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1. Introduction.
The human brain cortex is the top layer of the hemispheres, of 2−4 mm thick, involving about

109 neurons having 60× 1012 connections [1]. The brain cortex is responsible for such higher
functions of the human brain as e.g. memory, reasoning, thought, and language [2], [3]. The basic
unit of the brain cortex is the neuron. It consists of dendrites, cell body (soma), and axon. The
dendrites receive electrical signals from other neurons and propagate them to the soma. If the total
sum of the input electrical potential in the soma exceeds a certain threshold value, the neuron
produces the burst of the output electrical signal, which then propagates along the axon to other
neurons. Thus, a natural way (see e.g [4]) of studying electrical activity in the neocortex is the
framework of cortical networks.

The most well-known representative of such models is the Hopfield network model [5]

żi(t) = −zi(t) +
N∑
j=1

ωijf
(
zj
(
t
))
, t ≥ 0, i = 1, ..., N. (1.1)

Here zi is the electrical activity of the i -th neuron in the network, ωij is the connection strength
between the i -th and j -th neurons, the non-negative function f gives the firing rate f(z) of a
neuron with activity z .

However, since the number of neurons and synapses in even a small piece of cortex is immense, a
suitable modeling approach is to take a continuum limit of the neural networks and, thus, consider
so-called neural field models of the brain cortex (rigorous justification of this limit procedure using
the notion of parameterized measure is given in [6]). The most well-known and simplest model
describing the macro-level neural field dynamics is the Amari model [7]

∂tu(t, x) = −u(t, x) +
∫
Ω

ω(x− y)f(u(t, y))dy, (1.2)

t ≥ 0, x ∈ Ω ⊆ Rn.

Here u(t, x) denotes the activity of a neural element u at time t and position x . The
connectivity function ω determines the coupling strength between the elements and the non-
negative function f gives the firing rate f(u) of a neuron with activity u . Neurons at a position
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x and time t are said to be active if f(u(t, x))> 0 . Typically f is a smooth function that has
sigmoidal shape.

One of the key objects in the neuroscience community is the so-called bump-solutions, i.e.
solutions satisfying the following condition

lim
|x|→∞

w(t, x) = 0, t ∈ [a,∞). (1.3)

This type of solutions corresponds to the electrical brain activity that is prevalent during its
normal functioning, encoding visual stimuli [8], representing head direction [9], and maintaining
persistent activity states in working memory [10], [11].

The models of the type (1.1) are important in studies of cortical gain control or pharmacological
manipulations [12]. The problems of therapy of Epilepsy, Parkinson’s disease, and other disorders of
the central nervous system has been recently investigated in [1]–[17]. The modeling frameworks
in [1]–[17] incorporate brain electrical stimulation, which is considered as control, and the
corresponding optimization problems. The unique solvability of such models and continuous
dependence of the solutions obtained on the control involved in the modeling equations has been
recently examined in [18], [19]. These works employed the theory of abstract Volterra operators in
complete metric spaces and Banach spaces in order to establish the main results on controllable
neural field equations. The present paper extends the results of [18], [19]. Here, we deal with
controllable neural field equations where the whole right-hand side is parameterized. Generalizing
the model (1.2) and adding control to it, we get

w(t, x) =

t∫
a

∫
Rm

f(t, s, x, y, w(s, y), u(t, s, x, y), λ)dyds, (1.4)

t ∈ [a,∞), x ∈ Rm,

with respect to the unknown continuous function w : [a,∞)×Rm→Rn , which is spatially localized,
i.e. satisfies (1.3) . The function u : [a,∞)× [a,∞)×Rm×Rm→U (U – compact subset of Rk )
is a control which is assumed to be essentially bounded. Here λ is a parameter from some metric
space Λ .

We can derive the following inclusion arising with respect to the control taking it’s values in U
with parametrization from Λ :

w(t, x) ∈ (F (w, λ))(t, x), (1.5)

(F (w, λ))(t, x) =

t∫
a

∫
Rm

f(t, s, x, y, w(s, y), U, λ)dyds,

t ∈ [a,∞), x ∈ Rm, λ ∈ Λ.

In order to approach the latter problem, we investigate solvability an parametric dependence
properties of Volterra operator inclusions in the next section.

