Construction and applications of knowledge graph of porphyry copper deposits

Cover Page

Cite item

Full Text

Abstract

A knowledge graph is becoming popular due to its ability to describe the real world by using a graph language that can be understood by both humans and machines using computer technologies. A case study to construct the knowledge graph of porphyry copper deposits is presented in this paper. First of all, the raw text data is collected and integrated from selected porphyry copper deposits and porphyry-skarn copper deposits in the Qinzhou Bay – Hangzhou Bay metallogenic belt, South China. Second, the text's entities, relations, and attributes are labeled and extracted with reference to the conceptual model of porphyry copper deposits in the study area. The third, a knowledge graph of porphyry copper deposits, was constructed using Neo4j 4.3. The resulted knowledge graph of porphyry copper deposit has the basic functions of an application. Furthermore, as part of a planned integrated knowledge graph from a single deposit, through an upper-geared metallogenic series, to a high-top metallogenic province, the understanding from the present study may be extended to mineral resource prospectivity and assessment beyond today. The interrelationship between the earth system, the metallogenic system, the exploration system, and the prospectivity and assessment (ES-MS-ES-PS) should be completely understood, and a knowledge graph system for ES-MS-ES-PS is needed. The key scientific and technological problems for achieving the ES-MS-ES-PS knowledge graph system are included in the progressively relative system of the domain ontology and knowledge graph of ES-MS-ES-PS, the automatic construction technology of complicated ESMS-ES-PS domain ontology and knowledge graph, the self-evolution and complementary techniques for multi-modal correlation data embedding in the ES-MS-ES-PS knowledge graph, and the knowledge graph, big data mining and artificial intelligence based on ES-resource prospectivity, and assessment theory, and methods.

About the authors

Yongzhang Zhou

Sun Yat-sen University; Guangdong Provincial Key Lab of Geological Processes and Mineral Resource Survey

Email: zhouyz@mail.sysu.edu.cn
ORCID iD: 0000-0002-8572-5849

Qianlong Zhang

Sun Yat-sen University; Guangdong Provincial Key Lab of Geological Processes and Mineral Resource Survey

Email: zhouyz@mail.sysu.edu.cn
ORCID iD: 0000-0002-8572-5849

Wenjie Shen

Sun Yat-sen University; Guangdong Provincial Key Lab of Geological Processes and Mineral Resource Survey

Email: zhouyz@mail.sysu.edu.cn
ORCID iD: 0000-0002-8572-5849

Fan Xiao

Sun Yat-sen University; Guangdong Provincial Key Lab of Geological Processes and Mineral Resource Survey

Yanlong Zhang

Guangdong Provincial Key Lab of Geological Processes and Mineral Resource Survey

Shiwu Zhou

Guangdong Provincial Key Lab of Geological Processes and Mineral Resource Survey

Yongjian Huang

Guangdong Xuanyuan Network Tech. Inc.

Junjie Ji

Sun Yat-sen University; Guangdong Provincial Key Lab of Geological Processes and Mineral Resource Survey

Lei Tang

Sun Yat-sen University; Guangdong Provincial Key Lab of Geological Processes and Mineral Resource Survey

Chong Ouyang

Sun Yat-sen University; Guangdong Provincial Key Lab of Geological Processes and Mineral Resource Survey

