Consortium PSYCHIATRICUM

ПРИЛОЖЕНИЕ. ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ К СТАТЬЕ АВТОРСКОГО КОЛЛЕКТИВА:

Александра Очнева, Кристина Соловьева, Валерия Савенкова, Анна Иконникова, Дмитрий Грядунов, Алиса Андрющенко. Современные подходы к диагностике когнитивного снижения и болезни Альцгеймера: нарративный обзор литературы.

Consortium Psychiatricum 2023; published online March 2023. DOI: 10.17816/CP716.

Данное приложение является частью первоначальных материалов, которые были предоставлены авторами. Приложение размещено в том виде, в котором его предоставили авторы.

Таблица S1. Характеристика исследований, включённых в обзор

Название исследования	Авторы	Год	Страна	Тип исследования	Методы	Результаты
Cerebrospinal fluid biomarkers for Alzheimer's dis- ease: current limi- tations and recent developments	Henrik Zetterberg	2015	Великобритания	Систематический обзор	Анализ опубликованных данных о специфических маркерах БА в ликворе.	Были разработаны, подтверждены три биомаркера ликвора для нейропатологических признаков болезни Альцгеймера, а именно общего тау (T-tau), фосфо-тау (P-tau) и 42 аминокислотной формы β-амилоида (Аβ42), отражающих нейродегенерацию, нейрофибриллярные клубки и амилоидные / старческие бляшки, соответственно и включены в новые диагностические критерии заболевания. Благодаря совместным глобальным исследованиям они в значительной степени увенчались успехом, но существует ряд ограничений, которые требуют дальнейших исследований и обсуждений. Во-первых, предвзятость и случайные различия в измерениях биомаркеров как внутри, так и между лабораториями остаются проблемой. Во-вторых, современные маркеры отражают только часть патологии, лежащей в основе болезни Альцгеймера; необходимы новые маркеры синаптической дисфункции, активации микроглии и скоплений белка, которые часто встречаются наряду с патологией бляшек и клубков. В-третьих, маркеры жидкости не отражают анатомическое расположение каких-либо патологических изменений; маркеры ликвора могут быть дополнены методами молекулярной визуализации с высоким разрешением.
Advances in the development of new biomarkers for Alzheimer's disease	Timofey O Klyucherev, Pawel Olszewski, Alena A Shalimova, Vladimir N Chubarev, Vadim V Tarasov, Misty M Attwood, Stina Syvänen, Helgi B Schiöth	2022	Швеция, Россия	Прогностическое исследование	МРТ, ПЭТ с 18f-2-фтор- 2-дезокси-D-глюкозой, ПЭТ с лигандами к амилоиду, анализ крови и СМЖ, ОКТ.	Наиболее надежной стратегией обнаружения биомаркеров (включая микроРНК) в крови является использование комбинации биомаркеров, поскольку такой подход может повысить точность и специфичность диагностики. Одним из наиболее перспективных направлений применения биомаркеров является использование в качестве индикаторов в режиме реального времени для отслеживания эффекта модифицирующих болезнь методов лечения БА в клинических испытаниях. В настоящее время в США проводится более 182 клинических исследований II и III фазы терапии бА. ClinicalTrials.gov – база данных, в которой эффекты терапии обычно отслеживаются с использованием биомаркеров ликвора и ПЭТ-визуализации. В некоторых исследованиях начали использоваться биомаркеры плазмы, такие как Аβ 40, Аβ 42, Р-Таи и провоспалительных цитокинов, как дополнительных средств для отслеживания прогрессирования АD (NCT03533257, NCT04228666, NCT04570644), и мы ожидаем, что эта тенденция сохранится. Биомаркеры, переносимые кровью, могут сэкономить значительные средства на диагностике БА по сравнению с существующими методами диагностики, позволяя использовать недорогие методы диагностики для большого числа людей в качестве первичного скрининга. Например, такой стратегией может быть подход, включающий комбинацию нескольких микроРНК. В частности, miR-125b, miR-146a, miR-9 и miR-103, наиболее часто исследуемые микроРНК, являются наиболее перспективной диагностической стратегией для АD, поскольку они продемонстрировали высокую чувствительность и специфичность в исследованиях.
Cerebrospinal fluid neurogranin: rela- tion to cognition and neurodegeneration in Alzheimer's disease	Erik Portelius, Henrik Zet- terberg, Tobias Skillbäck, Ulrika Törnqvist, Ulf Andre- asson, John Q Trojanowski, Michael W Weiner, Leslie M Shaw, Niklas Mattsson, Kaj Blennow		Швеция, Великобритания, США	Прогностическое исследование	Пациенты с болезнью Альцгеймера с деменцией (п=95), пациенты с умеренными когнитивными нарушениями (п=173), испытуемые без когнитивных нарушений (п=110) Метод: иммунологический анализ СМЖ, МРТ, ПЭТ с 18f-2-фтор-2-дезокси-D-глюкозой, MMSE, ADAS-Cog.	Нейрогранин спинномозговой жидкости был повышен у пациентов с деменцией при болезни Альцгеймера (p <0,001), прогрессирующими умеренными когнитивными нарушениями (p <0,001) и стабильными умеренными когнитивными нарушениями (p <0,05) по сравнению с контрольной группой, а также при деменции при болезни Альцгеймера (p <0,01) и прогрессирующих умеренных когнитивных нарушениях (p <0,05) по сравнению со стабильными умеренными когнитивными нарушениями высокие исходные уровни нейрогранина в спинномозговой жидкости предсказывали снижение когнитивных способностей, что отражалось в уменьшении мини-психического состояния (p <0,001) и увеличении баллов по шкале оценки болезни Альцгеймера — когнитивная субшкала (p <0,001) при клиническом наблюдении. Кроме того, высокие исходные уровни нейрогранина в спинномозговой жидкости в группе с умеренными когнитивными нарушениями коррелировали с продольным снижением метаболизма глюкозы в коре головного мозга (p <0,001) и объема гиппокампа (p <0,001) при клиническом наблюдении. Кроме того, в группе с прогрессирующими легкими когнитивными нарушениями повышенные уровни нейрогранина в спинномозговой жидкости были связаны с ускоренным ухудшением шкалы оценки болезни Альцгеймера — когнитивной субшкалы (p =0,001, p =0,011.

Cerebrospinal fluid synaptosomal- as- sociated protein 25 is a key player in synaptic degeneration in mild cognitive impairment and Alzheimer's disease	Hua Zhang, Joseph Ther- riault, Min Su Kang, Kok Pin Ng, Tharick A Pascoal, Pedro Rosa-Neto, Serge Gauthier	2018	Китай, Канада, Сингапур	Прогностическое исследование	139 участников из базы данных ADNI. Когнитивно нормальные (n=52), участники с легким когнитивными нарушениями (n=22), пациенты с прогрессирующими легкими когнитивными нарушениями (n=47) и пациенты с деменцией из-за БА (n=18) Метод: анализ ликвора, влияние показателей SNAP-25 и SNAP-25 / Aβ42 CSF на переход от MCl к AD.	Уровни SNAP-25 и SNAP-25 / Аβ42 в ликворе были повышены у пациентов с прогрессирующим когнитивным снижением и БА по сравнению с группой контроля, а также при прогрессирующим когнитивным снижением и БА по сравнению с умеренным когнитивным снижением. У когнитивно нормальных субъектов, которые прогрессировали до когнитивного снижения или БА во время наблюдения, было увеличено соотношение SNAP-25 / Аβ42 по сравнению с не прогрессирующими. CSF SNAP-25, особенно SNAP-25 / Аβ42, предлагает диагностическую полезность для рМСІ и АD. CSF SNAP-25 и SNAP-25 / Аβ42 значительно предсказали переход от когнитивного снижения к БА. Кроме того, повышенное соотношение SNAP-25 / Аβ42 было связано со скоростью атрофии гиппокампа при прогрессирующем когнитивном снижении и скоростью изменения когнитивных нарушений в группе контроля в течение периода наблюдения.
Apolipoprotein B is a novel marker for early tau pathology in Alzheimer's disease	Cynthia Picard, Nathalie Nilsson, Anne Labonté, Daniel Auld, Pedro Rosa-Neto, Alzheimer's Disease Neuroimaging Initiative, Nicholas J, Henrik Zetterberg, Kaj Blennow, John C B Breitner, Sylvia Villeneuve, Judes Poirier	2022	Канада, Швеция, Великобритания	Прогностическое исследование	400 участников в возрасте 60 лет и старше с повышенным риском развития БА, 1650 пациентов с нарушениями памяти из 31 центра по всей Канаде. Метод: анализ ликвора, измерение уровней белка ароВ и биомаркеров бета-амилоида (Аβ), t-tau и р-tau, синаптических маркеров GAP43, синаптотагмина-1, ассоциированного с синаптосомой белка 25 (SNAP-25) и нейрогранина.	Концентрации ассоциированного с ростом белка 43 (GAP43), ней- рогранина, ассоциированного с синаптосомой белка 25 (SNAP25) и синаптотагмина 1 были ниже при БА, чем в контроле (ρ < 0,001). Уровни экзосомных биомаркеров коррелировали с уровнями в спинномозговой жидкости (R2 = 0,54-0,70). Комбинация экзосо- мных биомаркеров обнаруживала БА за 5-7 лет до когнитивных нарушений (площадь под кривой = 0,87-0,89).
Blood neuro- exosomal synaptic proteins predict Alzheimer's disease at the asymptomatic stage	Longfei Jia, Chaojun Kong, Min Zhu, Yana Pang, Heng Zhang, Yi Tang, Qiong- qiong Qiu, Cuibai Wei, Qi Wang, Ying Li, Tingting Li, Fangyu Li, Qigeng Wang, Yan Li, Yiping Wei, Jianping Jia	2021	Китай	Прогностическое исследование	В этом исследовании четыре набора данных. Участники из пекинского центра (n=82:28 пациентов с AD, 25 пациентов с аМСI и 29 здоровых контрольных групп); Участники из других центров в провинциях Шаньдун, Гуйчжоу, провинция Хэнань, Хэбэй, Цзилинь, Гуанси и автономный район Внутренняя Монголия (n= 216:73 пациента с AD, 71 пациент с аМСI и 72 здоровых контрольных). Третья группа включала 320 человек (160 с преддеменцией, 160 без когнитивного снижения). Четвертая группа включала 62 человека в контрольной группе и 59 носителей мутаций, возраст которых составлял от 5 до 7 лет. Метод: анализ крови на экзосомальные ферманты, просвечивающая электронная микроскопия (ТЕМ), вестерн-блоттинг, иммуноферментный анализ ликвора.	Концентрации ассоциированного с ростом белка 43 (GAP43), ней- рогранина, ассоциированного с синаптосомой белка 25 (SNAP25) и синаптотагмина 1 были ниже при БА, чем в контроле (р < 0,001). Уровни экзосомных биомаркеров коррелировали с уровнями в спинномозговой жидкости (R2 = 0,54-0,70). Комбинация экзосо- мных биомаркеров обнаруживала AD за 5-7 лет до когнитивных нарушений (площадь под кривой = 0,87-0,89).
A meta-analysis on the levels of VILIP-1 in the CSF of Alzheimer's disease compared to normal controls and other neurodegenerative conditions	loannis A Mavroudis, Foivos Petridis, Symela Chatzikonstantinou, Eleni Karantali, Dimitris Kazis	2021	Великобритания, Кипр, Греция	Прогностическое исследование	Анализ опубликованных данных об уровней VILIP-1 в ликворе пациентов с БА, контрольной группой, пациентов с умеренным когнитивным снижением и пациентов с деменцией с тельцами Леви.	Было обнаружено, что уровни VILIP-1 значительно выше при БА по сравнению с нормальным контролем, но не с другими группами, и, кроме того, они значительно выше у пациентов с MCI, прогрессирующим до AD, чем у пациентов со стабильным MCI.