2. Volterra operator inclusions with parameter.
Let Rm be the m -dimensional real vector space with the norm | · | . Let W be a metric space

with the distance ρW . We denote by BW (w, r) an open ball of the radius r centered at w∈W .
We denote Ω(W ) to be the set of all non-empty closed subsets of W .

Let an equivalence relation ∼ be defined on W . For any two equivalence classes w1 , w2 , we
introduce

d(w1, w2) = inf
w1∈w1, w2∈w2

ρ(w1, w2). (2.1)
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If for any ε> 0 and any w1, w2 ∈W/∼ , w1 ∈w1 one can find w2 ∈w2 such that d(w1, w2)≥
≥ ρ(w1, w2)− ε , then (2.1) defines metric in W/∼ .

We put in correspondence to each γ ∈ [0, 1] the equivalence relation υ(γ) . We assume that the
family of equivalence relations υ= {υ(γ), γ ∈ [0, 1]} satisfy the following conditions:

v0) γ=0 corresponds to the relation υ(0)=W 2 (any two elements are υ(0) -equivalent);
v1) γ=1 corresponds to equality relation (any two distinct elements are not υ(1) -equivalent);
v) if γ1>γ2 , then υ(γ1)⊆ υ(γ2) (any υ(γ1) -equivalent elements are υ(γ2) -equivalent);

D e f i n i t i o n 2.1. A set-valued map Ψ :W →Ω(W ) is said to be a Volterra set-valued
map on the family υ if for any γ ∈ [0, 1] and any w1, w2∈W the fact that (w1, w2)∈υ(γ) implies
(Ψw1,Ψw2)∈ υ(γ) , which means that (w̃1, w̃2)∈ υ(γ) for any w̃1 ∈Ψw1 and w̃2 ∈Ψw2 .

For any w∈W , let us denote wγ to be the υ(γ) -equivalence class of w .
Hereinafter we assume that (W,ρW ) is a complete metric space with the equivalence relation υ

satisfying v0), v1), v) . Moreover, we assume that for each γ ∈ (0, 1) , the corresponding equivalence
class is closed and the quotient set W/υ(γ) is a complete metric quotient space with the distance
dW/υ(γ)(w

1, w2)= inf
w1∈w1

γ , w
2∈w2

γ

ρW (w1, w2) .

Below we cite some important properties of single-valued Volterra operators (see [20]) that can
be naturally extended to Volterra set-valued maps.

1. Choose an arbitrary set Γ⊂ [0, 1] , {0, 1} ⊂ Γ , and for any decreasing (or any increasing)
sequence {γi} , it holds true that lim

i→∞
γi ∈ Γ . Let ω = {υ(γ), γ ∈ Γ} . We define the mapping

η : [0, 1]→Γ as η(γ)= inf{ξ∈Γ}, ξ≥γ (η(γ)= inf{ξ∈Γ}, ξ≤γ) , and put in correspondence to any
γ the equivalence relation υ(η(γ)) . If the set-valued map Ψ:W→Ω(W ) is a Volterra mapping on
the family υ , then it is a (set-valued) Volterra on its subfamily ω .

2. If for some γ0∈ (0, 1) , w∈W it holds true that Ψw∩wγ0 ̸= ∅ , then the set wγ0 is invariant
with respect to the Volterra set-valued mapping Ψ :W →Ω(W ) and the relation υ(γ) can be
considered only on the elements of wγ0 ⊂W . The set wγ0 is a complete metric space with respect
to the metric of the whole space W . Thus, the family of the equivalence relations satisfying the
conditions v0, v1, v is also defined on wγ0 . The quotient set wγ0/υ(γ) , γ ≤ γ0 , consists of the
unique element. If γ > γ0 , the quotient set wγ0/υ(γ) is a complete metric space. Moreover, the
fact that Ψ :W →Ω(W ) is a Volterra set-valued map on the family υ implies that the restriction
Ψγ0 :wγ0→Ω(wγ0) of Ψ is a set-valued Volterra map on the family υ .

