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Abstract. Deep learning has been instrumental in solving difficult problems by 
automatically learning, from sample data, the rules (algorithms) that map an input to its 
respective output. Purpose: Perform land use landcover (LULC) classification using the 
training data of satellite imagery for Moscow region and compare the accuracy attained from 
different models. Methods: The accuracy attained for LULC classification using deep learning 
algorithm and satellite imagery data is dependent on both the model and the training dataset 
used. We have used state-of-the-art deep learning models and transfer learning, together with 
dataset appropriate for the models. Different methods were applied to fine tuning the models 
with different parameters and preparing the right dataset for training, including using data 
augmentation. Results: Four models of deep learning from Residual Network (ResNet) and 
Visual Geometry Group (VGG) namely: ResNet50, ResNet152, VGG16 and VGG19 has been 
used with transfer learning. Further training of the models is performed with training data 
collected from Sentinel-2 for the Moscow region and it is found that ResNet50 has given the 
highest accuracy for LULC classification for this region. Practical relevance: We have 
developed code that train the 4 models and make classification of the input image patches into 
one of the 10 classes (Annual Crop, Forest, Herbaceous Vegetation, Highway, Industrial, 
Pasture, Permanent Crop, Residential, River, and Sea&Lake). 

Keywords: neural networks, deep transfer learning, land use land cover classification, 
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1. Introduction. There is no doubt that soon artificial intelligence 
(AI) will penetrate every task that requires intelligent decisions based on 
learning from the collected data. It will change the way things are done, 
from language translation to self-driving cars and plenty of other tasks 
essential for a human being. It will have a remarkable effect on our day-to-
day life. In recent years, AI’s success is accelerated by advancement in deep 
learning (DL), a subset of AI dealing with learning from experience or data 
[1]. 

There are several reasons why deep learning is spreading across 
many fields so fast now. The availability of big data collected so far allows 
preparing massive training datasets required for DL applications. The rapid 
improvement of hardware and software computer components has enabled 
scientists to solve problems that were not solvable a few years ago. Science 
and engineering topics that were taken by Ph.D. students to do their 
complete thesis now can be addressed with a few lines of code on a decent 
computing device. Datasets can be collected online, and state-of-the-art 
algorithms can be applied to the same data leading to different outputs [2]. 
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Meanwhile, the advances in Earth observation (EO) technologies 
have significantly improved the spatial, spectral, and temporal resolution of 
remotely sensed imagery. These achievements have allowed satellites to 
collect big EO data on a global scale related to different application 
scenarios. Simultaneously, deep learning is outpacing the other machine 
learning techniques in LULC classification tasks on satellite images [2]. 

Preparing training datasets is arguably the most challenging step in 
any machine learning project. EO data’s nature adds additional complexity 
to the process because of higher spectral and radiometric resolution and 
other specific issues such as cloud and atmospheric noise. 

The emergence of Google Earth Engine (GEE), the first publicly 
available cloud platform for big EO data analysis, has enabled scientists to 
process and analyze geospatial data in a multi-petabyte catalog without 
solving technical issues related to big data [3, 4, 5]. 

The platform proved to be helpful in preparing experiment-ready 
images with masked clouds and cloud shadows, snow/ice, and low-quality 
pixels, which is necessary for almost all remote sensing-related studies [6]. 
The increasing attention to GEE from researchers is pictured in Figure 1. 
This data is retrieved from an abstract and citation database Scopus with a 
search query: (TITLE-ABS-KEY ("earth engine") AND TITLE-ABS-KEY 
(google) AND DOCTYPE (ar OR re) AND PUBYEAR < 2022. However, 
only 15 from 691 published works relate to deep learning, making  
DL-related applications with GEE an urgent research topic. 

 

 
Fig. 1. Number of publications of the topic Deep Learning in Scopus 
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As it is complicated to construct large-scale well-annotated datasets 
due to the expense of data acquisition and labelling, a new DL approach 
called deep transfer learning (DTL) was developed allowing to solve the 
problem of insufficient training data. In DTL, the training data and test data 
are not required to be independent and identically distributed, and the target 
model does not need to be trained from scratch, which can significantly 
reduce the demand for training data and training time [7]. 