Current trends in blood biomarker detection and imaging for Alzheimer's disease	Shun Hu, Changwen Yang, Haiming Luo	2022	Китай	Прогно- стическое исследова- ние	Анализ опубликованных данных о диагностике БА: биомаркеры крови, иммуноферментный анализ, визуали- зация.	В обзоре обсуждались тенденции развития технологий обнаружения биомаркеров крови, связанных с БА, включая платформы для оптоэлектронного анализа.
Classification accuracy of blood-based and neurophysiological markers in the differential diagnosis of Alzheimer's disease and frontotemporal lobar degeneration	Alberto Benussi, Valentina Cantoni, Jasmine Rivolta, Silvana Archetti, Anna Micheli, Nicholas Ashton, Henrik Zetterberg, Kaj Blennow, Barbara Borroni	2022	Италия, Швеция, Великобритания	Прогностическое исследование	202 участника. Метод: анализ нейрофиламентного света плазмы (NfL), глиального фибриллярого белка (GFAP), тау-белка 181 (р-Таи 181), а также соотношения амилоида β42 к 40 (Аβ 1-42 /1-40) использовали сверхчувствительную одномолекулярную матрицу (Simoa) и нейрофизиологические показатели, полученные с помощью ТМС, включая SICI, ICF, LICI и SAI.	Наблюдались значительные различия в уровнях NfL, GFAP и p-Tau 181 в плазме между группами, но не для соотношения Aβ 1-42 / Aβ 1-40. Для оценки точности диагностики был принят двухэтапный процесс, который отражает клиническое суждение на клинических основаниях. На первом этапе лучшим единственным биомаркером для классификации «случаев» против «контроля» был NfL (AUC 0,94, p < 0,001), в то время как на втором этапе лучшим единственным биомаркером для классификации AD против FTLD был SAI (AUC 0,96, p < 0,001). Комбинация нескольких биомаркеров значительно повысила точность диагностики. Наилучшая модель для классификации «случаев» по сравнению с «контролем» включала предикторы p-Tau 181, GFAP, NfL, SICI, ICF и SAI, что привело к AUC 0.99 (p < 0,001). Для второго этапа, классификации AD от FTD, наилучшая модель включала комбинацию соотношения Аβ 1-42 / Аβ 1-40, p-Tau 181, SICI, ICF и SAI, что привело к AUC 0,98 (p < 0,001).
A population-based meta-analysis of circulating GFAP for cognition and dementia risk	Mitzi M Gonzales, Crystal Wiedner, Chen-Pin Wang, Qianqian Liu, Joshua C Bis, Zhiguang Li, Jayandra J Himali, Saptaparni Ghosh, Emy A Thomas, Danielle M Parent, Tiffany F Kautz, Matthew P Pase, Hugo J Aparicio, Luc Djoussé, Kenneth J Mukamal, Bruce M Psaty, William T Longstreth Jr, Thomas H Mosley Jr, Vilmundur Gudnason, Djass Mbangdadji, Oscar L Lopez, Kristine Yaffe, Stephen Sidney, R Nick Bryan, Ilya M Nasrallah, Charles S DeCarli, Alexa S Beiser, Lenore J Launer, Myriam Fornage, Russell P Tracy, Sudha Seshadri, Claudia L Satizabal	2022	США	Прогностическое исследование	4338 взрослых из четырех когорт. Метод: анализ уровня циркулирующего GFAP с использованием анализатора Simoa HD-1.	Мета-анализы показали, что более высокий циркулирующий GFAP связан с более низкими общими когнитивными способностями (β = -0,09, [95% доверительный интервал [ДИ]: от -0,15 до -0,03], р=0,005), но не с общим объемом мозга или гиппокампа (р >0,05).). Тем не менее, каждое увеличение на единицу стандартного отклонения уровней GFAP, преобразованных в логарифм, было достоверно связано с 2,5-кратным повышением риска развития деменции от всех причин (отношение рисков [ОР]: 2,47 (95% ДИ: 1,52-4,01)) и деменции при болезни Альцгеймера (ОР: 2,54 [95% ДИ: 1.42-4.53]) в течение 15 лет наблюдения.
Cerebrospinal fluid β-synuclein as a synaptic biomarker for preclinical Alzheimer's disease	Lorenzo Barba, Samir Abu Rumeileh, Giovanni Bellomo, Federico Paolini Paoletti, Steffen Halbgebauer, Patrick Oeckl, Petra Steinacker, Federico Massa, Lorenzo Gaetani, Lucilla Parnetti, Markus Otto	2023	Германия, Италия	Прогностическое исследование	75 пациентов с БА разной степени, 35 пациентов из контрольной группы Метод: анализ уровня β-syn, α-syn, t-tau и NfL в ликворе.	Ликвор β-syn, α-syn, t-tau были значительно повышены у пациентов до AD по сравнению с контрольной группой (p <0,0001, p =0,02 и p =0,0001 соответственно), в то время как NfL увеличивался только при dem-AD (p =0,001). В случаях до AD концентрации t-tau были ниже, чем у MCI-AD (p =0,04) и dem-AD (p =0,01). В-синуклеин ликвора обладал наилучшими диагностическими характеристиками для различения субъектов до AD от всех контрольных (площадь под кривой, AUC=0,97) и субъектов с SMC-Ctrl (AUC=0,99).).

β-Synuclein as a candidate blood biomarker for synaptic degeneration in Alzheimer's disease	Pablo Mohaupt, Ma- rie-Laure Pons, Jerome Vialaret, Constance Delaby	2022	Франция	Прогностическое иследование	Анализ опубликованных данных об использовании β-синуклеина в диа- гностике БА.	Переход от масс-спектрометрии к методу иммунодетекции повышает доступность количественного определения β-синуклеина в более крупных исследовательских группах. Его ценность как маркера БА необходимо будет протестировать в когортах и сравнить с такими маркерами крови, как pTau217 и pTau231, показатели которых на сегодняшний день остаются непревзойденными.
Relationship of serum beta- synuclein with blood biomarkers and brain atrophy	Patrick Oeckl, Sarah Anderl-Straub, Adrian Danek, Janine Diehl- Schmid, Klaus Fassbender, Klaus Fliessbach, Steffen Halbgebauer, Hans-jürgen Huppertz, Holger Jahn, Jan Kassubek, Johannes Kornhuber, Bernhard Landwehrmeyer, Martin Lauer, Johannes Prudlo, Anja Schneider, Matthias L Schroeter , Petra Steinacker, Alexander E Volk, Matias Wagner, Juliane Winkelmann, Jens Wiltfang , Albert C Ludolph, Markus Otto	2022	Германия	Прогностическое исследование	Пациенты (n=374), набранные в период с 2011 по 2018 год в рамках Немецкого консорциума FTLD Метод: сравнение иммунопреципитационной масс-спектрометрии бета-синуклеина сыворотки (IP-MS) с установленными в крови маркерами р-tau181 и нейрофиламентного света в когорте немецкого консорциума FTLD (n=374), его соотношение с атрофией головного мозга (МРТ) и когнитивными показателями.	Бета-синуклеин в сыворотке был повышен при БА, но не при синдромах лобно-височной долевой дегенерации (FTLD). Бета-синуклеин коррелировал с атрофией временных структур мозга и был связан с когнитивными нарушениями. Сыворотка р-tau181 показала наиболее специфические изменения АД, но наименьшую корреляцию со структурными изменениями. NfL был повышен при всех заболеваниях и коррелировал с лобной и височной атрофией головного мозга.
Visinin-like protein 1 levels in blood and CSF as emerging markers for Alzheimer's and other neurodegenerative diseases	Steffen Halbgebauer, Petra Steinacker, Daniel Riedel, Patrick Oeckl, Sarah Anderl-Straub, Jolina Lombardi, Christine A F von Arnim, Magdalena Nagl, Armin Giese, Albert C Ludolph, Markus Otto	2022	Германия	Прогностическое исследование	Парные образцы ликвора и сыворотки от 234 пациентов, 73 — пациенты с БА, 18 пациентов с поведенческим вариантом лобно-височной деменции (bvFTD), 26 – болезнь Паркинсона, 20 — боковой амиотрофический склероз (ALS), 22 — Болезнь Крейтцфельдта-Якоба (CJD) и 75 — пациентов с не нейродегенеративным контролем (Con). Метод: анализ ликвора и сывороточного VILIP-1, сравнивали с основными биомаркерами AD.	Уровни ликвора и сывороточного VILIP-1 слабо коррелировали (r = 0,32 (ДИ:0,20-0,43), p <0,0001). Концентрации VILIP-1 в ликворе и сыворотке были повышены при AD по сравнению с Con (p <0,0001 и p <0,01) и CJD (p <0,0001 для ликвора и сыворотки), и увеличение ликвора наблюдалось уже на ранних стадиях AD (p <0,0001). При различении AD и Con мы могли бы продемонстрировать сильный диагностический потенциал только для ликвора VILIP-1 (площадь под кривой (AUC): 0,87), ликвора VILIP-1 / CSF Abeta 1-42 (AUC: 0,98) и сывороточного соотношения VILIP-1 / CSF Abeta 1-42 (AUC: 0,98).
Certification of visinin-like protein-1 (VILIP-1) certified reference material by amino acid-based and sulfur-based liquid chromatography isotope dilution mass spectrometry	Yang Zang, Xirui Zhou, Mengyun Pan, Yanli Lu , Hangrui Liu , Jinping Xiong, Liuxing Feng	2023	Китай	Прогностическое исследование	Разработка и сертификация раствора VILIP-1 CRM с использованием масс-спектрометрии с изотопным разбавлением на основе аминокислот (AA-ID-MS) и масс-спектрометрии с индуктивно связанной плазмой с изотопным разбавлением на основе серы (ID-ICP-MS).	В этой работе был разработан и сертифицирован CRM-раствор VILIP-1 с сертифицированным значением и неопределенностью 39,82±1,52 мкг·г-1 с использованием масс-спектрометрии с разбавлением изотопов на основе аминокислот (AA-ID-MS) и масс-спектрометрии с индуктивно связанной плазмой с изотопным разбавлением на основе серы (ID-ICP-MS). VILIP-1 CRM демонстрирует превосходную гомогенность и может быть стабильным в течение не менее 7 дней при -20°С и 12 месяцев при -70°С. Разработанный VILIP-1 CRM может быть использован для присвоения значения вторичным калибраторам и клиническим матричным CRM, демонстрируя перспективы ранней диагностики и мониторинга заболеваний при БА.
A new generation of AD biomarkers: 2019 to 2021	Jade Hawksworth, Esperanza Fernández, Kris Gevaert	2022	Бельгия	Прогно- стическое исследова- ние	Анализ плазмы и ликвора на бета- амилоид-42 (Аβ42), общий тау (t-tau) и фосфорилированный тау (p-tau).	Несколько белков были идентифицированы как вероятные прокси для нейродегенерации, включая нейрофиламентный свет (NfL), синаптосомно-ассоциированный белок 25 (SNAP-25) и нейрогранин (NRGN).