3. For each γ ∈ (0, 1) , we define the canonical projection Πγ : Ω(W )→Ω(W/υ(γ)) as ΠγW=
=

∪
w∈W

wγ , W∈Ω(W ) . For a set-valued Volterra mapping Ψ :W →Ω(W ) on the family υ , we

define the map Ψγ :W/υ(γ)→Ω(W/υ(γ)) as Ψγwγ =ΠγΨw , where w is an arbitrary element
of wγ . Choose an arbitrary γ0 ∈ (0, 1) . The family υ(γ0) generates the corresponding equivalence
relation on W/υ(γ0) . Let ξ ∈ (0, γ0) , and let the elements w1, w2 ∈W be υ(ξ) -equivalent. Then
any w1′ ∈w1

γ0 , w2′ ∈w2
γ0 are also υ(ξ) -equivalent, which defines the notion of equivalence of the

classes w1
γ0 and w2

γ0 . Namely, the classes w1
γ0 and w2

γ0 are υγ0(σ) -equivalent ( σ∈ (0, 1) ), if there
exist (which, actually, means "any") w1 ∈w1

γ0 , w2 ∈w2
γ0 satisfying the equivalence relation υ(ξ) ,

ξ = γ0σ . Thus, the family υγ0 = {υγ0(σ)} of equivalence relations is defined on W/υ(γ0) . The
quotient set

(
W/υ(γ0)

)
/υγ0 with the distance

d(Wγ0σ,Wγ0σ) = inf
w1

γ0
∈Wγ0σ ,w

2
γ0
∈Wγ0σ

dW/υ(γ0σ)(w
1
γ0σ, w

2
γ0σ) = inf

w1∈w1
γ0σ

,w2∈w2
γ0σ

ρW (w1, w2)

is isometric to W/υ(γ0σ) and, hence, is a complete metric space as well. If the set-valued map
Ψ:W→Ω(W ) is a Volterra map on the family υ , then the operator Ψγ0 :W/υ(γ0)→Ω(W/υ(γ0))
is a (set-valued) Volterra operator on the family υγ0
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Below we introduce the notion of local contraction for set-valued maps, which allows to
investigate the solvability and parametric dependence properties of operator inclusions.

We consider the following inclusion
w ∈ Ψw, (2.2)

where Ψ :W →Ω(W ) is a Volterra set-valued map on the family υ of equivalence relations.

D e f i n i t i o n 2.2. We define a υ(γ) -local solution of the inclusion (2.2) , γ ∈ (0, 1) , to be
an equivalence class wγ ∈W/υ(γ) , that satisfies the inclusion wγ ∈Ψγwγ . Identifying the element
w , satisfying (2.2) , with it’s υ(1) -equivalence class w , we consider it a global solution to the
inclusion (2.2) . We define a υ(γ) -maximally extended solution to (2.2) , γ ∈ (0, 1) , to be a map
putting in correspondence to each ξ ∈ (0, γ) a υ(ξ) -local solution wξ , and satisfying the following
two conditions:

• for any η, ξ , 0<η<ξ <γ , it holds wξ ⊆wη (where wξ is a restriction of wγ );

• for any w0 ∈W it holds lim
ξ→γ−0

d(wξ, w
0
ξ )=∞ .

For any γ∈ (0, 1) , we denote by Sγ and S the sets of υ(γ) -local solutions and global solutions
to (2.2) , respectively.

Let hW/υ(γ) be the Hausdorff metric in the space of all non-empty closed subsets of the metric
space (W/υ(γ), dW/υ(γ)) .

D e f i n i t i o n 2.3. We define a Volterra on the system υ set-valued map Ψ :W →Ω(W )
to be locally contracting at a point γ ∈ [0, 1) on the system υ , if for any wγ ∈W/υ(γ) , one can
find: an element w0 ∈wγ and q < 1 such that for any r > 0 there exists δ > 0 such that for all
w1
γ+δ, w

2
γ+δ ∈BW/υ(γ+δ)(w0

γ+δ, r) (w0
γ+δ ∈Ψγ+δw

0) , satisfying in the case γ > 0 for any ξ ∈ (0, γ)
the inclusion w1

γ+δ, w
2
γ+δ ⊂w0

ξ , where (w0
ξ ⊂Ψξ(w

0, λ)) , it holds true that

hW/υ(γ+δ)(Ψγ+δw
1
γ+δ,Ψγ+δw

2
γ+δ) ≤ qdW/υ(γ+δ)(w1

γ+δ, w
2
γ+δ).