The technological advancements in both the data collection and 
processing have enabled a lot of new applications to pop up for solving real- 
world problems. The field of remote sensing has come a long way now to 
become very developed in collecting huge amounts of data that cover the 
entire earth and with continuous improvements in the quality of collected 
data. Even though different platforms can be used to collect remote sensing 
data, we are mainly focusing on data collected from satellites as it is the one 
which covers the entire earth. These huge continuously collected data have 
to be converted into insights to be useful for humanity. The complexity of 
the remotely sensed data hinders the extraction of insights out of it. Luckily, 
the advancement of technologies in the computing world has been a great 
motivation to process these huge data and extracting the right information at 
the right time. The recent development in Artificial Intelligence (AI) 
together with the progress made in the field of Computer Vision has given a 
lot of hope and hype for utilizing the remotely sensed data in different 
application areas. However, there is a gap between the continuously 
improving rate and quality of the collected data and its utilization for 
solving problems. This gap is a challenge, but at the same time, it is also an 
opportunity, that if the rate of utilization is improved, many difficult 
problems related to Agriculture, Climate, Environment, Economical and 
other areas will be tackled in an automated fashion. 

The past decade has seen rapid progress in the capacity of DL 
especially for detecting objects from an image. In the state-of-the-art 
algorithms, the capability of DL has reached the human level, even better in 
some situations. But these DL algorithms cannot yield the same results 
when applied in remote sensing, and the reason for this is that there are 
some differences between these general image types and remote sensing 
images. So, there is a need to find the right approach for remote sensing 
data to benefit from the current achievement of DL in the general non-aerial 
image types. This approach requires understanding the spectral, spatial, and 
other characteristics of the remote sensing images, like texture. 

With huge collected data and advancements in computational 
resources, remote sensing has become one of the beneficiaries of deep 
learning. At the same time, remote-sensing data presents some new 
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challenges for deep learning, because satellite image analysis raises unique 
issues that pose difficult new scientific questions. The authors in [8] discuss 
the unique characteristics of remote sensing data saying that it comes from 
geodetic measurements with quality controls that are completely dependent 
on the adequacy of a sensor, and they are geo-located, time variable and 
usually multi-modal, i.e., captured jointly by different sensors with different 
contents. These characteristics raise new challenges on how to deal with the 
data that comes with a variety of impacting variables and may require prior 
knowledge about how it has been acquired. In addition, despite the fast-
growing data volume on a global scale that contains plenty of metadata, it is 
lacking adequate annotations for direct use of supervised machine learning-
based approaches. Therefore, to effectively employ machine learning and 
deep learning techniques on such data, additional efforts are needed. 
Moreover, in many cases, remote sensing is to retrieve geophysical and 
geochemical quantities rather than land cover classification and object 
detection, which [8] indicates that expert-free use of deep learning 
techniques is still getting questioned. Further challenges include limited 
resolution, high dimensionality, redundancy within data, atmospheric and 
acquisition noise, calibration of spectral bands, and many other source-
specific issues [2, 8]. 

The success of the methods of DL in applications of remote sensing 
imagery depends on both the data and the used DL model. DL is a data- 
hungry process that thrives when there is a lot of training data. But there are 
many situations where it is very hard to get enough training data. In 
situations like this, data augmentation has been used to compensate for the 
lack of enough training samples [9]. 

One thing that we observed from our experiments is the importance 
of understanding the data itself. Even though the enhancements in the 
algorithms have improved the accuracy of training and testing, at some 
point it becomes stagnant that the model almost makes no progress at all. 
As a result, we concentrated our focus on the collected training data and we 
improved its quality by carefully selecting representative data and its results 
with an improvement in the accuracy of the detection. 

The remote sensing methods of the Earth together with the 
development of the algorithms for processing them are the best combination 
to tackle problems that are affecting the Earth we live on. The relevance of 
these studies is associated with such challenges as climate change and 
predictions, analysis, and recognition of technical objects, infrastructure, 
preservation and development of environmental systems that is important 
for the global system of Society and ecology as well as for many other 
practical tasks. 
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With the Petabyte-scale images collected from satellites, information 
extraction could be challenging. Deep learning methods, which thrive in 
data-driven applications, can be the right tool to create insights out of this 
huge collected data. However, the methods require the laborious preparation 
of training datasets. The quality of the collected training data is as important 
as developing the right deep learning model for attaining high accuracy with 
the inferences [10]. This data-centric approach helps to make some 
accuracy gains. With this study, we tried to classify land use land cover in 
the Moscow region, by using a publicly available EuroSAT dataset. This 
dataset is created from European urban areas. The reason that we used this 
dataset is that there is a lot of similarity between the Moscow region and the 
European urban areas where this dataset is collected from. 

