Бурение скважин с комбинированным регулированием давления

Обложка

Цитировать

Полный текст

Аннотация

В рамках данного исследования проведен анализ новых технологий бурения нефтяных и газовых скважин, к числу которых относится технология бурения с регулируемым давлением. В ходе исследования рассмотрено оборудование для создания дифференциального давления в системе «скважина – пласт», поставляемое такими международными компаниями, как Schlumberger, M-I SWACO, АКРОС и др. Проведен анализ применения базового комплекса оборудования для бурения с регулируемым давлением, в который входят установка управления противодавлением, азотная компрессорная станция, штуцерный манифольд, сепаратор, роторный устьевой герметизатор, факельная вышка с системой зажигания и программно-аппаратный комплекс. Рассмотрены варианты реализации технологии бурения с регулируемым давлением путем применения герметизированной системы циркуляции, которая упрощает схему промывки скважины и обеспечивает плавное регулирование давления промывочного агента на забой. Исследована реальная возможность представляемого базового оборудования для бурения с регулируемым давлением с помощью комплекса программно-аппаратного обеспечения определять допускаемые значения давления гидроразрыва пласта и пластового давления для повсеместного контроля профиля давления в затрубном пространстве. Установлено, что бурение с регулируемым давлением как принципиально новая для гидродинамических условий залежи технология первичного вскрытия пласта позволяет реализовать бурение в зонах практически с любым по начальной интенсивности поглощением: в ходе работ мы не останавливаем проходку (то есть циркуляцию) и не повышаем эквивалентное давление «на горизонт», зависящее от эквивалентной циркуляционной плотности – регулирование заключается в приближении эквивалентного давления «на горизонт» к пластовому давлению. Технологический процесс бурения с регулируемым давлением с использованием рассматриваемого оборудования поможет буровому персоналу лучше понять эффективность данной методики бурения и будет способствовать ее более осмысленному применению отечественными фирмами.