D e f i n i t i o n 2.4. We define a Volterra set-valued map Ψ :W →Ω(W ) to be locally
contracting on the system υ , if it is locally contracting for any γ ∈ [0, 1) with the constants q и
δ(r) independent of γ ∈ [0, 1) .

T h e o r e m 2.1. Let the set-valued map Ψ is a locally contracting Volterra map on the
system υ .

Then the inclusion (2.2) has a local solution and each local solution is extendable to a global or
maximally extended solution.

P r o o f. We construct the solution in the following way. We choose r1=(1−q)−1ρW (w0,Ψw0)+
+ 1 and find all δ > 0 that satisfy the theorem condition with r= r1 . For δ1=

1
2 sup{δ} , we have

hW/υ(δ1)(Ψw
1,Ψw2) ≤ qdW/υ(δ1)(w

1, w2)

at any w1, w1⊂BW/υ(δ1)(w0
δ1
, r1) , which implies Ψδ1(BW/υ(δ1)(w

0
δ1
, r1))⊂BW/υ(δ1)(w0

δ1
, r1) . By the

Nadler theorem (see e.g. [21]), the mapping Ψδ1 has a fixed point wδ1 in the ball BW/υ(δ1)(w
0
δ1
, r1) .

This fixed point is a υ(δ1) -local solution to (2.2) .
Choose some solution wδ1 to the equation (2.2) and the corresponding radius

r2 = (1− q)−1dW/υ(δ1)(Ψ(wδ1 , w
0) . We find all possible δ > 0 that satisfy the theorem condition

with r= r2 . For δ2=
1
2 sup{δ} at any w1, w2⊂BW/υ(δ1+δ2)(w0

δ1
, r2)∩wδ1 we have

hW/υ(δ1+δ2)(Ψw
1,Ψw2) ≤ qdW/υ(δ1+δ2)(w

1, w2).
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According to the Nadler theorem there exists a fixed point wδ1+δ2 of the mapping Ψδ1+δ2 in
BW/υ(δ1+δ2)(w

0
δ1+δ2

, r2) . This fixed point is a υ(δ1 + δ2) -local solution to (2.2) extending the
chosen υ(δ1) -local solution wδ1 . Next, let us choose arbitrary υ(δ1 + δ2) -local solution wδ1+δ2 ,
the corresponding r3 = (1− q)−1dW/υ(δ1+δ2)(Ψwδ1+δ2 , w0) , find all possible δ > 0 that satisfy the
theorem condition with r= r3 and repeat the procedure, etc.

If the distances from the obtained local solutions to the element w0∈W are uniformly bounded
by some C ∈R , then for r = C+ 1 due to the local contractivity of the multi-valued operator
F (·, λ) :W →Ω(W ) we find δ such that δi≥ δ

2 at each of the steps described above. Therefore,
in a finite number of steps we will obtain a unique global solution to (2.2) . But if such C does
not exist, then the number of steps becomes infinite. As a result, we obtain a unique maximally
extended solution to (2.2) .

We now consider the following inclusion

w ∈ F (w, λ), (2.3)

parameterized by λ ∈ Λ . We assume that for any λ ∈ Λ , the corresponding set-valued map
F (·, λ) :W →Ω(W ) is a Volterra map on the family υ and F (·, λ0)=Ψ for some λ0 ∈Λ .

At each λ∈Λ , we naturally apply Definition 2.2 to the inclusion (2.3) . For any λ∈Λ and
γ ∈ (0, 1) , we denote by Sγ(λ) and S(λ) the sets of υ(γ) -local solutions and global solutions to
(2.3) , respectively, corresponding to λ∈Λ .

D e f i n i t i o n 2.5. Let for any λ∈Λ , the set-valued map F (·, λ) :W→Ω(W ) be a Volterra
map. We define a Volterra set-valued map F :W ×Λ→Ω(W ) to be uniformly locally contracting
on the system υ , if it is locally contracting for any γ ∈ [0, 1) and λ∈Λ with the constants q and
δ(r) independent of γ ∈ [0, 1) and λ∈Λ .

T h e o r e m 2.2. Let the following two conditions be satisfied:

1) The set-valued maps F (·, λ) :W →Ω(W ) , λ ∈Λ are uniformly locally contracting on the
system υ .

2) For any w ∈W and some λ0 ∈Λ , the set-valued map Ψ :W ×Λ→Ω(W ) is lower semi-
continuous (in the Hausdorff metric) at (w, λ0) .