In this paper, to create a LULC map of the Moscow region, we 
prepared a high-quality annotated test and validation datasets using satellite 
imagery in the Google Earth Engine platform. Based on the existing Earth 
observation datasets, we train state-of-the-art deep learning algorithms 
through transfer learning to distinguish between ten LULC classes. And in 
doing so, we made the following contributions: 

− We introduce Moscow patch-based LULC classification dataset 
(MoscowSAT) based on Sentinel-2 satellite images. Every image in the 
dataset is labeled and geo-referenced. 

− Four models of CNNs namely ResNet-50, ResNet-152, VGG16 
and VGG19 were used with the datasets EuroSAT and MoscowSAT for 
training and testing respectively. Both datasets are from sentinel-2 red-
green-blue (RGB) images. 

− We have streamlined the models by tweaking the learning rate 
hyperparameter for the highest accuracy. 

− The performances of the four models for classifying the 10 
classes are displayed in the confusion matrix. 

2. Literature review. Lately, after the introduction of neural 
networks for solving general computer vision problems, neural networks for 
satellite imagery have been included in the hot research topics. The reason 
being satellite imagery hosts a lot of information that is very important for 
solving problems that span a wide area of fields. Neural networks have 
proven to be very important tools for extracting insights from these huge 
collected data. Here we have mentioned some of the researches conducted 
on the diverse fields of applications.  

Before the introduction of deep learning, other machine learning 
algorithms were applied to solve different problems. The algorithms 
Support Vector Machine (SVM) and Random Forest (RF) were the most 
successful classifiers of these types of algorithms [2]. Deep learning is 
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different from these other machine learning algorithms in many ways. But 
we want to mention the two reasons that make it so popular. One of the 
reasons is that in the most problematic domains deep learning gives the 
highest classification accuracy, and the second reason is that it doesn’t 
require manual feature extraction, and this enables end-to-end connections 
which automate feature extraction and perform the classification [2]. And as 
a result of its high accuracy and automation of almost the whole process of 
learning, it has been applied for solving problems in different application 
areas. Remote sensing has been applied successfully to a variety of 
classification and detection problems. The researchers in this study [11] 
presented an evaluation of fully convolutional neural networks (FCNNs) for 
road segmentation in satellite images. The authors’ models show results, 
successfully extracting most of the roads in the test data set. 

Detecting small objects such as vehicles in satellite images is a 
difficult problem. Deep convolutional neural networks (DNNs) can learn 
rich features from the training data automatically, and they have achieved 
state-of-the-art performance in many image classification databases. these 
authors [12] proposed a vehicle detection method in satellite images using a 
Deep Convolutional Neural Network(DNN). On a similar detection 
problem, these authors [13] present a hybrid DNN (HDNN) that HDNN 
significantly outperforms the traditional DNN for vehicle detection on 
satellite images. Still, with the problem of object detection, the authors of 
this paper [14] propose a new airport detection framework based on 
objectiveness detection techniques (e.g., BING) and Convolutional Neural 
Networks (CNN). Similarly, this work [15], proposed a method using 
convolutional neural networks (CNNs) for airport detection on optical 
satellite images. 

Automatic object detection is a fundamental but challenging problem 
in the process of interpretation of satellite images. In this paper [16], an 
end-to-end multiscale convolutional neural network (MSCNN) is proposed, 
which is based on a unified multiscale backbone named EssNet for 
extracting features of diverse-scale objects in satellite images. 

The paper on [17] describes a method for the effective semantic 
segmentation of satellite images and compares different object classifiers in 
terms of accuracy and execution time. 

Very high resolution satellite imagery and image processing 
algorithms allow for the development of remote sensing applications. 
Recently, in addition to machine learning algorithms, deep learning 
methods have also been used to classify VHR images. In this paper [18], the 
authors compare the accuracy of the convolutional neural network (CNN) 
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algorithm with some machine learning methods, for the classification of a 
satellite image with 50 cm spatial resolution. 

