. In this paper, we have used transfer learning of deep
learning models for creating LULC of the Moscow region. We have fine-
tuned 4 models of CNN, namely ResNet50, ResNetl52, VGG16 and
VGG19 with transfer learning and adjusting the learning rate for the optimal
accuracy.
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In general, our study is tailored toward creating the right tools to
automate the extraction of information from satellite imagery. We have
demonstrated the capability of remote sensing data together with deep
learning for solving real-world problems. We achieved this by working
towards creating the LULC Classification of the Moscow region. This study
presented the results of LULC classification using Sentinel-2 satellite RGB
imagery as input, the CNN model as the classifier, and the Moscow region
area as the location for this study. The results showed that the ResNet50
CNN model together with transfer learning achieved high accuracy in
classifying the 10 classes.
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T.T. YUoOTEP, 10.H. PA3YMHBIi1, B.K. JIOBAHOB
I''TYBOKOE TPAHC®EPHOE OBYUEHUE HA OCHOBE
CIYTHUKOBBIX U30BPAKEHUM 1151 KJIACCUDUKALIUU
3EMJIEIIOJIB30BAHUS U 3BEMHOI'O IIOKPOBA

Yugpmep T.T., Pasymnouii FO.H., JIobanos B.K. I'tydokoe TpaHcdhepHoe 00yueHne Ha 0CHOBE
CIYTHUKOBBIX MH300pa’keHMil Il KJIacCH(PUKAIMM 3eMJIeN0JIb30BAHHS W 3eMHOI0
TOKpOBa.

AHHOTanMsl. AJTOPUTMBI TIIyOOKOTrO OOyYeHHs ChIpalld BaXKHYI0 PONb B PCIICHHUH
MHOTHX KOMIUICKCHBIX 33/1ad, 3a CYET aBTOMATHYECKOTO M3Yyd4EHHMsI MPaBiUl (aIrOPHTMOB) Ha
OCHOBE BBIOOPDOYHBIX JAaHHBIX, KOTOPBIC 3aTEM COIOCTABISIOT BXOJHBIC JaHHBIC C
COOTBETCTBYIOIIMMH BBIXOJHBIMH JaHHBIMU. Llenb pabGoOTBI: BBINONHUTH KIACCH(PUKALHIO
3eMHBIX TOKpoBOB (LULC) CHYyTHHKOBEIX CHUMKOB MOCKOBCKOH 00NacTH Ha OCHOBE
00y4aromuX TAaHHBIX M CPAaBHHUTH TOYHOCTH KIACCH(MKAIMH, MOIYYCHHOH C MPUMEHEHHEM
psina Mozener Tirybokoro obydeHus. MeTojpl: TOYHOCTb, JOCTHraeMasi IpH KIIacCH(pUKaIUH
3eMHBIX IIOKPOBOB C MCIIOJIb30BAHHEM AJIFOPHTMOB TIIIyOOKOro OOydeHHs ¥ JaHHBIX
KOCMHYECKOH ChEMKH, 3aBHCHT KaK OT KOHKPETHOH MOZIEIH ITyOOKOro oOyd4eHHs, Tak M OT
UCHOJb3yeMol oOydaromieil BHIOOpKH. MBI HCIONB30BaIM HanOONEe COBPEMEHHBIE MOJETH
riy0okoro oOydeHHs M OOy4eHHs C TOJKPEIUICHHEM BKYyNE C pEJIeBaHTHBIM HabOpOM
oOy4aromux JaHHbIX. [l TOHKOM KOPPEKTHPOBKHM IapaMETPOB MOJENeH M IOATOTOBKH
oOyuaroliero Habopa JaHHBIX MPUMEHSUINCH Pa3JIMBHBIC METOABI, B TOM YHCIIE ayrMEHTaIUs
naHHbIX. Pesymbrathl: IIpuMeHEHBI dYeThIpe MoOJENM IIyOOKOro oOydeHHs Ha OCHOBE
apxutekTyp Residual Network (ResNet) m Visual Geometry Group (VGG) Ha ocHOBe
o0ydenus ¢ noaxperienneM: ResNet50, ResNetl152, VGG16 nu VGG19. Tocnenytromee 1o-
o0ydeHHe MOpeNeil BBIMONHIOCH C WCIOIB30BAaHMEM OOYYaOMNX [JAaHHBIX, COOpaHHBIX
coyraukoM JI33 Sentinel-2 nHa Tepputopumu MockoBckoil obmactu. Ha ocHOBe oleHKH
pe3ynbTaToB, apxurekTypa ResNet50 pana Hambosee BBICOKYIO TOYHOCTh KiIacCH(MKAIMH
3eMHBIX IIOKPOBOB Ha TEPPUTOPUH BBIOPAHHOIO perroHa. IIpakTHdeckas 3HaYMMOCTb: aBTOPBI
paspaboTtay aIroput™M OO0y4eHHsI YETBIPEX Mojeneld MIyOOKOoro o0y4eHHs C HOCHeTYHOIeH
KJIaccudukanyeil pparMeHToB BXOJHOI0 KOCMUYECKOI0 CHUMKA C IIPHCBOCHHEM OHOro u3 10
KJ1acCOB (OAHOJIETHHE KYJIBTYPBI, JIECHON MOKPOB, TPABSIHUCTAsI PACTUTEIBHOCTD, aBTOJOPOTH
U 110CCe, IPOMBIIIICHHAs! 3aCTPOiiKa, MaCTOMIA, MHOTOJIICTHHE KYJIBTYpBI, KHIas 3aCTPOiiKa,
PEKH U 03epa).

KiroueBble cj10Ba: HEHPOHHBIE CETH, TIIyOOKOe TpaHCchepHOE 00ydeHUE, KIIacCH(HKAIIUST
3eMJICTIONIb30BAHHS, CITyTHUKOBBIC CHUMKH.
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