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В данной работе приведена экспериментальная оценка применимости стереологического принципа (равенство площадных 
иbобъемных соотношений) для невысоких содержаний изучаемой фазы иbразличных текстурно-структурных параметров. Этот 
принцип хорошо работает для равномерно распределенных вbобъеме эллипсоидальных частиц. В других случаях кbсредним 
значениям соотношений фаз, определенных по шлифам или аншлифам, необходимо применять поправочный коэффициент, 
зависящий от структурно-текстурных характеристик.

Ключевые слова: стереологический принцип, соотношение фаз, шлифы, аншлифы, трехмерное моделирование

Estimation of volumetric content of phases from random cross sections
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In this paper we present an experimental evaluation of the applicability of the stereological principle (equality of area and vol-
ume ratios) for low contents of the studied phase and various textural and structural parameters. This principle works well for uni-
formly distributed ellipsoidal particles. In other cases, it is necessary to apply a correction factor to the average values of the phase 
ratios determined from sections. This factor depends on textural and structural characteristics.
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Введение

Проблема стереологической реконструкции заклю-
чается вbопределении объемных характеристик объек-
тов по их сечениям (Салтыков, 1976; Чернявский, 1977). 
Применительно кbшлифам иbаншлифам горных пород 
это оценка объемного содержания фазы породы по до-
ле площади, занимаемой ей вbсечении, аbтакже опре-
деление размера частиц по размеру их сечений (Chayes, 
1956). Подобные задачи возникают при любом микро-
скопическом изучении горных пород, аbточность их ре-
шения существенно влияет на дальнейшие интерпре-
тации. Проблема стереологической реконструкции иbее 
разнообразные решения известны сbсередины XIX ве-
ка (Delesse, 1848). Объемные соотношения фаз предла-
галось аппроксимировать соотношениями вbсечениях 
площадей (или вероятностей попадания случайных то-
чек вbту или иную область) или линейных размеров 
(Delesse, 1848; Rosiwal, 1898; Wicksel, 1926; Глаголев, 
1941). Подробный исторический обзор данного вопро-
са приведен вbработе Ю. Л. Войтеховского (2018).

Данная работа посвящена решению первой зада-
чиb— определению объемного содержания фазы поро-
ды по доле площади, занимаемой им вbшлифе или ан-
шлифе.

Отсутствие строгого аналитического решения для 
неравномерно распределенных частиц неизвестной 
(случайной) формы иbразмера по одному случайному 

сечению очевидна (Chayes, 1956; Бакунов, Беляков, 
1992). Один из экстремальных случаевb— пластинча-
тые частицы, лежащие вbодной плоскости, могут зани-
мать 100b% площади вbсечении, проходящем вbней, 
иb0b% вbсечении, не пересекающем ее. Даже при рав-
номерном распределении частиц известной формы 
строгое аналитическое решение по одному случайно-
му сечению невозможно. При наличии данных по мно-
гим случайным сечениям аналитическими методами 
можно получить смещенную оценку объемных соот-
ношений частиц (Усманов, 1977), аbвbслучае эллипсои-
дальных частицb— оценить не только объемные соот-
ношения, но иbраспределение их по размеру (Wicksel, 
1926; Шванов, Марков, 1960). Когда не требуется высо-
кая точность иbможно получить много сечений образ-
ца породы, условно принимается, что средние содер-
жания, получаемые по площади шлифа или аншлифа, 
соответствуют объемным. То есть используется стере-
ологический принцип, приравнивающий площадные 
иbобъемные соотношения фаз (Delesse, 1848).

Оценить применимость стереологического прин-
ципа кbразличным по текстурно-структурным призна-
кам породам (материалам) можно экспериментально. 
В данной работе приведена такая оценка для невысо-
ких содержаний изучаемой фазы. Подобная ситуация 
часто встречается при анализе содержаний различных 
типов аллохем вbкарбонатных породах.
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Материал иbметоды

Основу эксперимента составили компьютерные 
трехмерные модели иbих виртуальные сечения. Модели 
соответствуют различным текстурам (распределению 
«минеральных фаз» вbматрице) изучаемого материа-
ла, но вbпервую очередь имитируют распределения ал-
лохем вbосадочных карбонатных породах. Наиболее 
распространенные аллохемы имеют неправильную, 
эллипсоидальную (литокласты, микрофоссилии) или 
субцилиндрическую форму (членики криноидей). Это 
отличает их от моделей минеральных агрегатов иbмяг-
ких тканей биологических объектов (Mayhew, Cruz 
Orive, 1974; Gulbin, 2008).