Hyperspectral Satellite Images (HSI) present a rich spectrum of input 
data. In this paper [19], the authors propose an approach to the reduction 
and classification of HSI using dual Convolutional Neural Networks 
(DCNN). 

Deep learning with satellite images provides a way to make 
predictions about the distribution of poverty. The work in this paper [20] 
results in a test accuracy of 76% for the three countries, whose satellite 
imagery is used in the research. 

The work in this paper [21] aims to perform individual tree 
recognition on the basis of satellite images using deep learning approaches 
for northern temperate mixed forests in the Primorsky Region of the 
Russian Far East. Using U-Net-like CNN, they obtained a mean accuracy 
score of up to 0.96. A similar treetop detection proposed in this paper [22] 
introduces a framework using the automatically generated pseudo labels 
from unsupervised treetop detectors to train the CNNs, which saves manual 
labelling efforts. 

A deep learning algorithm, the convolution neural network (CNN), 
was applied in this research [23] to rapidly extract road blockage 
information. The kappa coefficient and the F1 score of the results were 
77.60% and 87.95%, respectively. 

The success of applying a deep learning algorithm for solving 
problems is also dependent on the dataset collected for the purpose of 
training. This article [24] focuses on evaluating the available and public 
remote-sensing datasets and different techniques for satellite image 
classification, using Convolution Neural Networks (CNNs), precisely, 
AlexNet architecture with SVM classifier.  

The authors of this paper [25] proposed an approach that can be used 
to extend the footprint of the high-resolution images to generate new time 
frames or to downscale the remote sensing imagery based on a distant but 
structurally similar training image. And in another domain, this paper 
presents [26], the technique of processing satellite images with their 
subsequent placement in cartographic services. There are many application 
areas where deep learning makes a big impact, and it keeps growing. It can 
be said that any problem domain that has a lot of data is suitable to be 
solved using deep learning. 

3. Materials and Methods. This work has utilized the result 
achieved by the authors [27], in which they have created a dataset based on 
Sentinel-2 satellite images covering 13 spectral bands constituting (Table 1) 
10 classes with in total of 27,000 labeled and geo-referenced images. They 
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provided benchmarks for this dataset with its spectral bands using state-of-
the-art deep Convolutional Neural Networks (CNNs) and with the proposed 
dataset, they achieved an overall classification accuracy of 98.57%. 

 
Table 1. Sentinel-2 RGB bands and parameters 

Sentinel-2 Band Center 
Wavelength(nm) 

Spectral 
Width(nm) 

Spatial 
Resolution(m) 

Band 2-Blue  490 65 10 

Band 3-Green 560 35 10 

Band 4-Red  665 30 10 
 

The free availability of continuous Earth observation satellite data 
has motivated the processing of the data for some insights. This data 
processing has resulted in devising solutions to wide area domains 
including agriculture, environment, urban planning and disaster recovery. 
One part of the processing involves creating structured semantics out of the 
data, which is fundamental to creating LULC Classification [28]. 

LULC classification is an important task that enables us to 
understand the relationship between humans and the environment. Land 
Cover refers to the physical characteristics of the Earth’s surface, such as 
vegetation, water, and soil, while Land Use refers to the purposes for which 
humans exploit the Land Cover such as changes made by anthropogenic 
activities [29, 30]. Therefore, the aim of LULC classification is to 
automatically provide labels describing the represented physical land type 
or how a land area is used. LULC changes (LULCC) are a very important 
measurement for monitoring man-made changes (e.g., deforestation, 
urbanization, and agriculture intensification) or natural phenomenon (e.g., 
droughts, floods, and natural fires). Therefore, LULC data enables the 
creation of detailed mappings to enable sustainable development [29]. 

A. Study Area and Data. The test data for this study is collected from 
the Moscow region, Russia (Figure 2). This area is selected for the reason of 
applying the EuroSAT dataset as training data, which is created from 
European urban areas and using the MoscowSAT as a test area. Since the 
Moscow region is on the European side of Russia, we want to investigate 
how well the training dataset of EuroSAT fits to the collected testing dataset 
from the Moscow region. 
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Fig. 2. Region of Interest (ROI) of the study – Moscow region, Russia 
 
To perform this task, we utilize the results achieved by [27] and 

apply them to the case of the Moscow region. And to keep everything 
similar between the 2 datasets, we have used the same classes for the 
classification. The LULC classes used in this study are Annual Crop, 
Forest, Herbaceous Vegetation, Highway, Industrial, Pasture, Permanent 
Crop, Residential, River, and Sea&Lake. 