Blood Analytes as Biomarkers of Mechanisms Involved in Alzheimer's Disease Progression	Andrea Baldini, Alberto Greco	2022	Италия	Прогностическое исследование	90 пациентов с БА. Метод: анализ 277 анализов (как клинических, так и биохимических, включающих анализы крови с иммуновоспалительными и окислительными маркерами).	Статистические результаты показывают обратную значимую связь между четырьмя анализируемыми веществами (холестерин высокой плотности, общий холестерин, железо и ферритин) и тяжестью БА. Кроме того, база данных Reactome предполагает, что такие анализируемые вещества могут быть вовлечены в пути, которые изменяются при прогрессировании АD. Действительно, идентифицированные маркеры крови включают молекулы, которые отражают гетерогенные патогенетические механизмы AD. Комбинация таких анализируемых веществ крови может быть ранним индикатором прогрессирования БА и представлять собой полезные терапевтические мишени.
Large-scale plasma proteomic profiling identifies a high- performance biomarker panel for Alzheimer's disease screening and staging	Yuanbing Jiang, Xiaopu Zhou, Fanny C Ip, Philip Chan, Yu Chen, Nicole C H Lai, Kit Cheung, Ronnie M N Lo, Estella P S Tong, Bonnie W Y Wong, Andrew L T Chan, Vincent C T Mok, Timothy C Y Kwok, Kin Y Mok, John Hard, Henrik Zetterberg, Amy K Y Fu, Nancy Y Ip	2022	Китай, Великобритания, Швеция	Прогностическое исследование	97 гонконгских китайцев старше 60 лет, которые посещали больницу королевы Елизаветы с февраля 2018 по март 2020 года. Метод: анализ протеома плазмы на набор из 1160 белков.	Идентифицировали 429 белков, которые были нарушены в плазме АD. Мы отобрали 19 «концентраторных белков», представляющих профиль белков плазмы АD, которые легли в основу системы оценки, которая точно классифицировала клиническое AD (площадь под кривой = 0,9690-0,9816) и связанные с ним эндофенотипы. Более того, специфические белки-концентраторы проявляют дисрегуляцию, зависящую от стадии заболевания, которая может определять стадии AD.
An accurate fully automated panel of plasma biomarkers for Alzheimer's disease	Sebastian Palmqvist, Erik Stomrud, Nicholas Cullen, Shorena Janelidze, Ekate- rina Manuilova, Alexander Jethwa, Tobias Bittner, Udo Eichenlaub, Ivonne Surid- jan, Gwendlyn Kollmorgen, Matthias Riepe, Christine A F von Arnim, Hayrettin Tumani, Klaus Hager, Fedor Heidenreich, Niklas Mattsson-Carlgren, Henrik Zetterberg, Kaj Blennow, Oskar Hansson	2022	Швеция, Германия, Китай, Швейцария, Великобритания	Прогностическое исследование	Две когорты учатников с боступными образцами ликвора и крови (n=920): Группа A + (n=32 здоровых, n=106 умеренных когнитивных нарушений и n=89 с БА) и ВіоFINDER-1 (n=461 здоровые, n=232 с умеренным когнитивным снижением). Метод: иммуноанализ плазмы Аβ42, Aβ40, p-tau181, p-tau217, ApoE4, NfL и GFAP.	Лучшим биомаркером для различения Аβ-положительных и Аβ-отрицательных участников был Аβ42 / Аβ40 (находятся под кривой [AUC] 0,83-0,87). Сочетание Аβ42 / Аβ40, p-tau181 и АроЕ4 значительно улучшило AUCs (от 0,90 до 0,93; ρ <0,01). Добавление дополнительных биомаркеров имело незначительные эффекты (Δ AUC ≤0,01). В BioFINDER p-tau181, p-tau217 и АроЕ4 предсказывали AD-деменцию в течение 6 лет в CU (AUC 0,88) и p-tau181, p-tau217 и Аβ42 / Аβ40 в MCI (AUC 0,87).
A Novel Panel of Plasma Proteins Predicts Progression in Prodromal Alzheimer's Disease	Daniella Castro Araújo, Adriano Alonso Veloso, Ka- rina Braga Gomes, Leon- ardo Cruz de Souza, Nivio Ziviani, Paulo Caramelli	2022	Бразилия	Прогностическое исследование	379 пациентах с умеренным когнитивным снижением, у 176 из которых была диагностирована БА. Метод: анализ 12 белков плазмы (АроВ, кальцитонин, С-пептид, CRP, IGFBP-2, интерлейкин-3, интерлейкин-8, PARC, серотрансферрин, THP, TLSP 1-309 и TN-C).	Мы разработали панель на основе машинного обучения, состоящую из 12 белков плазмы (АроВ, кальцитонин, С-пептид, СRP, IGFBP-2, интерлейкин-3, интерлейкин-8, PARC, серотрансферрин, THP, TLSP 1-309 и TN-C), и которая дала AUC 0,91, точность0,91, чувствительность 0,84 и специфичность 0,98 для прогнозирования риска перехода пациентов с МСІ в деменцию из-за AD на горизонте до четырех лет.
Prognosis of Alzheimer's Disease Using Quantitative Mass Spectrometry of Human Blood Plasma Proteins and Machine Learning	Alexey S Kononikhin, Natalia V Zakharova, Savva D Semenov, Anna E Bugrova, Alexander G Brzhozovskiy, Maria I Indeykina, Yana B Fedorova, Igor V Kolykhalo, Polina A Strelnikova, Anna Yu Ikonnikova, Dmitry A Gryadunov, Svetlana I Gavrilova, Evgeny N Nikolaev	2022	Россия	Прогностическое исследование	Анализ 149 недеплетированных образцов ЭДТА-плазмы (МНRC, Россия) пациентов с БА (с помощью набора ВАК 125 (МRM Proteomics Inc., n=47), легких когнитивных нарушений (МСI, n=36), сосудистой деменции (n=8), лобно-височной деменции (n=15) и контрольной группы пожилых людей (n=43)., Канада). Метод: количественный анализ белков плазмы крови с использованием набора ВАК 125.	Статистический анализ выявил значительное снижение уровней афамина, аполипопротеина Е, биотинидазы и сывороточной параоксоназы / арилэстеразы 1, связанных с БА. Были выполнены различные алгоритмы обучения для машинного обучения, чтобы идентифицировать белковые панели и построить соответствующие классификаторы для прогноза АD. Машинное обучение выявило 31 белок, который важен для дифференцировки AD и в основном включает в себя ранее описанные CBs. Наиболее эффективные классификаторы достигли 80% точности, 79,4% чувствительности и 83,6% специфичности и смогли оценить риск развития БА в течение следующих 3 лет для пациентов с MCI.