Всего построено четыре типа моделей сbразной 
степенью упорядоченности объектов: 1) сbраспределе-
нием шарообразных частиц одного диаметра вbузлах 
кубической решетки; 2) сbравномерным случайным 
распределением шарообразных частиц одного диаме-
тра; 3) сbравномерным случайным распределением 
шарообразных частиц случайного диаметра; 4) сbрав-
номерным случайным распределением частиц различ-
ного размера иbформы (эллипсоиды, параллелепипе-
ды, цилиндры). Выбранные типы моделей, за исклю-
чением первого, вbразной степени отвечают морфоло-
гии иbраспределению аллохем (био- иbлитокластов) 
вbосадочных карбонатных породах. Согласно теорети-
ческим построениям, для первых трех моделей долж-
но соблюдаться равенство площадного иbобъемного 
соотношения фаз (Wicksel, 1926).

Первый тип представлен пятью моделями сbзадан-
ным объемным содержанием частиц 0.4, 1.6, 4, 13 иb30b%, 
для которых сгенерировано 111 случайно ориентиро-
ванных виртуальных сечений. По ним определены 
«площадные проценты» (соотношение суммарной пло-
щади сечений частиц иbобщей площади сечения).

Второй тип представлен шестью моделями сbобъ-
емным содержанием частиц 0.08, 0.9, 1, 4, 13 иb21b%, 
для которых сгенерировано 244 виртуальных сечения. 
Для третьего типа сгенерировано пять моделей сbобъ-
емным содержанием частиц 0.1, 0.6, 1.9, 3.7 иb4.6b%, 
для которых получено 73 виртуальных сечения. 
Четвертый тип представлен восьмью моделями сbот-
носительно равномерным распределением частиц 
различной морфологии (эллипсоиды, параллелепи-
педы, цилиндры) иbзаданным объемным содержани-
ем: 1.5, 3, 6, 10, 15, 23, 26 иb31b%. Для каждой модели 
сгенерировано не менее 36 случайно ориентирован-
ных виртуальных сечений (всего 345), по которым 
определены «площадные проценты». Построение трех-
мерных моделей, генерация случайных сечений иbвы-
числение соотношения площади сечения частиц кbоб-
щей площади сечения («площадные проценты») вы-
полнено вbпрограммном пакете трехмерного модели-
рования Rhinoceros 7. 

Результаты иbобсуждение

Построенные модели, разумеется, не охватывают 
всего разнообразия форм, распределения иbразмеров 
частиц, но позволяют провести некоторые количе-
ственные оценки. Соотношение объемных иb«площад-
ных» содержаний для первых трех типов моделей да-
но на рис. 1, аbдля четвертого типаb— на рис. 2. 

Рис. 1. Соотношение «площадных» (Area %) иbобъемных 
(Vol %) содержаний частиц для различных типов трехмер-

ных моделей: 
ab— сbраспределением шарообразных частиц одного диаме-
тра вbузлах кубической решетки; bb— сbравномерным слу-
чайным распределением шарообразных частиц одного диа-
метра; cb— сbравномерным случайным распределением шаро-
образных частиц случайного диаметра. Красным обозна-
чена линия регрессии, зеленым пунктиромb— линия равных 

значений «площадных» иbобъемных содержаний

Fig. 1. Ratio of 'areal' (Area %) and volumetric (Vol %) parti-
cle contents for different types of three-dimensional models: 
ab— with distribution of spherical particles of the equal diame-
ter in nodes of a cubic lattice; bb— with uniform random distri-
bution of spherical particles of the equal diameter; cb— with uni-
form random distribution of spherical particles of random diam-
eter. The regression line is marked in red, the dashed line of 
equal values of 'areal' and v olumetric contents is marked in green
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Распределение «площадных процентов» для каждой 
модели неравномерное иbхарактеризуется большим 
интервалом изменений. При этом отдельные значе-
ния могут быть как выше, так иbниже объемного со-
держания. Для каждого типа модели определено урав-
нение линейной регрессии иbпостроена линия регрес-
сии (рис. 1 иb2). 