Generating labelled datasets requires manual work. We created the 
test dataset first by gathering satellite images of the Moscow region from 
Sentinel-2 and then, we created a dataset of 2,000 georeferenced and 
labeled image patches, representing the 10 classes that we sought to 
classify. The image patches measure 64x64 pixels and have been manually 
checked. 

The Sentinel-2 is one of the satellites under the European Space 
Agency (ESA) Earth observation mission. ESA has made the continuously 
collected satellite images freely available within its Copernicus program. 
Besides this, sentinel-2 imagery is preferable for our task of LULC 
classification for the following reasons: (1) This satellite image has 13 
bands obtained from the MSI (Multispectral Imager) instrument, (2) 
Temporal resolution of Sentinel-2 is 10 days performed by one satellite and 
5 days performed with two satellites that will make large amounts of 
observational data available. This satellite has a spatial resolution from 10 
to 60 m. The satellite image is composed of the following bands 4 (red), 
bands 3 (green), bands 2 (blue), bands 8 (Near-Infrared) and bands 11 
(SWIR, Short-Wave Infrared). Band 4 is useful for identifying types of 
vegetation, soil and urban features; band 3 provides excellent contrast 
between clear and turbid (muddy) water; band 2 is useful for land and 
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vegetation identification, forest type mapping, and identifying human-made 
features; while band 11 is useful for measuring soil moisture and 
vegetation, and it provides good contrast between various types of 
vegetation. 

B. Deep transfer learning for image classification. In this study, we 
have used state-of-the-art deep learning algorithms with transfer learning 
(Figure 3) for finding the optimal algorithm that gives high accuracy. This 
is implemented using a jupyter notebook equipped with a TensorFlow GPU 
computing environment. We have used “Differential learning rates”, which 
means different learning rates for different parts of the network during our 
training. The purpose of this is to divide the layers into various layer groups 
and set different learning rates for each group so that we get the best results. 

 

 
Fig. 3. Transfer Learning 

 
This study used a supervised approach – creating training samples 

from input images as an automatic classification process. The final result of 
this process is a labeled dataset for training a classifier. The process starts 
by collecting data and ends by making predictions of the data into its 
respective classes. This process is depicted in Figure 4. And from the 
process implementation side, it can be summarized as: loading data from 
hard disk, data splitting into training and testing dataset, training CNN 
model, and evaluating model performance. 
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Fig. 4. Training process of the LULC classification 

 
We divided the dataset into a training set (80%), validation set (10%) 

and test set (10%), in order to perform the training, validation and testing, 
respectively. We have used ResaNet 50 with transfer learning to train the 
model. This artificial neural network is basically composed of a 7×7 
convolutional layer with 64 output channels and a stride of 2 followed by 
the 3×3 maximum pooling layer with a stride of 2. The batch normalization 
layer is added after each convolutional layer. Finally, the layers are 
preceded by one Flatten Layer, two Dense Layers and a Softmax Layer. The 
model architecture is depicted in Figure 5. 

 

Fig. 5. ResNet 50 Model Architecture 
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4. Results and Discussion. We run the classification algorithms 
ResNet 50, ResNet 152, VGG 16 and VGG 19 with transfer learning using 
the EuroSAT dataset and then continue training tmodels with MoscowSAT 
dataset for the specifics related to the Moscow region. The used model and 
the dataset are crucial to achieving high accuracy. We have carefully 
created the MoscowSAT dataset to reflect the ground truth so that this part 
of the learning will be specific for the region. The results of our code 
analysis in the confusion matrix are displayed in Figure 6 from a to d. The 
confusion matrix is the results of the fine tunned training on the test dataset 
MoscowSAT using satellite images in the RGB color space. We discovered 
that ResNet 50 gives the highest accuracy, which is 98% in the training and 
97.5% in the testing. As can be seen in the confusion matrix, there was high 
precision for almost all of the classes except there was some miss 
classification between permanent and annual crops (Figure 7). The 
comparison of the results of the three NN algorithms used is displayed 
in Table 2. 