Neuroinflammation in frontotemporal dementia	Fiona Bright, Eryn L Werry, Carol Dobson-Stone, Olivier Piguet, Lars M Ittner, Glenda M Halliday, John R Hodges, Matthew C Kiernan, Clement T Loy, Michael Kassiou, Jillian J Kril	2019	Австралия	Прогностическое исследование	Анализ опубликованных данных о нейровоспалительных механизмах при лобно-височной деменции.	В этом обзоре обсуждаются конкретные доказательства нейровоспалительных механизмов при FTD и описывается, как успехи в нашем понимании этих механизмов при FTD, а также при других нейродегенеративных заболеваниях, могут способствовать разработке и внедрению диагностических инструментов и модифицирующих заболевание методов лечения FTD.
Neuroinflammation: A Potential Risk for Dementia	Md Afroz Ahmad, Ozaifa Kareem, Mohammad Khushtar, Md Akbar, Ashif Iqubal, Md Rafiul Haque, Md Faheem Haider, Faheem Hyder Pottoo, Fatima S Abdulla, Mahia B Al-Haidar, Noora Alhajri	2022	Индия, Саудовская Аравия, ОАЭ	Прогностическое исследование	Анализ опубликованных данных и роли воспале- ния в нейродегенератив- ных процессах.	В этом обзоре обсуждается связь воспаления с деменцией. При БА отложение одного только β-белка амилоида может вызвать воспалительную реакцию, которая приводит к ухудшению памяти и прогрессированию заболевания. Несмотря на вероятность того, что отложение β-белка амилоида будет предшествовать «когнитивному дефициту» или «клиническому проявлению» на десятилетия, можно предположить, что эндогенные или экзогенные факторы могут изменять естественный иммуногенный ответ, возникающий при воздействии β-белка амилоида на микроглию. Следовательно, экологически регулируемые факторы риска БА, включая ожирение, травматическое повреждение головного мозга и системное воспаление, могут вызвать деменцию из-за продолжающегося нейровоспалительного влечения.
The IL-1β phenomena in neuroinflammatory diseases	Andrew S Mendiola, Astrid E Cardona	2018	США	Прогностическое исследование	Анализ опубликованных данных и влиянии IL-1β при дементных состоя- ниях.	Недавние исследования в области нейровоспаления при PC, БА и ДР подтверждают идею о том, что комбинация подходов может обеспечить успех в улучшении и, возможно, устранении повреждения нейронов путем использования стратегий блокирования IL-1β, нацеленных на повреждение сосудов и клеточную инфильтрацию в ткани ЦНС. Экспериментальные модели по-прежнему будут ценным инструментом для проверки баланса IL-1β в ЦНС во время здоровья и болезни. Усилия по пониманию того, как воздействовать на передачу сигналов IL-1 как в иммунных, так и в резидентных клетках ЦНС, все еще продолжаются с целью применения эффективной терапии, модулирующей IL-1, для лечения не только нейровоспалительных расстройств, но и воспалительных заболеваний, которые затрагивают системные и периферические ткани.
Neurobiological Highlights of Cognitive Impairment in Psychiatric Disorders	Anna Morozova, Yana Zorkina, Olga Abramova, Olga Pavlova, Konstantin Pavlov, Kristina Soloveva, Maria Volkova, Polina Alekseeva, Alisa Andrysh- chenko, Georgiy Kostyuk, Olga Gurina, Vladimir Chekhonin	2022	Россия	Прогностическое исследование	Анализ данных о моле- кулярно-биологических маркерах, которые связаны с нейровопа- лением и со снижением когнитивных функций.	Биомаркеры плазмы, включая нейротрофические факторы, провоспалительные цитокины и маркеры окислительного стресса, постоянно повышаются у значительной части пациентов с когнитивной дисфункцией и, таким образом, могут определять симптомы. Кроме того, эти плазменные маркеры зависят, конечно, от последовательностей ДНК генов и механизмов транскрипции. Более того, внешние факторы, такие как образ жизни, диета, вредные привычки и уровень стресса, регулируют транскрипцию генов посредством эпигенетических механизмов метилирования и ацетилирования ДНК и гистонов. Генетическая основа психических расстройств сложна и до сих пор неясна. Данные о нейровоспалительных процессах, которые связаны с когнитивно-ассоциированными психическими расстройствами, и о том, как они способствуют развитию, прогрессированию и поддержанию расстройств, ограничены.
Neuroinflammation and Proinflammatory Cytokines in Epileptogenesis	Alireza Soltani Kha- boushan, Niloufar Yazdan- panah, Nima Rezaei	2022	Иран	Прогностическое исследование	Анализ публикаций о роли нейровоспаления и его первичных медиаторов, включая IL-1β, IL-1α, IL-6, IL-17, IL-18, TNF-α и интерферон-у (IFN-у) в патофизиологии эпилепсии.	Эпилептические припадки связаны с повышенным уровнем PICs, особенно интерлейкина-1β (IL-1β), IL-6 и фактора некроза опухоли-α (TNF-α), что подчеркивает влияние нейровоспаления и PICs на гипервозбудимость мозга и эпилептогенез.

Immunological variants of amnestic mild cognitive impairment	I K Malashenkova, S A Krynskiy, N A Hailov, D P Ogurtsov, E I Chekulaeva, E V Ponomareva, S I Gavrilo- va, N A Didkovsky	2020	Россия	Прогностическое исследование	100 пациентов с диагнозом умеренное когнитивное снижение, 45 пациентов с БА на стадии легкой и умеренной деменции и 40 человек без когнитивных нарушений (контрольная группа). Метод: определение концентрации ключевых цитокинов, С-реактивного белка, циркулирующих иммунных комплексов и иммуноглобулинов (Ig A, M, G) в сыворотке крови методом ИФА, определение основных субпопуляций лимфоцитов методом проточной цитометрии.	Выделено четыре основных иммунологических варианта синдрома умеренного когнитивного снижения, связанных с клиническим прогнозом. Выявленные изменения иммунных показателей важны для дальнейших исследований по оценке влияния вирусных и бактериальных инфекций, нарушений микрофлоры кишечника на клинический прогноз у больных с различными иммунологическими вариантами синдрома умеренного когнитивного снижения.
Nerve growth factor in the psychiatric brain	Stefania Ciafrè, Giampiero Ferraguti, Paola Tirassa, Angela Iannitelli, Massimo Ralli, Antonio Greco, George N Chaldakov, Pamela Rosso, Elena Fico, Marisa Patrizia Messina, Valentina Carito, Luigi Tarani, Mauro Ceccanti, Marco Fiore	2020	Италия, Болгария	Прогностическое исследование	Исследование связи фактора роста нервов (NGF), так и его рецептора TrkA и их нейротрофических, метаботропны и / или иммунотрофных эффектов в патогенезе нейродегенеративных заболеваний, включая болезнь Альцгеймера, психические расстройства (например, депрессию и шизофрению).	Многолетние исследования признали важную трофическую и гомеостатическую роль NGF, который проявляет свои модулирующие функции в отношении активности эндокринной, нервной, жировой и иммунной систем. Будущие исследования, благодаря расширенным знаниям о молекулярных механизмах действия этого небольшого и универсального пептида, помогут разработать эффективные стратегии лечения головного мозга для многих клинических секторов, включая нейродегенерацию, нейровоспаление и нейроадипокринологию.
The Nerve Growth Factor Metabolic Pathway Dysregulation as Cause of Alzheimer's Cholinergic Atrophy	Sonia Do Carmo, Benjamin Kannel, A Claudio Cuello	2021	Канада, Великобритания	Прогностическое исследование	Обзор литературы о зависимости NGF фактора с атрофией нейронов при болезни Альцгеймера.	В этом обзоре мы подчеркиваем существование полного метаболического пути в ЦНС, объясняющего зависящее от активности высвобождение proNGF вместе с кластером молекул, которые высоко скоординированным образом провоцируют превращение молекулыпредшественника NGF в ее зрелую и трофически активную форму, образуются во внеклеточном пространстве, вблизи родственных им рецепторов, расположенных в холинергических синаптических окончаниях. mNGF быстро связывается с этими рецепторами, интернализуется и ретроградно транспортируется в сому нейронов для выполнения своих трофических функций. Функция остатка несвязанного mNGF во внеклеточном пространстве завершается протеолитической деградацией под действием матриксных металлопротеаз.
Nerve growth factor (NGF) pathway biomarkers in Down syndrome prior to and after the onset of clinical Alzheimer's disease: A paired CSF and plasma study	Rowan Pentz, M. Florencia Iulita, Adriana Ducatenzeiler, Laura Videla, Bessy Benejam, María Carmona-Iragui, Rafael Blesa, Alberto Lleó, Juan Fortea, A. Claudio Cuello	2021	Канада, Испания, Великобритания	Прогностическое исследование	37 пациентов, которые согласились на забор крови и ликвора и 16 человек из контрольной группы. Метод: неврологическое и нейропсихологическое обследование, оценка биомаркеров AD CSF (бетаамилоид [Аβ] 42 / Аβ40, общий tau [t-tau] и фосфорилированного tau [p-tau]).	ProNGF и MMP-3 были повышены, в то время как tPA был снижен в плазме у людей с СД. CSF от людей с DS показал повышенный proNGF, нейросерпин, MMP-3 и MMP-9. ProNGF и MMP-9 в спинномозговой жидкости дифференцировали DSAD от aDS (площадь под кривой = 0,86, 0,87). Маркеры пути NGF, связанные с бета- и тауамилоидом спинномозговой жидкости, различаются по полу.
Gene- and Gender-Related Decrease in Serum BDNF Levels in Alzheimer's Disease	Daniela Piancatelli, Anna Aureli, Pierluigi Sebastiani, Alessia Colanardi, Tiziana Del Beato, Lorenza Del Cane, Patrizia Sucapane, Carmine Marini, Silvia Di Loreto	2022	Италия	Прогностическое исследо- вание	110 пациентов (79 с AD и 31 с MCI), группа контроля — 58 человек. Метод: исследование взаимосвязи между уровнями BDNF в сыворотке и некоторыми основными полиморфизмами генов как BDNF (Val66Met, rs6265; C270T, rs56164415), так и молекул, потенциально участвующих в воспалении (семейство IL-1, включая IL-1 с rs1800587; IL-1β rs1143627; IL-38 rs6743376), при окислительном стрессе, и повреждении, защите митохондрий (APOE rs7412 и rs429358, FOXO3A rs2802292, SIRT3 rs11555236, GLO1 rs1049346 и SOD2 rs4880) были исследованы у пациентов, страдающих БА или МСI, для определения потенциальных прогностических ассоциаций риска.	Уровни BDNF в сыворотке были обнаружены у 71 пациента с диагнозом AD, у 31 пациента с MCI и у 32 контрольных лиц того же возраста с помощью твердофазного иммуноферментного анализа (ELISA) (ab99978 Abcam, Кембридж, Великобритания). Чувствительность теста составила <80 пг/мл.