В случае упорядоченного распределения сфери-
ческих частиц одного диаметра (первый тип) среднее 
соотношение объемных иb«площадных» процентов 
практически не отличается от 1 (уравнение регрессии 
Vol%b= 0.971*Area%) (рис.b1, a). Для таких моделей со-
блюдается стереологический принцип, приравниваю-
щий средние площадные иbобъемные соотношения 
фаз (Delesse, 1848).

Для моделей второго, третьего иbчетвертого типов 
полученное соотношение средних «площадных» иbобъ-
емных процентов отличается от 1. В среднем «площад-
ные» проценты незначительно больше объемных, то 
есть при оценке содержания фазы по сечениям значе-
ния получаются завышенными. Подобный эффект на-
блюдался на реальных геологических объектах, где от-
мечено завышение содержания минералов по шлифам 
по отношению кbрезультату рентгенофазового анали-
за (Кузнецова иbдр., 2024). Обратное соотношение («пло-
щадные» проценты несколько меньше объемных) из 
геометрических соображений ожидаемо при анализе 
любого единичного объекта выпуклой формы, у кото-
рого площадь случайного сечения меньше максималь-
ной (Mayhew, Cruz Orive, 1974).

Модели со случайно распределенными вbпростран-
стве шарообразными частицами одного размера по-
казывают соотношение «площадных» иbобъемных про-
центов, описываемое формулой Vol%b= 0.86*Area%, 

аbдля частиц случайного размераb— формулой Vol%b=
= 0.93*Area%. В целом для случайно иbравномерно рас-
пределенных шарообразных частиц объемные соот-
ношения составляют около 0.9 от установленных по 
соотношению площадей вbслучайных сечениях, что 
близко кbтеоретическому соотношению около 1 (Wicksel, 
1926). Для моделей сbразличной формой иbразмером 
частиц соотношение значимо отличается от 1 (рис. 2). 
В этом случае площадные иbобъемные проценты свя-
заны формулой Vol%b= 0.72*Area% (СКОb= 4.9b%), аbмак-
симальное отклонение может достигать 15b%. Модели 
четвертого типа по характеристикам ближе всего 
кbбольшинству реальных геологических объектов. 
Выбранные соотношения размеров частиц иbплоща-
ди сечения примерно отвечают типичному соотноше-
нию биокластов вbкарбонатах иbплощади «стандарт-
ного» шлифа (около 4 см2). Для более мелких биокла-
стов (или шлифов большой площади) применим тре-
тий тип моделей.

Полученные результаты применимы кbобъектам, 
вbкоторых содержание изучаемой фазы находится вbин-
тервале 0.1—20b% (именно он охватывается большин-
ством типов использованных моделей). За его преде-
лами выявленные соотношения, возможно, будут на-
рушаться. 

Выводы

Таким образом, при невысоких содержаниях из-
учаемой фазы стереологический принцип хорошо ра-
ботает для равномерно распределенных вbобъеме иbупо-
рядоченно расположенных частиц, что вbприродных 
объектах встречается редко. В других случаях кbсред-
ним значениям соотношений фаз, определенных по 
серии шлифов или аншлифов, необходимо применять 
поправочный коэффициент. Для получения более точ-
ных результатов его можно определить по специаль-
ному набору моделей, учитывающему особенности 
текстурно-структурных характеристик конкретного 
объекта.

Работа выполнена вbрамках госзадания ИГ ФИЦ 
Коми НЦ УрО РАН.

Автор благодарен рецензентам за конструктив-
ные замечания, позволившие существенно улучшить 
текст статьи.

Литература / References

Бакунов В. С., Беляков А. В. К вопросу об анализе структу-
ры керамики // Неорганические материалы. 1996. 
32(2). С. 243—248.
Bakunov V. S., Belyakov A. V. Towards the analysis of the 
structure of ceramics. Non-organic materials, 1996, No. 
32(2), pp. 243—248. (in Russian)

Войтеховский Ю. Л. Из истории модального анализа иbсте-
реологии вbпетрографии // Труды Ферсмановской на-
учной сессии ГИ КНЦ РАН. 2018. №b15. С.b92—94. DOI: 
10.31241/FNS.2018.15.022
Voytekhovsky Yu. L. From the history of modal analysis 
and stereology in petrography. Proc. Fersmanov Confe-
rence GI KSC RAS, 2018, No. 15, pp. 92—94. (in Russian) 

Глаголев А. А. Геометрические методы количественного 
анализа агрегатов под микроскопом. М.—Л.: Госгеол-
издат, 1941. 263 с.