 
Table 2. Comparison of accuracy 

Accuracy ResNet50 ResNet152 VGG16 VGG19 
0.975292588 0.932193944 0.952134497 0.968265 

 
 

 
a) ResNet-50 
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b) ResNet-152 

 

 
c) VGG 16 

 

 
d) VGG 19 

Fig. 6. Results of the fine tunned training on the test dataset MoscowSAT using 
satellite images in the RGB color space 
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Fig. 7. ResNet-50 sample prediction output. The text displays the actual and 

predicted levels of each image. The permanent crop is confused with annual crop 
in this sample output 

 
5. Conclusion. Regional land use planning and monitoring remain to 

be an important process that enables appropriate and optimal usage of 
resources. Despite many proposed models in the studies, the task remained 
a challenging problem. In this paper, we have used transfer learning of deep 
learning models for creating LULC of the Moscow region. We have fine-
tuned 4 models of CNN, namely ResNet50, ResNet152, VGG16 and 
VGG19 with transfer learning and adjusting the learning rate for the optimal 
accuracy. 
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In general, our study is tailored toward creating the right tools to 
automate the extraction of information from satellite imagery. We have 
demonstrated the capability of remote sensing data together with deep 
learning for solving real-world problems. We achieved this by working 
towards creating the LULC Classification of the Moscow region. This study 
presented the results of LULC classification using Sentinel-2 satellite RGB 
imagery as input, the CNN model as the classifier, and the Moscow region 
area as the location for this study. The results showed that the ResNet50 
CNN model together with transfer learning achieved high accuracy in 
classifying the 10 classes. 
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ГЛУБОКОЕ ТРАНСФЕРНОЕ ОБУЧЕНИЕ НА ОСНОВЕ 

СПУТНИКОВЫХ ИЗОБРАЖЕНИЙ ДЛЯ КЛАССИФИКАЦИИ 
ЗЕМЛЕПОЛЬЗОВАНИЯ И ЗЕМНОГО ПОКРОВА 

 
Уифтер Т.Т., Разумный Ю.Н., Лобанов В.К. Глубокое трансферное обучение на основе 
спутниковых изображений для классификации землепользования и земного 
покрова. 

Аннотация. Алгоритмы глубокого обучения сыграли важную роль в решении 
многих комплексных задач, за счет автоматического изучения правил (алгоритмов) на 
основе выборочных данных, которые затем сопоставляют входные данные с 
соответствующими выходными данными. Цель работы: выполнить классификацию 
земных покровов (LULC) спутниковых снимков Московской области на основе 
обучающих данных и сравнить точность классификации, полученной с применением 
ряда моделей глубокого обучения. Методы: точность, достигаемая при классификации 
земных покровов с использованием алгоритмов глубокого обучения и данных 
космической съёмки, зависит как от конкретной модели глубокого обучения, так и от 
используемой обучающей выборки. Мы использовали наиболее современные модели 
глубокого обучения и обучения с подкреплением вкупе с релевантным набором 
обучающих данных. Для тонкой корректировки параметров моделей и подготовки 
обучающего набора данных применялись разливные методы, в том числе аугментация 
данных. Результаты: Применены четыре модели глубокого обучения на основе 
архитектур Residual Network (ResNet) и Visual Geometry Group (VGG) на основе 
обучения с подкреплением: ResNet50, ResNet152, VGG16 и VGG19. Последующее до-
обучение моделей выполнялось с использованием обучающих данных, собранных 
спутником ДЗЗ Sentinel-2 на территории Московской области. На основе оценки 
результатов, архитектура ResNet50 дала наиболее высокую точность классификации 
земных покровов на территории выбранного региона. Практическая значимость: авторы 
разработали алгоритм обучения четырёх моделей глубокого обучения с последующей 
классификацией фрагментов входного космического снимка с присвоением одного из 10 
классов (однолетние культуры, лесной покров, травянистая растительность, автодороги 
и шоссе, промышленная застройка, пастбища, многолетние культуры, жилая застройка, 
реки и озера).  

Ключевые слова: нейронные сети, глубокое трансферное обучение, классификация 
землепользования, спутниковые снимки. 
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