Then for any λ∈Λ , the inclusion (2.3) has a local solution and each local solution is extendable
to a global or maximally extended solution.

If the inclusion (2.3) has a global solution w0 =w0 at λ= λ0 , then for any λ (sufficiently
close to λ0 ), the inclusion (2.3) also has a global solution w=w(λ) . Moreover, the set-valued map
λ 7→S(λ) is lower semi-continuous at λ0 .

If the inclusion (2.3) has a maximally extended solution w0ζ at λ=λ0 , then for any γ∈ (0, ζ) ,
the inclusion (2.3) has a local solution wγ =wγ(λ) . Moreover, the set-valued map λ7→Sγ(λ) is
lower semi-continuous at λ0 .

P r o o f. The solvability of the inclusion (2.3) for any λ∈BΛ(λ0, ϱ0) follows from Theorem
1.1.

We prove the continuous dependence of the sets of solutions on the parameter λ . Consider
the case when the inclusion (2.3) has global solution. Choose an arbitrary global solution
w0 =w(λ0) ∈W at λ= λ0 . Choose an arbitrary ε > 0 . Let us find δ > 0 satisfying Definition
1.3 at r1 = ρ(w0, w

0) + 1 , γ = 0 and any λ ∈ BΛ(λ0, ϱ0) . For k = [1δ ] + 1 denote ∆l = lδ ,
l= 1, 2, . . . , k . Since the condition 2) holds true, for any ε > 0 one can find σ1 > 0 and ϱ1 > 0
such that for each λ∈BΛ(λ0, ϱ1) we have

hW (F (ϖ,λ), F (w0, λ0)) <
(1− q)ε

6
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for all ϖ∈BW (w0, σ1) . Assume that σ1<
(1−q)ε

6 . Let us find σ2>0 and ϱ2 such that for arbitrary
λ∈BΛ(λ0, ϱ2) it holds that

hW/υ(∆k−1)(F∆k−1
(ϖ∆k−1

, λ), F∆k−1
(w0∆k−1

, λ0)) <
(1− q)σ1

6

for all ϖ∆k−1
∈BW/υ(∆k−1)(w0∆k−1

, σ2) . Assume that σ2 <
(1−q)σ1

6 , ϱ2 ≤ ϱ1 . There exist σ3 > 0
and ϱ3 such that for any λ∈BΛ(λ0, ϱ3) it holds true that

hW/υ(∆k−2)(F∆k−2
(ϖ∆k−2

, λ), F∆k−2
(w0∆k−2

, λ0)) <
(1− q)σ2

6

for any ϖ∆k−2
∈BW/υ(∆k−2)(w0∆k−2

, σ3) ; σ3<
(1−q)σ2

6 , ϱ3≤ ϱ2 etc. We perform k iterations and
at the last step find σk and ϱk , 0<σk<

(1−q)σk−1

6 , ϱk≤ ϱk−1 .
Let w0∆1 denote a υ(∆1) -local solution to the inclusion (2.3) at λ=λ0 , that is a fixed point

of the multi-valued mapping F∆1(·, λ0) :W/υ(∆1)→Ω(W/υ(∆1)) . If hW/υ(∆1)(ϖ∆1 , w0∆1)<σk ,
then

hW/υ(∆1)(F∆1(ϖ∆1 , λ), F∆1(w0∆1 , λ0)) <
(1− q)σk−1

6

for all λ∈BΛ(λ0, ϱk) .
Taking into account the condition 1) , we get for any natural number m that

hW/υ(∆1)(F
m
∆1

(w0∆1 , λ), w0∆1) ≤ hW/υ(∆1)(F
m
∆1

(w0∆1 , λ), F
m−1
∆1

(w0∆1 , λ)) + . . .

. . .+ hW/υ(∆1)(F∆1(w0∆1 , λ), w0∆1) ≤ (qm−1 + . . .+ q + 1)
(1− q)σk−1

6
≤ σk−1

6
.