Рис. 2. Соотношение «площадных» (Area %) иbобъемных 
(Vol %) содержаний частиц для трехмерной модели сbрав-
номерным случайным распределением частиц различ-
ного размера иbформы (эллипсоиды, параллелепипеды, 
цилиндры). Красным обозначена линия регрессии, зеле-
ным пунктиромb— линия равных значений «площадных» 

иbобъемных содержаний.

Fig. 2. Correlation of ‘areal’ (Area %) and volume (Vol %) par-
ticle contents for a three-dimensional model with uniform 
random distribution of particles of different sizes and shapes 
(ellipsoids, parallelepipeds, cylinders). The regression line is 
marked in red; the dashed line of equal values of ‘areal’ and 

volume contents is marked in green.



53

Vestnik of Geosciences, February, 2025, No. 2

Glagolev A. A. Geometric methods for quantitative anal-
ysis of aggregates under the microscope. Moscow-
Leningrad: Gosgeolizdat, 1941, 236 pp. (in Russian)

Кузнецова В. А., Костеневич К. А., Алимгафарова А. Д., Панев 
Е. В., Сафронова А. Г. Влияние песчаников сbвысокой 
концентрацией тяжелых минералов на распределе-
ние углеводородов вbзалежи на примере месторож-
дения Западной Сибири // Георесурсы. 2024. 26(3). 
С.b96—108. DOI: 10.18599/grs.2024.3.11
Kuznetsova V. A., Kostenevich K. A., Alimgafarova A. D., 
Panev Y. V., Safronova A. G. The influence of sandstones 
with a high concentration of heavy minerals on the dis-
tribution of hydrocarbons in a reservoir using the exam-
ple of a field in western siberia. Georesources, 2024, 
No.b26(3), pp. 96—108. (in Russian).

Салтыков С. А. Стереометрическая металлография. М.: 
Металлургия, 1976. 272 с.
Saltykov S. A. Stereometric metallography. Moscow: 
Metallurgiya, 1976, 272 p. (inbRussian)

Усманов Ф. А. Основы математического анализа геологи-
ческих структур. Ташкент: ФАН, 1977. 202 с.
Usmanov F. A. Fundamentals of mathematical analysis 
of geological structures. Tashkent: FAN, 1977, 202 p. 
(inbRussian)

Шванов В. Н., Марков А. Б. Гранулометрический анализ 
песчаников вbшлифах // Геология иbразведка. 1960. 12. 
С.b49—55.
Shvanov V. N., Markov A. B. Granulometric analysis of 
sandstones in thin sections. Geologiya i razvedka, 1960, 
No. 12, pp. 49—55. (in Russian)

Чернявский К. С. Стереология вbметалловедении. М.: 
Металлургия, 1977. 279bс.
Tchernyavskiy K. S. Stereology in metallurgical science. 
Moscow: Metallurgiya, 1977, 279 p. (in Russian)

Chayes F. Petrographic modal analysis. An elementary statis-
tical appraisal. New York: John Wiley & Sons Inc., 1956. 
113 pp.

Delesse M. A. Procédé mecanique pour determiner la compo-
sition des roches // Annales des Mines 13, 4th series. 1848. 
P. 379—388.

Gulbin Y. On estimation and hypothesis testing of the grain 
size distribution by the Saltykov method // Image Analysis 
and Stereology. 2008. 27. P. 163—174. DOI: 10.5566/ias.
v27.p163-174

Mayhew T. M., Cruz Orive L.-M. Caveat on the use of the Delesse 
principle of areal analysis for estimating component vol-
ume densities // Journal of Microscopy. 1974. 102(2). 
P.b195—207.

Rosiwal A. Über geometrische Gesteinanalysen. Ein einfacher 
Weg Zur ziffermässigen Feststellung des Quantitäts-
verhältnisses der Mineralbestandtheile gemengter 
Gesteine // Verhandlungen der keiserlich-königlichen 
Geologischen Reichsanstalt. Wien: Verlag der keiserlich-
königlichen Geologischen Reichsanstalt, 1898. P. 143—
175.

Wicksel S. D. The corpuscle problem. 2nd memoir. Case of el-
lipsoidal corpuscles // Biometrica. 1926. 18(1/2). P. 151—
172. DOI: 10.2307/2332500

Поступила в редакцию / Received 31.01.2025