Brain-Derived Neurotropic Factor in Neurodegenerative Disorders	Abdallah Mohammad Ibrahim, Lalita Chauhan, Aditi Bhardwaj, Anjali Sharma, Faizana Fayaz, Bhumika Kumar, Mohamed Alhashmi, Noora AlHajri, Md Sabir Alam, Faheem Hyder Pottoo	2022	Саудовская Аравия, Индия, ОАЭ	Прогностическое исследование	Роль BDNF в лечении и в качестве биомаркера риска БА.	BDNF является одним из нейротрофических факторов, которые модулируют его функцию через рецептор TrkB. Он играет важную роль в центральной нервной системе, формируя и поддерживая здоровую среду нейронов, что наиболее заметно отражается в когнитивной функции и функции памяти. Снижение активности BDNF было связано с процессом старения и нейродегенеративными расстройствами. Роль BDNF в лечении и в качестве биомаркера заболеваний следует тщательно изучить в будущих исследованиях.
Association of plasma brain-derived neurotrophic factor with Alzheimer's disease and its influencing factors in Chinese elderly population	Fuqiang Qian, Jian Liu, Hongyu Yang, Haohao Zhu, Zhiqiang Wang, Yue Wu	2022	Китай	Прогностическое исследование	Анализ опубликован- ных данных о связи между уровнем BDNF и нейродегенеративными заболеваниями.	Уровни BDNF у пациентов с DAT были выше, чем у пациентов с CNC и MCI (p <0,01). Уровни BDNF значительно коррелировали с CDR, MMSE и клиническим диагнозом (p <0,001). Возраст, образование, профессия и источник выборки оказали значительное влияние на различия BDNF среди групп CNC, MCI и DAT (p <0,001). BDNF сначала снижался, а затем увеличивался при когнитивных нарушениях в АроЕ4-отрицательной группе (p <0,05).
Neurotrophin-3 Promotes the Neuronal Differentiation of BMSCs and Improves Cognitive Function in a Rat Model of Alzheimer's Disease	Zhongrui Yan, Xianjing Shi, Hui Wang, Cuiping Si, Qian Liu, Yifeng Du	2021	Китай	Прогностическое исследование	Выборка крыс с БА. Метод: оценка влияния NT-3 на дифференцировку ВМSС в нейронах in vitro и in vivo и на восстановление когнитивной функции после трансплантации ВМSС на крысах с БА.	Уровень белка NT-3 в СККМ был приблизительно удвоен после трансдукции гена лентивирусом (<i>p</i> <0,001). Также было подтверждено успешное вмешательство в экспрессию NT-3 в СККМ, а эффективность лентивирус-опосредованной интерференции составила болое 70% (<i>p</i> <0,001). Нейроноподобные морфологические изменения были более выражены в группе сверхэкспрессии NT-3, чем в группе контроля вектора, тогда как подавление экспрессии NT-3 ослабляло морфологические изменения. Иммуноокрашивание NSE, NF-200 и β-тубулина нейронов класса III в СККМ было выполнено для дальнейшей демонстрации дифференцированных нейронов. Сверхэкспрессия NT-3 усиливала экспрессию NSE, NF-200 и нейронального β-тубулина класса III в СККМ, тогда как подавление NT-3 приводило к более слабому окрашиванию NSE, NF-200 и нейронного β-тубулина класса III. Уровно общего и ядерного β-катенина в СККМ были значительно повышены за счет сверхэкспрессии NT-3 по сравнению с группой вектора (<i>p</i> <0,001). Однако подавление NT-3 заметно снижало уровни общего и ядерного β-катенина (<i>p</i> <0,01). Иммуноокрашивание β-катенина в СККМ также подтвердило, что экспрессия белка β-катенина увеличивалась при сверхэкспрессии NT-3, но снижалась при молчании NT-3. По сравнению с группой СККМ уровень NT-3 в ткани головного мозга был повышен в группе HT-3-СККМ (<i>p</i> < 0,001). На 3-й день обучения латентные периоды были уменьшены в группах СККМ и НТ-3-СККМ по сравнению с группой PBS. Однако не было никакой разницы в латентности было более очевидным в группе NT-3-BMSC, чем в группе CККМ, тогда как в группе sh-NT-3-BMSC и группой рВS. На 4-й день тренировки снижение латентности было более очевидным в группе NT-3-BMSC, чем в группе CККМ, тогда как в группе sh-NT-3-BMSC и группой с PBS, но разлицы в латентности была назначительной. На 5-й день обучения латентные периоды в группе NT-3-BMSC, чем в группе NT-3-BMSC и группой ос PBS, но разлицы между троппе NT-3-BMSC и группой ос PBS, но разлицы между троппе NT-3-BMSC и группой ос PBS, но разлицы между троппе NT-3-CKКМ, тогда как в группе Sh-NT-3-

NT-4/5 antagonizes the BDNF modulation of corticostriatal transmission: Role of the TrkB.T1 receptor	Francisco M. Torres-Cruz, Israel César Vivar-Cortés, Isaac Moran, Ernesto Mendoza, Victor Gómez-Pineda, Francisco García-Sierra, Elizabeth Hernández	2019	Мексика	Прогностическое исследование	Самцы мышей C57BL/6 (ENVIGO, Мексика) в возрасте 35 дней. Мышей размещали группами по пять в ящиках из оргстекла при комнатной температуре (24-26°C) при 12:12-часовом цикле свет/темнота со свободным доступом к пище и воде. Метод: срезы головного мозга, содержащие полосатое тело, инкубировали при ОТ и барботировали (95% О 2-5% СО2) в физиологическом растворе в присутствии бикукуллина; затем срезы подвергали воздействию (а) BDNF (50 нг/мЛ), (б) BDNF(50 нг / мЛ) → NT-4/5 (50 нг /мЛ), (с) NT-4/5 (50 нг / мЛ) или (d) NT-4/5 (50 нг /мЛ) → BDNF (50 нг /мЛ) в течение 10 или 30 минут. Клеточную линию СО5-7, полученную из АТСС, выращивали в DMEM; глюкозу (1/1) дополняли 10% фетальной бычьей сывороткой; 2 ммоль/л L-глютамина; 100 ед/мл пенициллина; и 100 мкг/мл стрептомицина, и клетки выдерживали в увлажненной атмосфере (5% СО2, 37°C). Когда клетки достигли 50-60% слияния, среду заменили на специализированную среду Optimem без FBS (GIBCO), и клетки временно котрансфицировали 1 мкг ДНК из конструкций TrkB (плазмида рGFP-N1-TrkB и рRc/CMV HA-TrkB. После трансфекции клеток и обработки нейротрофином культуры клеток дважды промывали PBS, соскабливали, лизировали в буфере для радиоиммунопреципитационного анализа (RIPA), содержащем коктейль ингибиторов протеазы и центрифугировали (12 000 g × 10 минут). Собирали супернатант и определяли содержание белка с помощью мини-брэдфордского анализа. В общей сложности 30 мкг белка смешивали в 5-кратном буфере для образцов (ТРИС-НСL 250 ммоль/л PH 6,8, додецилсульфат натрия (SDS) 10%, бромфеноловый синий 0,5%, β-меркаптоэтанол 12,5% и глицерин 50%) и кипятили (95°C, 5 минут). Белки разделяли электрофорезом на 10% SDS-полиакриламидном геле (SDS-PAGE) и переносили на нитроцельюлозную мембрану для иммуноблоттингового анализа. Мембраны блокировали в 10% обезжиренном сухом молоке в PBS или ТBS-0,1% Tween 20 (PBS-tw или TBS-tw) в течение ночи при 4°C и инкубировали в течение 12 часов в первичных антителах, разведенных в PBS-tw или TBS-tw) в течение 172 часов В первичных антителах, разведенных в	При стабильной записи на ванну для записи наносили либо BDNF, либо NT-4/5. BDNF увеличивал амплитуду спайков в ответ на S1 по сравнению с контролем, как мы сообщали ранее. Однако, когда NT-4/5 вводили в присутствии BDNF, амплитуда спайка значительно уменьшалась. Этот эффект подразумевает, что NT-4/5 противодействует эффекту BDNF на кортикостриарную передачу. Анализ PPR (S2/S1) не показал существенных различий, что свидетельствует о том, что оба нейротрофина модулируют кортико-стриарную передачу посредством постсинаптических механизмов.
The multiplex model of the genetics of Alzheimer's disease	Rebecca Sims, Matthew Hill, Julie Williams	2020	Великобритания	Прогностическое исследование	Анализ опубликованных данных о мультиплексной модели в качестве новой перспективы для понимания БА.	Более 50 локусов в настоящее время вовлечены в AD, предполагая, что AD является заболеванием, состоящим из нескольких компонентов, что подтверждается анализом путей (иммунитет, эндоцитоз, транспорт холестерина, убиквитинирование, процессинг β-амилоида и тау). Было зафиксировано более 50% наследуемости БА с поздним началом, что позволило исследователям рассчитать накопление генетического риска БА с помощью показателей полигенного риска. Оценка полигенного риска предсказывает заболевание с точностью до 90% и является замечательным инструментом в нашем исследовательском арсенале, который может позволить отбирать пациентов с высокими показателями полигенного риска для клинических испытаний и прецизионной медицины.

Apolipoprotein E and Alzheimer's disease	Benjamin R Troutwine, Laylan Hamid, Colton R Lysaker, Taylor A Strope, Heather M Wilkins	2022	США	Прогностическое исследование	Анализ опубликованных данных о связи АРОЕ с БА и специфических эффектах изоформы АРОЕ в головном мозге и на периферии.	Полиморфизмы в APOE модулируют риск сосудистых заболеваний и атопического дерматита. Вероятно, существуют и другие неустановленные ассоциации изоформ APOE с заболеваниями на протяжении всей жизни. Также важно отметить, что некоторые изоформы APOE дают преимущества в раннем возрасте, но являются недостатком в старости. Роль APOE в головном мозге в значительной степени сосредоточена на эффектах APOE є 4. Хотя APOE в основном экспрессируется в глиальных клетках (астроцитах и микроглии), его эффекты наблюдаются и в других типах клеток, включая нейроны. APOE є 4 влияет на патологии, наблюдаемые при БА. APOE є 4 связан с повышенным содержанием А β, вероятно, за счет снижения его клиренса и деградации. Гиперфосфорилирование тау и NFT увеличиваются в присутствии APOE є 4. Неудивительно, что APOE є 4 модулирует нейровоспаление, и эта роль напрямую влияет на его эффекты на патологии АВ и тау. Митохондриальная функция и метаболизм изменяются экспрессией APOE є 4, и эти эффекты наблюдаются как на периферии, так и в головном мозге. В целом, эффекты APOE є 4 на патологии, связанные с БА, очевидны.
APOE and Alzheimer's Disease: From Lipid Transport to Physiopathology and Therapeutics	Mohammed Amir Husain, Benoit Laurent, and Mélanie Plourde	2021	США	Прогностическое исследование	38 537 человек из шести популяционных когорт. Метод : анализ влияния АРОЕ на метаболизм липидов и на различные функции ЦНС.	Носитель APOE4 является основным генетическим фактором риска развития болезни Альцгеймера с поздним началом, хотя не у всех носителей APOE4 развивается заболевание. APOE влияет не только на метаболизм липидов, но и на различные функции ЦНС в зависимости от изоформы. Помимо контроля уровня холестерина в крови, белки APOE4 также регулируют отложение, агрегацию и клиренс Аβ. Однако точные молекулярные механизмы, лежащие в основе регуляции Аβ, наблюдаемые в моделях человека и животных, еще предстоит выяснить. До сих пор неясно, влияет ли аллель APOE4 на патогенез болезни Альцгеймера с поздним началом за счет усиления токсических функций или потери защитных функций (или их комбинации).
Genetic meta- analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing	Brian W Kunkle, Benjamin Grenier-Boley, Rebecca Sims, Joshua C Bis, Vincent Damotte, Adam C Naj, Anne Boland, Maria Vronskaya, Sven J van der Lee, Alexandre Amlie- Wolf, Céline Bellenguez, Aura Frizatt, Vincent Chouraki, Eden R Martin, Kristel Sleegers, Nandini Badarinarayan, Johanna Jakobsdottir, et.al.	2019	США, Франция, Великобритания, Германия, Исландия, Швейцария, Испания, Финляндия, Ирландия, Бельгия, Италия, Канада, Австралия	Прогностическое исследование	Определение клинически значимых генетических маркеров для диагностики поздней стадии болезни Альцгеймера (94 437 человек).	Генетическое картирование лейкоцитов человека (HLA) подтверждает неврологический и иммуноопосредованный гаплотип заболевания HLA-DR15 как фактор риска БА. Анализ путей включает иммунитет, метаболизм липидов, связывающие белки tau и метаболизм белка-предшественника амилоида (APP), показывая, что генетические варианты, влияющие на APP и процессинг АВ, связаны не только с ранней аутосомно-доминантной болезнью Альцгеймера, но и с поздней стадией болезны Альцгеймера. Анализ генов и путей риска показывает обогащение редких вариантов (р = 1,32 × 10-7), что указывает на то, что еще предстоит идентифицировать дополнительные редкие варианты.
Assessment of the genetic variance of late-onset Alzheimer's disease	Perry G Ridge, Kaitlyn B Hoyt, Kevin Boehm, Shubhabrata Mukherjee, Paul K Crane, Jonathan L Haine, Richard Mayeux, Lindsay A Farrer, Margaret A Pericak-Vance, Gerard D Schellenberg, John S K Kauwe	2016	США	Прогностическое исследование	Набор данных SNP из Консорциума генетики болезни Альцгеймера (ADGC). Окончательный отфильтрованный набор данных состоял из 9699 индивидуумов и 8 712 879 SNP. Метод: комплексный анализ геномных признаков для (1) оценки фенотипической дисперсии, объясняемой генетикой; (2) вычисления генетической дисперсии, объясняемой известными однонуклетицыми полиморфизмами AD (SNP); (3) определение геномных вариаций, которые объясняют оставшуюся генетическую дисперсию.	Всего генетикой объясняется 53,24% фенотипической изменчивости, но известные SNP AD объясняют только 30,62% генетической изменчивости. Из необъяснимой генетической изменчивости примерно 41% объясняется неизвестными SNP в областях, прилегающих к известным SNP AD, а оставшаяся необъяснимая генетическая изменчивость находится за пределами этих областей.