Об авторах

В. И. Зайцев

Иркутский национальный исследовательский технический университет

Email: zaicshev@istu.edu

А. В. Карпиков

Иркутский национальный исследовательский технический университет

Email: karpikov@istu.edu

Список литературы

  1. Гасумов Р. А. Риски при бурении поисково-разведочных скважин в осложненных горно-геологических условиях // Проблемы экономики и управления нефтегазовым комплексом. 2014. № 9. С. 26–30.
  2. Сверкунов С. А. Применение технологии бурения с регулируемым давлением в условиях Восточной Сибири // Известия Сибирского отделения секции наук о Земле Российской академии естественных наук. Геология, поиски и разведка рудных месторождений. 2012. № 2. С. 122–125.
  3. Вахромеев А. Г., Иванишин В. М., Сверкунов С. А., Поляков В. Н., Розяпов Р. К. Глубокая скважина как стенд гидравлических «on-line» исследований напряженного состояния горного массива флюидонасыщенных трещиноватых коллекторов // Геодинамика и тектонофизика. 2019. Т. 10. № 3. С. 761–778. https://doi.org/10.5800/GT-2019-10-3-0440.
  4. Вахромеев А. Г., Иванишин В. М., Акчурин Р. Х., Сверкунов С. А. Первые выводы по результатам внедрения технологии бурения с комбинированным регулируемым давлением для сложных горно-геологических условий Восточной Сибири // Строительство нефтяных и газовых скважин на суше и море. 2019. № 9. С. 5–12. https://doi.org/10.30713/0130-3872-2019-9-5-12.
  5. Гасумов Р. А. Копченков В. Т. Лукьянов В. Т., Фёдорова Н. Г., Овчаров С. Н. Особенности строительства глубоких скважин в осложненных горно-геологических условиях Предкавказья // Наука. Инновации. Технологии. 2017. № 1. С. 123–140.
  6. Сираев Р. У., Сверкунов С. А., Данилова Е. М., Сотников А. К., Вахромеев А. Г. Анализ горно-геологических условий бурения геологоразведочных скважин на нефть и газ на Даниловской площади, Непский свод // Вестник Иркутского государственного технического университета. 2013. № 12. С. 131–136.
  7. Economides M. J., Watters L. T., Dunn-Norman S. Petroleum well construction. New York: Willey, 1998. 640 p.
  8. Гасумов Р. А., Керимов И. А., Харченко В. М. Влияние геологических факторов на коллекторские свойства продуктивных пластов с трещиноватыми глинистыми коллекторами при их вскрытии бурением // Строительство нефтяных и газовых скважин на суше и на море. 2018. № 7. С. 28–31. https://doi.org/10.30713/0130-3872-2018-7-28-31.
  9. Fertl W. H., Chapman R. E., Hotz R. F. Studies in abnormal pressures. Oxford: Elsevier, 1994. 454 р.
  10. Белонин М. Д., Славин В. И., Чилингар Д. В. Аномально высокие пластовые давления. Происхождение, прогноз, проблемы освоения залежей углеводородов: монография. СПб.: Недра, 2005. 324 с.
  11. Rabia H. Oilwell drilling engineering: principles and practice. London: Graham & Trotman, 1985. 322 р.
  12. Вахромеев А. Г., Сверкунов С. А., Мартынов Н. Н. Бурение на депрессии в сложных горно-геологических условиях Восточной Сибири // Геонаука-2016: материалы Всероссийской научно-технической конференции. Вып. 16. Иркутск: Изд-во ИрГТУ, 2016. С. 30–34.
  13. Вахромеев А. Г., Сверкунов С. А., Иванишин В. М., Розяпов Р. К., Данилова Е. М. Геодинамические аспекты исследования сложных горно-геологических условий бурения древнейших карбонатных резервуаров нефти и газа рифея: обзор проблемы на примере месторождений Байкитской нефтегазоносной области // Геодинамика и тектонофизика. 2017. Т. 8. № 4. С. 903–921. https://doi.org/10.5800/GT-2017-8-4-0323.
  14. Сверкунов С. А., Вархомиеев А. Г., Сираев Р. У., Данилова Е. М. Бурение скважин с горизонтальным окончанием в сложных горно-геологических условиях. Иркутск: Изд-во ИРНИТУ, 2016. 201 с.
  15. Гиниатуллин Р. Р., Кириев В. В., Крепостников Д. Д., Чернокалов К. А., Загривный Ф. А., Доброхлеб П. Ю.. Эффективный способ бурения скважин в условиях катастрофических поглощений в трещиноватых коллекторах Юрубчено-Тохомского месторождения // Нефтяное хозяйство. 2017. № 11. С. 40–43. https://doi.org/10.24887/0028-2448-2017-11-40-43.
  16. Пат. № 2598268, Российская Федерация, МПК E21B 21/08. Способ первичного вскрытия сложного кавернозно-трещинного карбонатного нефтегазонасыщенного пласта горизонтальным стволом большой протяженности / С. А. Сверкунов, А. Г. Вахромеев, Р. У. Сираев. Заявл. 13.10.2015; опубл. 20.09.2016. Бюл. № 26.
  17. Robinson L. Optimising bit hydraulics increases penetration rate // World Oil. 1982. July. P. 24–26.
  18. Вахромеев А. Г., Розяпов Р. К., Постникова О. В., Кутукова Н. М., Сверкунов С. А., Сираев Р. У. Литологические и гидродинамические факторы, определяющие условия первичного вскрытия горизонтальным бурением и освоение продуктивных интервалов рифейского природного резервуара Юрубчено-Тохомского НГКМ // Геология и минерально-сырьевые ресурсы Сибири. 2015. № 3. С. 67–81.
  19. Auzina L. I., Parshin A. V. System-intergrated GISbased approach to estimating hydrogeological condition of oil-and gas fields in Eastern Siberia // IOP Conference. Series: Earth and Environ-mental Science. 2016. Vol. 33. P. 012060. https://doi.org/10.1088/1755-1315/33/1/012060.
  20. Ofei T. N., Irawan S., Pao W. CFD method for predicting annular pressure losses and cuttings concentration in eccentric horizontal wells // Journal of Petroleum Engineering. 2014. P. 486423. https://doi.org/10.1155/2014/486423.
  21. Поляков В. Н., Ишкаев Р. К., Лукманов Р. Р. Технология закачивания нефтяных и газовых скважин. Уфа: ТАУ, 1999. 404 с.
  22. Van Golf-Racht T. D. Fundamentals of fractured reservoir engineering. Amsterdam: Elsevier, 1986. 732 р.
  23. Рябчук В. А., Сердобинцев Ю. П., Шмелев В. А., Кривошеева Н. Н. Анализ применения технологий бурения с управляемым давлением на забое при проводке ствола скважины в карбонатных отложениях // Молодой ученый. 2019. № 22. С.138–139.
  24. Пат. № 2617820, Российская Федерация, МПК E21B 43/16. Способ определения максимальной длины горизонтального ствола в условиях каверново-трещинного карбонатного нефтегазонасыщенного пласта с аномально низким пластовым давлением / С. А. Сверкунов, А. Г. Вахромеев, Р. У. Сираев. Заявл. 11.09. 2015; опубл. 16.03.2017. Бюл. № 12.
  25. Пат. № 2657052, Российская Федерация, МПК E21B 43/25, E21B 43/02. Способ испытания и освоения флюидонасыщенного пласта-коллектора трещинного типа / В. М. Иванишин, А. Г. Вахромеев, С. А. Сверкунов, Р. У. Сираев, И. В. Горлов, Ю. В. Ланкин. Заявл. 21.04.2017; опубл. 08.06.2018.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».