Due to the convergence of the sequential approximations Fm∆1
(w0∆1 , λ) to the fixed point

set S∆1(λ) of the multi-valued operator F∆1(·, λ) :W/υ(∆1)→ Ω(W/υ(∆1)) , we obtain the
relation hW/υ(∆1)(S∆1(λ), w0∆1)≤

σk−1

6 for each λ∈BΛ(λ0, ϱk) . Further, let w0∆2 be a υ(∆2) -
local solution to the inclusion (2.3) at λ = λ0 . Choose some w∆1 ∈ S∆1(λ) . Then, for all
λ∈BΛ(λ0, ϱk), ϱk≤ ϱk−1 and any ϖ∆2 ∈BW/υ(∆2)(w0∆2 , σk−1)

∩
w∆1 we get

hW/υ(∆2)(F∆2(ϖ∆2 , λ), w0∆2) = hW/υ(∆1)(F∆2(ϖ∆2 , λ), F∆2(w0∆2 , λ0)) <
(1− q)σk−2

6
.

Then

hW/υ(∆2)(F∆2(ϖ∆2 , λ), ϖ∆2) < σk−1 +
(1− q)σk−2

6
<

(1− q)σk−2
3

.

For all m=1, 2, . . . we have

hW/υ(∆2)(F
m
∆2

(ϖ∆2 , λ), ϖ∆2) ≤ hW/υ(∆2)(F
m
∆2

(ϖ∆2 , λ), F
m−1
∆2

(ϖ∆2 , λ)) + . . .

. . .+ hW/υ(∆2)(F∆2(ϖ∆2 , λ), ϖ∆2) ≤ (qm−1 + . . .+ q + 1)
(1− q)σk−2

3
≤ σk−2

3
.

Taking into account the convergence of the approximations Fm∆2
(u∆2 , λ) to S∆2(λ) , for any w∆2 ∈

∈ S∆2(λ) , we obtain

hW/υ(∆2)(w∆2 , w0∆2) ≤ hW/υ(∆2)(w∆2 , F
m
∆2

(ϖ∆2 , λ))+

+hW/υ(∆2)(F
m
∆2

(ϖ∆2 , λ), ϖ∆2) + hW/υ(∆2)(ϖ∆2 , w0∆2) ≤
σk−2
3

+ σk−1 ≤
σk−2
2

.
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Using the convergence of the sequential approximations Fm∆3
(ϖ∆3 , λ) to the fixed point set S∆3(λ)

of the multi-valued operator F∆3(·, λ) :W/υ(∆3)→Ω(W/υ(∆3)) for any w∆2 ∈ S∆2(λ) , ϖ∆3 ∈
∈ BW/υ(∆3)(w0∆3 , σk−2)

∩
w∆2 and each λ ∈ BΛ(λ0, ϱk), ϱk ≤ ϱk−1 , we obtain the following

estimate: dW/υ(∆3)(w∆3 , w0∆3)≤
σk−3

2 . We, then, repeat this procedure. At the k -th step we prove
in an analogous way that the inequality ρW (w(λ), w0)<ε holds true for some w(λ)∈S(λ) for all
λ∈BΛ(λ0, ϱk) . Therefore, hW (S(λ), w0)→0 as λ→λ0 , and, thus, the set-valued map λ7→S(λ) is
lower semi-continuous at λ0

Let now a solution w0η to the inclusion (2.3) at λ=λ0 be maximally extended. Fix arbitrary
γ∈ (0, η) and let w0γ denote the restriction of the solution w0η . For the equation ϖγ=Fγ(ϖγ , λ0)
the element w0γ ∈W/υ(γ) is a global solution. As is shown above, for all λ from some neighborhood
of λ0 , the inclusions ϖγ ∈Fγ(ϖγ , λ) have global solutions wγ(λ) , and hW/υ(γ)(Sγ(λ), w0γ)→ 0
as λ→λ0 . Therefore, the set-valued map λ7→Sγ(λ) is lower semi-continuous at λ0 .
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ОПЕРАТОРНЫЕ ВКЛЮЧЕНИЯ ВОЛЬТЕРРЫ
В ОБОБЩЕННЫХ МОДЕЛЯХ НЕЙРОПОЛЕЙ С УПРАВЛЕНИЕМ. I
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Получены условия разрешимости операторных включений Вольтерры и непрерывной
зависимости решений от параметра. Результаты могут применяться к исследованию
обобщенных моделей нейрополей с управлением.
Ключевые слова: операторные включения Вольтерры; модели нейрополей; управление;
существование решений; непрерывная зависимость от параметров
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