Interpretation of risk loci from genome-wide association studies of Alzheimer's disease	Shea J Andrews, Brian Fulton-Howard , Alison Goate	2020	США	Прогностическое исследование	Три новых GWAS по болезни Альцгеймера, опубликованных в 2018 и 2019 годах. Первый, обновленный GWAS от IGAP, включал 94 437 человек и обнаружил 24 локуса восприимчивости. в двух других исследованиях использовалися выборки по 388 324 и 534 403 человека. Эти два исследования выявили 27 и 29 локусов восприимчивости соответственно. Метод: генетический анализ 40 локусов, которые связаны с болезнью Альцгеймера.	APOE, CR1, BIN1, TREM2, CLU, SORL1, ADAM10, ABCA7, CD33, SPI1 и PILRA являются важными генами в диагностике болезни Альцгеймера.
Polygenic Risk Scores in Alzheimer's Disease Genetics: Methodology, Applications, Inclusion, and Diversity	Clark, Yuk Yee Leung, Wan-Ping Lee, Benjamin Voight, and Li-San Wanga	2022	США	Прогностическое исследование	Анализ методов расчета PRS и их применений в прогнозировании заболеваний.	PRS были информативны в контексте многих различных заболеваний, и в недавнем прошлом было разработано множество программных средств для повышения их точности. Цель этих новых методов – расширить преимущества PRS за пределы исследовательского инструмента, приобретая ценность как в клинических условиях, так и в жизни широкой общественности. Несмотря на эти усилия, PRS остаются наиболее полезными для субъектов европейского происхождения из-за различий в генетической архитектуре между этническими популяциями. Хотя очевидным решением является увеличение разнообразия групп населения с помощью рассчитанных показателей риска, это возможно только в том случае, если популяции основных крупномасштабных GWAS также диверсифицированы. Как только эта задача будет выполнена, PRS может стать применимым к людям из всех сообществ. Это особенно верно в случае БА, где распространенность заболевания намного выше у людей африканского и испаноязычного происхождения по сравнению с людьми европейского или азиатского происхождения. При продолжающихся усилиях по повышению прогностической способности программного обеспечения PRS и инвестициях в GWAS неевропейского населения весьма вероятно, что PRS станет распространенным инструментом, используемым медицинским сообществом.
A cluster of cholesterol-related genes confers susceptibility for Alzheimer's disease	Andreas Papassotiropou- los, M Axel Wollmer, Mag- dalini Tsolaki, Fabienne Brunner, Dimitra Molyva, Dieter Lütjohann, Roger M Nitsch, Christoph Hock	2005	Швейцария	Прогностическое исследование	12 однонуклеотидных полиморфизмов, связанных с холестерином, и 48 контрольных полиморфизмов у 545 участников исследования (группа болезни Альцгеймера n=284; контрольная группа n=261). Метод: анализ кластера полиморфизмов в АРОЕ, SOAT1, АРОЕ 5>-нетранслируемой области, ОLR1, СҮР46A1, LPL, LIPA и АРОА4, придающих значительную (р=0,0002) восприимчивость к болезни Альцгеймера.	Мы определили группу полиморфизмов в АРОЕ, SOAT1, 5>-нетранслируемой области АРОЕ, OLR1, CYP46A1, LPL, LIPA и АРОА4, придающих значительную (ρ =0,0002) предрасположенность к болезни Альцгеймера. Этот кластер генов достиг диагностической точности 74% и значительно коррелировал (ρ =0,018) с уровнями катаболита мозгового холестерина 24S-гидроксихолестерола в спинномозговой жидкости.
Evaluation of a Genetic Risk Score to Improve Risk Prediction for Alzheimer's Disease	Vincent Chouraki, Christiane Reitz, Fleur Maury, Joshua C Bis, Celine Bellenguez, Lei Yu, et.al.	2016	США, Исландия, Нидерланды	Прогностическое исследование	19 687 участников из группы риска, у 2782 из которых развилась БА. Метод: оценка генетического риска (GRS), включающая общие генетические варианты, связанные с БА, оценка ее связи с заболеванием БА и оценка ее способности улучшать прогноз риска по сравнению с традиционными моделями, основанными на возрасте, поле, образовании и АРОЕє4.	GRS был связан с увеличением риска AD на 17% (объединенный HR = 1,17; 95% CI = [1,13–1,21] на увеличение стандартного отклонения GRS; значение <i>p</i> =2,86 × 10–16). Эта связь была сильнее среди лиц с хотя бы одним аллелем APOEε4 (HRGRRS = 1,24; 95% ДИ = [1,15–1,34]), чем у других (HRGRRS = 1,13; 95% ДИ = [1,08–1,18]; взаимодействие = 3,45 × 10 -2). Прогнозирование риска после семи лет наблюдения показало небольшое улучшение при добавлении GRS к возрасту, полу, APOEε4 и образованию (Δ-Cindex = 0,0043 [0,0019-0,0067]). Аналогичные закономерности наблюдались для IDI и NRI>0.

			1			
Polygenic risk scores in familial Alzheimer disease	Giuseppe Tosto, Thomas D. Bird, Debby Tsuang, David A. Bennett, Bradley F. Boeve, Carlos Cruchaga, Kelley Faber, Tatiana M. Foroud, Martin Farlow, Alison M. Goat, Sarah Bertlesen, Neill R. Graff-Radford, Martin Medrano, Rafael Lantigua, Jennifer Manly, Ruth Ottman, Roger Rosenberg, Daniel J. Schaid, Nicole Schupf, Yaakov Stern, Robert A. Sweet, and Richard Mayeux	2017	США	Прогностическое исследование	Данные National Institute on Aging Genetics Initiative по изучению поздней стадии болезни Альцгеймера. Метод: первая модель ассоциации, полученная из литературы. Далее модели скорректировали на наличие аллеля АРОЕ ε4 и дополнительно протестировали взаимодействие между АРОЕ ε4 и GRS. Затем построили аналогичный GRS в когорте испаноязычных семей Карибского бассейна путем выбора SNP с самым высоким значением р в тех же регионах.	В семьях с семейной болезнью Альцгеймера с поздним началом GRS была в значительной степени связана с семейной болезнью Альцгеймера с поздним началом (отношение шансов [ОШ] 1,29; 95% доверительный интервал 1,21–1,37). Результаты не изменились после поправки на АРОЕ є4. В карибских латиноамериканских семьях GRS также значительно предсказывал болезнь Альцгеймера с поздним началом (ОШ 1,73; 1,57–1,93). Более высокие баллы были связаны с более низким возрастом начала заболевания в обеих когортах.
Genetic assessment of age-associated Alzheimer disease risk: Development and validation of a polygenic hazard score	Rahul S Desikan, Chun Chieh Fan, Yunpeng Wang, Andrew J Schork, Howard J Cabral, L Adrienne Cup- ples, Wesley K Thompson, Lilah Besser, Walter A Kukull, Dominic Holland, Chi-Hua Chen, James B Brewer, David S Karow, Karolina Kauppi, et.al.	2021	США, Норвегия, Дания	Прогностическое исследо- вание	Данные о генотипах 17 008 пациентов с БА и 37 154 контрольных лиц из Международного проекта по геномике болезни Альцгеймера (этап 1 IGAP). Метод: анализ SNP моделей, связанных с БА.	В когорте ADGC фазы 1 у лиц из самого высокого квартиля PHS БА развился в значительно более раннем возрасте и имел самый высокий годовой уровень заболеваемости БА. Среди лиц с APOE ε3/3 PHS модифицировал ожидаемый возраст начала БА более чем на 10 лет между самым низким и самым высоким децилями (отношение рисков 3,34, 95% ДИ 2,62–4,24, р = 1,0 × 10–22). В независимых когортах PHS строго предсказывал эмпирический возраст начала болезни Альцгеймера (ADGC Phase 2, r=0,90, p= 1,1 × 10-26) и лонгитюдное прогрессирование от нормального старения к болезни Альцгеймера (NIA ADC, тест тенденции Cochran-Armitage, p = 1,5 × 10-10) и был связан с невропатологией (NIA ADC, стадия нейрофибриллярных клубков по Брааку, p = 3,9 × 10-6, и оценка Консорциума по установлению реестра болезни Альцгеймера для нейритных бляшек, p=6.8 × 10-6) и маркеры нейродегенерации при БА in vivo (ADNI, потеря объема в энторинальной коре, p = 6,3 × 10-6, и в гиппокампе, p = 7,9 × 10–5).
Risk prediction of late-onset Alzheimer's disease implies an oligogenic architecture	Qian Zhang, Julia Sidoren- ko, Baptiste Couvy-Duch- esne, Riccardo E Marioni, Margaret J Wright, Alison M Goate, et.al.	2020	Австралия, США, Великобритания	Прогностическое исследование	Три независимых наборах данных, включающих 676 случаев и 35 675 случаев, подтвержденных семейным анамнезом. Метод: анализ SNP моделей, связанных с прогнозированием риска БА.	Количество причинных общих SNP для болезни Альцгеймера с поздним началом может быть меньше 100, что позволяет предположить, что болезнь Альцгеймера с поздним началом является более олигогенным, чем полигенным. Лучший GRS объясняет примерно 75% наследуемости SNP, и у лиц из верхнего дециля GRS шансы в десять раз выше, чем у лиц из нижнего дециля. Кроме того, идентифицировано 14 вариантов, которые вносят вклад как в риск развития болезни Альцгеймера с поздним началом, так и в возраст начала болезни Альцгеймера с поздним началом.
Polygenic risk and hazard scores for Alzheimer's disease prediction	Ganna Leonenko, Rebecca Sims, Maryam Shoai, Aura Frizzati, Paola Bossù, Gianfranco Spalletta, Nick C Fox, Julie Williams, John Hardy, Valentina Escott-Price	2019	Великобритания, Италия	Мета-анализ	9903 испытуемых (2626 случаев БА и 7277 контрольных) из консорциума генетических и экологических рисков при болезни Альцгеймера (GERAD). Метод: количественная оценка индивидуальных различий в возрастном генетическом риске развития БА.	Оценка полигенного риска способна предсказать риск, связанный с возрастом начала болезни Альцгеймера, когда SNP были предварительно выбраны для ассоциации с болезнью Альцгеймера при р ≤ 0,001. Самый сильный эффект (B=0,28, SE=0,04, <i>p</i> =2,5 × 10-12) наблюдался для PRS на основе полногеномных значимых SNP (p≤5 × 10-8). Сила связи была слабее с менее строгими порогами выбора SNP.