References

  1. Zhang Q., Zhou Y. Big data helps geology develop rapidly // Acta Petrologica Sinica. 2018. Vol. 34. Iss. 11. P. 3167–3172.
  2. Zhou Y., Wang J., Zuo R., Xiao F., Shen W., Wang S. Machine learning, deep learning and Python language // Acta Petrologica Sinica. 2018. Vol. 34. Iss. 11. P. 3173–3178.
  3. Zhou Y., Zhang L., Zhang O., Wang J. Big data mining & machine learning in geoscience. GuangZhou: Sun Yat-sen University Press, 2018. 269 p.
  4. Singhal A. Introducing the Knowledge Graph: things, not strings // Blog.google. URL: https://www.blog.google/products/search/introducing-knowledge-graph-things-not/ (28.02.2021).
  5. Wu W., Li H., Wang H., Zhu K. Q. Probase: a probabilistic taxonomy for text understanding // Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data. 2012. P. 481–492. https://doi.org/10.1145/2213836.2213891.
  6. Hoffart J., Suchanek F. M., Berberich K., Weikum G. YAGO2: a spatially and temporally enhanced knowledge base from Wikipedia // Artificial Intelligence. 2013. Vol. 194. P. 28–61. https://doi.org/10.1016/j.artint.2012.06.001.
  7. Lukovnikov D., Fischer A., Lehmann J., Auer S. Neural network-based question answering over knowledge graphs on word and character level // WWW'17: Proceedings of the 26th International Conference on World Wide Web. 2017. P. 1211–1220. https://doi.org/10.1145/3038912.3052675.
  8. Xu B., Xu Y., Liang J., Xie C., Liang B., Cui W., et al. CN-DBpedia: a never-ending Chinese Knowledge extraction system // Advances in Artificial Intelligence: From Theory to Practice. 2017. P. 428–438. https://doi.org/10.1007/978-3-319-60045-1_44.
  9. Palumbo E., Rizzo G., Troncy R., Baralis E., Osella M., Ferro E. An empirical comparison of knowledge graph embeddings for item recommendation // Istituzionale della Ricerca. 2018.. URL: https://iris.polito.it/retrieve/handle/11583/2710124/203256/paper2.pdf (28.02.2021).
  10. Wang C., Yu H., Wan F. Information retrieval technology based on knowledge graph // Proceedings of the 2018 3rd International Conference on Advances in Materials, Mechatronics and Civil Engineering (ICAMMCE 2018). 2018. https://doi.org/10.2991/icammce-18.2018.65.
  11. Qi H., Dong S., Zhang L., Hu H., Fan J. Construction of Earth science knowledge graph and its future perspectives // Geological Journal of China Universities. 2020. Vol. 26. Iss. 1. P. 2–10. https://doi.org/10.16108/j.issn1006-7493.2019099.
  12. Zhou Y., Zhang Q., Huang Y., Yang W., Xiao F. Construction of knowledge graph of porphyry copper deposit from Qingzhou Bay – Hangzhou Bay and insight into knowledge graph based mineral resource prediction and evaluation // Earth Sciences Frontiers. 2021. Vol. 28. Iss. 3. P. 67–75.
  13. Liu Q., Li Y., Duan H., Liu Y., Qin Z. Knowledge graph construction techniques // Journal of Computer Research and Development. 2016. Vol. 53. Iss. 3. P. 582–600. https://doi.org/10.7544/issn1000-1239.2016.20148228.
  14. Sahoo S., Halb W., Hellmann S., Idehen K., Thibodeau Jr T., Auer S., et al. A survey of current approaches for mapping of relational databases to RDF: W3C RDB2RDF Incubator Group report // W3.org. URL: https://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_SurveyReport.pdf (28.02.2021).
  15. Chen Y., Chen C., Liu Z., Hu Z., Wang X. The methodology function of CiteSpace mapping knowledge domains // Studies in Science of Science. 2015. Vol. 2. P. 243–252. https://doi.org/10.16192/j.cnki.1003-2053.2015.02.009.
  16. Knublauch H., Fergerson R.W., Noy N.F., Musen M.A. The Protégé OWL plugin: an open development environment for semantic web applications // The Semantic Web – ISWC 2004. 2004. P. 229–243. https://doi.org/10.1007/978-3-540-30475-3_17.
  17. Zhao P. Quantitative mineral prediction and deep mineral exploration // Earth Science Frontiers. 2007. Vol. 14. Iss. 5. P. 1–10.
  18. Agterberg F. Geomathematics: theoretical foundations, applications and future developments. Springer International Publishing, 2014. 553 p.. URL: https://www.springer.com/gp/book/9783319068732(28.02.2021).

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).