A comprehensive analysis of methods for assessing polygenic burden on Alzheimer's disease pathology and risk beyond APOE	Andre Altmann, Marzia A Scelsi, Maryam Shoai, Eric de Silva, Leon M Aksman, David M Cash, John Hardy, Jonathan M Schott	2019	Великобритания	Диагностическое исследование	Данные генотипирования однонуклеотидного полиморфизма (SNP) для n=1674 субъектов из базы данных ADNI. Метод: MMSE (IQR), ПЭТ с лигандами к амилоидуданные о биомаркерах CSF, связанных с болезнью Альцгеймера, фрагменте 1-42 белка β-амилоида (Aβ), общем тау (tau) и тау, фосфорилированном по треонину 181 (p-tau), анализ SNP моделей.	Было обнаружено, что полигенные баллы были связаны помимо APOE с клиническим диагнозом, уровнем тау-белка в спинномозговой жидкости и, в меньшей степени, с прогрессирующей атрофией. Однако для многих других тестируемых признаков, таких как клиническое прогрессирование заболевания, амилоид в спинномозговой жидкости, снижение когнитивных функций и корковая амилоидная нагрузка, дополнительные эффекты полигенной нагрузки помимо APOE-носили второстепенный характер. В целом, оценки полигенного риска и оценки полигенной опасности имеют одинаковые результаты, учитывая легкость, с которой могут быть получены оценки полигенного риска; они представляют собой более практичный выбор по сравнению с показателями полигенной опасности. Кроме того, наши результаты демонстрируют, что неполная корректировка локуса APOE , т.е. только корректировка статуса носительства APOE -ε4. может привести к переоценке эффектов полигенных баллов из-за гомозиготных участников по APOE -ε4. Наконец, для многих протестированных признаков основным движущим фактором оставался локус APOE , за исключением количественных показателей CSF-tau и p-tau.
Association of Alzheimer's Disease Genetic Risk Loci with Cognitive Performance and Decline: A Systematic Review	Shea J Andrews, G Peggy McFall, Andrew Booth, Roger A Dixon, Kaarin J Anstey	2019	Австралия, Канада, США, Великобритания	Систематический обзор	Исследования, опубликованные с января 2009 года по апрель 2018 года, были идентифицированы с помощью поиска в базе данных PubMed с использованием ключевых слов и путем сканирования списков литературы. Метод: анализ опубликованных данных на предмет ассоциации локусов генетического риска болезни Альцгеймера с когнитивными показателями и снижением.	15% ассоциаций между локусами риска, не относящимися к APOE LOAD, и когнитивными функциями были значительными. Однако эти ассоциации не были воспроизведены в исследованиях, и большинство из них были признаны незначимыми при поправке на множественное тестирование. Треть исследований включала оценки генетического риска, и они, как правило, были значимыми только при включении APOE. Результаты этого систематического обзора не подтверждают последовательной связи между индивидуальным риском, не связанным с LOAD APOE, и когнитивными характеристиками или снижением.
Polygenic Score Models for Alzheimer's Disease: From Research to Clinical Applications	Xiaopu Zhou, Yolanda Y T Li, Amy K Y Fu, Nancy Y Ip	2021	Китай	Систематиче- ский обзор	Анализ опубликованных данных на предмет обоснования и методов, ис- пользуемые для построения полиген- ных моделей оценки для изучения БА.	15% ассоциаций между локусами риска, не связанными с APOE, и когнитивными с способностями были значимыми. Однако это не было доказано во всех исследованиях. Результаты этого систематического обзора не подтверждают последовательную связь между индивидуальным риском БА, не связанной с APOE, и когнитивными показателями или снижением. Однако имеющиеся данные свидетельствуют о том, что совокупный генетический риск БА оказывает пагубное влияние на снижение эпизодической памяти и глобального познания.
Volunteering, polygenic risk for Alzheimer's disease, and cognitive functioning among older adults	Sae Hwang Han, J Scott Roberts, Jan E Mutchler, Jeffrey A Burr	2020	США	Прогностическое исследование	Пенсионеры США (n = 9 697). Метод: оценка когнитивного сниежения посредством интервью, оценка полигенного риска для БА (PGS-AD).	Были обнаружены устойчивые внутриличностные связи между волонтерством (оцениваемым как волонтерский статус и временные затраты) и когнитивными функциями с течением времени, так что волонтерство было связано с более высокими уровнями когнитивных функций и более медленным снижением когнитивных функций. Результаты также предоставили доказательства того, что внутриличностные ассоциации волонтерства и снижения когнитивных функций были более выражены у пожилых людей с более высоким генетическим риском развития БА.
Polygenic risk scores for Alzheimer's disease, and academic achievement, cognitive and behavioural measures in children from the general population	Roxanna Korologou-Linden, Emma L Anderson, Han- nah J Jones, George Davey Smith, Laura D Howe, Evie Stergiakouli	2019	Великобритания	Прогностическое исследование	Лонгитюдное исследование родителей и детей Avon (ALSPAC). В исследование было включено 14 541 беременных женщин, в результате чего родилось 14 062 ребенка. Метод: генотипирование на платформе генотипирования Illumina HumanHap550-quad SNP, полигенные оценки риска, анализ чувствительности.	Мы не обнаружили никаких доказательств того, что полногеномный значимый PRS (5х10-8) был связан с этими исходами. PRS с самым высоким исследованным пороговым значением р (р ≤ 5х10-1) были связаны с более низкой успеваемостью у подростков (ключевой этап 3; β: -0,03; 95% доверительный интервал: -0,05, -0,003), но эффект был ослаблен. когда были удалены однонуклеотидные полиморфизмы (SNP), связанные с уровнем образования. Эти PRS были связаны с более низким IQ (β: -0,04; 95% ДИ: -0,07, -0,02) в возрасте 8 лет с эффектом, сохраняющимся после удаления SNP, связанных с уровнем образования.

					Участники, которые не	
Effects of polygenic risk for Alzheimer's disease on rate of cognitive decline in normal aging	Karolina Kauppi, Michael Rönnlund, Annelie Nordin Adolfsson, Sara Pudas, Rolf Adolfsson	2020	Швеция	Прогностическое исследование	участники, которые не страдали деменцией до последнего скрининга на деменцию (через 1–3 года после последнего тестирования) (п=1087). Метод: изучение аллели АРОЕ є4, полигенного показателя общей когнитивной способности (PGS-cog) и полигенный показатель риска позднего начала БА.	PRS-LOAD предсказывал скорость снижения когнитивных функций в тщательно отобранной выборке здоровых пожилых людей, которые не страдали деменцией, по крайней мере, в течение шести лет после последней оценки, помимо аллеля ΑΡΟΕ ε4.
An Alzheimer's Disease Genetic Risk Score Predicts Longitudinal Thinning of Hippocampal Complex Subregions in Healthy Older Adults	Theresa M. Harrison, Zanj- beel Mahmood, Edward P. Lau, Alexandra M. Karacoz- off, Alison C. Burggren, Gary W. Small, and Susan Y. Bookheimer	2016	США	Диагностическое исследование	В текущем исследовании было набрано 66 участников в возрасте 248 лет. Для 45 наших участников были доступны данные наблюдения за 2 года. Не было различий по половому составу (р=0,42), возрасту (р=0,95), образованию (р=0,42) или баллу ММЅЕ (р=0,31) между нашей большей исходной группой и подгруппой с лонгитодными данными. Метод: оценка полигенного риска, оценка АРОЕ (аполипопротеин E), CLU (кластерин), PICALM (фосфатидилинозитол-связывающий белок сборки клатрина) и семейного анамнеза БА.	WRS варьировались от -0,09 до 1,15. Между субъектами наблюдалось высокое соответствие между URS и WRS (r =0,72, p <0,0001). обнаружили значимой связи между поведением и URS (исходный уровень: r =0,14, p =0,13; последующее наблюдение: r =-0,06, p =0,34) или WRS (исходный уровень: r =-0,06, p =0,34; последующее наблюдение: r =-0,05, p =0,37). Отсутствие связи между когнитивными функциями и оценкой генетического риска подчеркивает доклиническую направленность этой работы, которая заключается в выявлении биомаркеров, связанных с r енетическим риском БА у когнитивно здоровых пожилых людей. Не было значимой связи между GRS и толщиной, нормализованной по ICV, по всему HC (URS: r =0,15, p =0,16; WRS: r =0,02, p =0,44). Затем мы исследовали ERC и SUB, две области, пораженные на ранней стадии AD, и снова не обнаружили связи между GRS и толщиной, нормализованной по ICV (URS: r =0,13; WRS: r =0,05, p =0,35). Мы обнаружили значительную отрицательную корреляцию между увеличением GRS и более отрицательным процентным изменением толщины коры по всему HC (URS: r =-0,40, p =0,003; WRS: r =-0,25, p =0,048; В ERC толщина коррелировала с обоими типами GRS (URS: r =-0,35, p =0,009; WRS: r =-0,25, p =0,009). В SUB связь была значительной, но не такой сильной (URS: r =-0,31, p =0,01; WRS: r =-0,22, p =0,07). Частные коэффициенты корреляции по-прежнему были значимы для всей толщины коры HC и URS (URS: r =-0,34, p =0,028; WRS: r =-0,27, p =0,086), а также для толщины ERC r обоими показателями риска (URS: r =-0,35, r =0,009). WRS: r =-0,26, r =0,029). В качестве исследовательского анализа мы изучили каждое оставшееся подполе HC r обнаружили дополнительные значимые отношения к URS r =-0,35, r =0,009). Ин (r =-0,26, r =0,009). Нося в целом была очень значимой (r =0,001) и что URS была значимым предиктором в рамках моделы (r =0,028), наряду r временем между визитами (r =0,002) и тенденцией для пола (r =0,059)). Напротив, общая модель только APOE была значимой (r =0,003), но сама APOE не
Combining Polygenic Hazard Score With Volumetric MRI and Cognitive Measures Improves Prediction of Progression From Mild Cognitive Impairment to Alzheimer's Disease	Karolina Kauppi, Chun Chieh Fan, Linda K. McE- voy, Dominic Holland, Chin Hong Tan, Chi-Hua Chen, Ole A. Andreassen, Rahul S. Desikan, Anders M. Dale	2018	США, Норвегия, Италия	Прогностическое исследование	Контрольная группа пожилых здоровых людей (n=200), пациенты с болезнью Альцгеймера (n=200) и лица с МСІ (n=400), с последующим ежегодным наблюдением в течение 36 месяцев. Метод: данные о CDR-SB и ММSЕ из ADNI 1, данные о прогрессировании до ADNI 2 и ADNI GO, МРТ, оценка полигенной опасности (PHS), статистический анализ.	PHS являлся предиктором прогрессирования от MCI до AD в течение 120 месяцев наблюдения (p =1,07e-5), а PHS был значительно более сильным предиктором прогрессирования, чем генотип APOE ϵ (p =0,0152, для модельного сравнения APOE против APOE). + ПХС). При включении в модель показателя атрофии (McEvoy et al., 2009) показатель PHS оставался значимым, а модель двухфакторного прогнозирования была значительно более прогностической, чем любая однофакторная модель (ps = 5,61e-11 и 0,0015 для сравнения с однофакторными моделями PHS и оценки атрофии соответственно). Наконец, мы включили когнитивное функционирование на исходном уровне (MMSE) в модель трехфакторного прогнозирования, что дало комбинированное модельное значение р 4,28e-17. Сравнение моделей показало, что трехфакторная модель была значительно более прогностической, чем двухфакторная (p <0,005). PHS значительно улучшает предсказание как MMSE (χ ²= 26,7, df=1, p =2,34e-07), так и CDR-SB (χ ²= 21,57, df=1, p =3,41e-06) по сравнению с к базовым переменным. Кроме того, PHS работал значительно лучше, чем статус APOE ε4, в прогнозировании как MMSE (χ ²= 8,61, df=1, p =0,0033), так и CDR-SB (χ ²= 6,12, df=1, p =0,013). Опять же, PHS оставался значимым после добавления к модели показателя атрофии. По сравнению с одной оценкой атрофии, комбинированная модель PHS и оценки атрофии была значительно более прогностической в отношении изменений обоих MMSE (χ ²=19,04, df =1, ρ =1,281e-05, [с контроль по аллелей APOE ε4: χ ²= 6,97, df=1, ρ =0,003]), а также CDR_SB (χ ²= 13,43, df=1, ρ =0,00025 [контроль по аллелям APOE ε4: χ ²= 4,57, df=1, ρ =0,003]).

Polygenic risk of Alzheimer disease is associated with early- and late-life processes	Elizabeth C Mormino, Reisa A Sperling, Avram J Holmes, Randy L Buckner, Philip L De Jager, Jordan W Smoller, Mert R Sabuncu	2016	США	Прогностическое иссле- дование	Участники с клинически нормальным состоянием (CN=1322), пациенты с умеренными когнитивными нарушениями (MCI=1031) и пациенты с БА-деменцией (AD=166). Метод: ПЭТ, МРТ, данные генотипирования с чипа Illumina Human610-Quad BeadChip, статистический анализ.	У участников без деменции повышенный уровень PGRS был связан с ухудшением памяти (p =0,002) и меньшим размером гиппокампа (p =0,002) на исходном уровне, а также с более выраженным продольным снижением когнитивных функций (память: p =0,005, исполнительная функция: p =0,01) и клиническое прогрессирование (p < 0,00001). Высокий уровень PGRS был связан с уровнями β -амилоидной нагрузки, подобными AD, по данным ПЭТ с флорбетапиром (p =0,03), но не достигал статистической значимости для β -амилоида в спинномозговой жидкости (p =0,11). В младшей группе более высокий PGRS был связан с меньшим объемом гиппокампа (p =0,05). Этот паттерн был очевиден при изучении PGRS, который включал множество локусов ниже порога значимости уровня полногеномного исследования ассоциации (GWAS) (16 123 однонуклеотидных полиморфизма).
Genetic Risk as a Marker of Amyloid-β and Tau Burden in Cerebrospinal Fluid	Nicola Voyle, Hamel Patel, Amos Folarin, Stephen Newhouse, Caroline Johnston, Pieter Jelle Viss- er, Richard J.B. Dobson, Steven J. Kiddle	2017	Великобритания, США, Нидер- ланды	Прогностическое исследование	В этом исследовании используются данные ADNI 1 и подгрупп ADNI 2 и ADNI GO, которые с этого момента называются ADNI 2. Метод: генотипированы на чипе Illumina HumanOmniExpressExome-8v1.2 ВеаdChip, изучения маркеров Aβ и тау в ликворе, статистический анализ.	В данных тестов EDAR и DESCRIPA включение PGRS случай/контроль не более предсказывало Аβ и комбинированную конечную точку Аβ и тау, чем базовые модели (точность 66,0% и 73,3% соответственно). Тау-модель показала небольшое увеличение точности по сравнению с базовыми моделями (59,6%). Данные испытаний ADNI 2 также показали небольшое увеличение точности модели Аβ по сравнению с базовыми моделями (61,4%).
Dissociable influences of APOE ɛ4 and polygenic risk of AD dementia on amyloid and cognition	Tian Ge, Mert R. Sabuncu, Jordan W. Smoller, MD, Reisa A. Sperling, Elizabeth C. Mormino	2018	США	Прогностическое исследование	702 участника ADNI-GO / 2 (221 CN, 367 с умеренными когнитивными нарушениями [MCI] и 114 с AD-деменцией. Метод: визуализация Аβ, нейропсихологические оценки, структурная МРТ, обработка генетических данных, расчет оценки полигенного риска, статистический анализ.	В целом, PRS был выше в группе А β + по сравнению с группой А β - (2-выборочный t- критерий p <0,05 для диагноза и порогов PRS). Однако связи между PRS и исходным А β были слабыми, независимо от того, рассматривался ли А β как непрерывная переменная или как бинарная переменная. Например, наиболее значимая связь между PRS и непрерывным А β объясняла только 0,75% вариации А β (p =0,013). Как и ожидалось, АРОЕ ϵ 4 был тесно связан с повышенным непрерывным А β на исходном уровне, объясняя 17,94% дисперсии.
Polygenic hazard score: an enrichment marker for Alzheimer's associated amyloid and tau deposition	Iris J Broce, Christopher	2018	США	Прогностическое исследо- вание	Мы ограничили анализы лицами с нормальными показателями (n=347, базовый возрастной диапазон = 59,7–90,1) и пациентами с диагнозом МСІ (n=599, базовый возрастной диапазон = 54,4-91,4), у которых были как генетические, так и CSF или PET биомаркеры (CSF Aβ 1-42, CSF total tau или PET 18 F-AV45). Метод: оценка полигенной опасности (PHS), статистический анализ.	У лиц без когнитивного снижения и с когнитивным снижением было обнаружено, что положительность амилоида и общего количества тау систематически варьируется в зависимости от PHS. Для лиц с PHS выше 50-го процентиля положительная прогностическая ценность для амилоида приближалась к 100%; для лиц с PHS менее 25-го процентиля отрицательная прогностическая ценность для общего тау приближалась к 85%. У лиц с высоким PHS с амилоидной и тау-патологией наблюдалось самое резкое продольное снижение когнитивных функций и клиническое снижение, даже среди неносителей АРОЕ £4. Среди подгруппы без когнитивного снижения было обнаружено, что PHS был тесно связан с положительностью амилоида, а комбинация PHS и статуса биомаркера значительно предсказывала продольное клиническое прогрессирование. В когорте ROSMAP более высокий PHS был связан с более высокой посмертной амилоидной нагрузкой и нейрофибриллярными клубками, даже у неносителей АРОЕ £4.
Machine learning approaches to mild cognitive impairment detection based on structural MRI data and morphometric features	Anna Y Morozova, Yana A Zorkina, Olga Abramova, Olga V Ukhova	2023	Россия	Систематический обзор	Анализ опубликованных данных о специфических генетических марке- рах БА в плазме крови	Биомаркеры плазмы, включая нейротрофические факторы, провоспалительные цитокины и маркеры окислительного стресса, постоянно повышены у значительной части пациентов с когнитивной дисфункцией и, таким образом, могут определять симптомы. Кроме того, эти плазменные маркеры зависят, конечно, от последовательностей ДНК генов и механизмов транскрипции. Более того, внешние факторы, такие как образ жизни, диета, вредные привычки и уровень стресса, регулируют транскрипцию генов посредством эпигенетических механизмов метилирования и ацетилирования ДНК и гистонов. Генетическая основа психических расстройств сложна и до сих пор неясна. Данные о нейровоспалительных процессах, которые вовлечены в когнитивно-ассоциированные психические расстройства, и о том, как они способствуют развитию, прогрессированию и поддержанию этих расстройств, ограничены.