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1. Introduction.

The human brain cortex is the top layer of the hemispheres, of 2—4 mm thick, involving about
10° neurons having 60 x 102 connections [1]. The brain cortex is responsible for such higher
functions of the human brain as e.g. memory, reasoning, thought, and language [2], [3]. The basic
unit of the brain cortex is the neuron. It consists of dendrites, cell body (soma), and axon. The
dendrites receive electrical signals from other neurons and propagate them to the soma. If the total
sum of the input electrical potential in the soma exceeds a certain threshold value, the neuron
produces the burst of the output electrical signal, which then propagates along the axon to other
neurons. Thus, a natural way (see e.g [4]) of studying electrical activity in the neocortex is the
framework of cortical networks.

The most well-known representative of such models is the Hopfield network model [5]

N
L) = —z(t) + Zwijf<zj(t)), t>0,i=1,.,N. (1.1)
j=1

Here z; is the electrical activity of the i-th neuron in the network, w;; is the connection strength
between the i-th and j-th neurons, the non-negative function f gives the firing rate f(z) of a
neuron with activity z.

However, since the number of neurons and synapses in even a small piece of cortex is immense, a
suitable modeling approach is to take a continuum limit of the neural networks and, thus, consider
so-called neural field models of the brain cortex (rigorous justification of this limit procedure using
the notion of parameterized measure is given in [6]). The most well-known and simplest model
describing the macro-level neural field dynamics is the Amari model |7]

Byu(t, z) = —u(t,z) + / w(z — y) f(ult,y))dy. (1.2)

Q
t>0,2€ QCR"

Here wu(t,x) denotes the activity of a neural element w at time ¢ and position z. The
connectivity function w determines the coupling strength between the elements and the non-
negative function f gives the firing rate f(u) of a neuron with activity w. Neurons at a position
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x and time t are said to be active if f(u(t,x)) >0. Typically f is a smooth function that has
sigmoidal shape.

One of the key objects in the neuroscience community is the so-called bump-solutions, i.e.
solutions satisfying the following condition

lim w(t,z) =0, t € [a,00). (1.3)
|z|—00

This type of solutions corresponds to the electrical brain activity that is prevalent during its
normal functioning, encoding visual stimuli [8], representing head direction [9], and maintaining
persistent activity states in working memory [10], [11].

The models of the type (1.1) are important in studies of cortical gain control or pharmacological
manipulations [12|. The problems of therapy of Epilepsy, Parkinson’s disease, and other disorders of
the central nervous system has been recently investigated in [1|-[17]. The modeling frameworks
in [1]-[17] incorporate brain electrical stimulation, which is considered as control, and the
corresponding optimization problems. The unique solvability of such models and continuous
dependence of the solutions obtained on the control involved in the modeling equations has been
recently examined in [18], [19]. These works employed the theory of abstract Volterra operators in
complete metric spaces and Banach spaces in order to establish the main results on controllable
neural field equations. The present paper extends the results of [18], [19]. Here, we deal with
controllable neural field equations where the whole right-hand side is parameterized. Generalizing
the model (1.2) and adding control to it, we get

t
wit, z) = / / F(t 52,9, w(s,y), u(t, 5, 2, y), N)dyds, (1.4)

a Rm
t € a,00), z € R™,

with respect to the unknown continuous function w: [a, 00) x R"™ — R™ , which is spatially localized,
i.e. satisfies (1.3). The function wu:[a,00) X [a,00) x R™ x R™ = U (U — compact subset of R*)
is a control which is assumed to be essentially bounded. Here A is a parameter from some metric
space A.

We can derive the following inclusion arising with respect to the control taking it’s values in U
with parametrization from A:

w(t,x) € (F(w,\))(t,x), (1.5)

(F(w,)\))(t,x)://f(t,s,:c,y,w(s,y),U,)\)dyds,

a Rm™
t €la,00), € R™, A€ A.

In order to approach the latter problem, we investigate solvability an parametric dependence
properties of Volterra operator inclusions in the next section.

2. Volterra operator inclusions with parameter.

Let R™ be the m-dimensional real vector space with the norm |-|. Let W be a metric space
with the distance py. We denote by By (w,r) an open ball of the radius r centered at we W .
We denote Q(W) to be the set of all non-empty closed subsets of W .

Let an equivalence relation ~ be defined on W . For any two equivalence classes w', w2, we
introduce

dw', w?) = inf plwt, w?). (2.1)

wlew!, w2ew?
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If for any £>0 and any w',w?> € W/~ , w! €w' one can find w? €w? such that d(w',w?)>
> p(wt,w?) —¢, then (2.1) defines metric in W/ ~.

We put in correspondence to each v € [0, 1] the equivalence relation v(y). We assume that the
family of equivalence relations v={v(y),y€[0,1]} satisfy the following conditions:

vg) =0 corresponds to the relation v(0)=W? (any two elements are v(0)-equivalent);

v1) y=1 corresponds to equality relation (any two distinct elements are not v(1)-equivalent);

v) if v1 >72, then v(v1) Cv(y2) (any v(y1)-equivalent elements are wv(7y2)-equivalent);

Definition 2.1. A set-valued map V:W — Q(W) is said to be a Volterra set-valued
map on the family v if for any vy€[0,1] and any w', w? € W the fact that (w',w?)€wv(y) implies
(Dwt, $w?) € v(v), which means that (w!,w?)€v(y) for any w'e€ Pw! and w? € Yw?.

For any we W , let us denote w, to be the v(v)-equivalence class of w.

Hereinafter we assume that (W, py/) is a complete metric space with the equivalence relation v
satisfying vg),v1),v) . Moreover, we assume that for each € (0,1), the corresponding equivalence
class is closed and the quotient set W/uv(7) is a complete metric quotient space with the distance
dW/v('y) (@1’@2) :wlemglipe@% pW(uﬂ’ w2) .

Below we cite some important properties of single-valued Volterra operators (see [20]) that can
be naturally extended to Volterra set-valued maps.

1. Choose an arbitrary set I' C[0,1], {0,1} CI', and for any decreasing (or any increasing)
sequence {~v;}, it holds true that 111)1}30% el'. Let w={v(y),y€T}. We define the mapping
n:[0,1] =T as n(y)=inf{€l'},£>~ (n(y)=inf{€T'},£<7y), and put in correspondence to any
v the equivalence relation v(n(y)). If the set-valued map ¥:W — Q(W) is a Volterra mapping on
the family v, then it is a (set-valued) Volterra on its subfamily w.

2. If for some vp€(0,1), we W it holds true that WwNw,, #0, then the set w,, is invariant
with respect to the Volterra set-valued mapping W:W — Q(W) and the relation wv(y) can be
considered only on the elements of w.,, CW . The set w,, is a complete metric space with respect
to the metric of the whole space W . Thus, the family of the equivalence relations satisfying the
conditions wp,vi,v is also defined on w,,. The quotient set w.,,/v(vy), v <70, consists of the
unique element. If >y, the quotient set w,,/v(y) is a complete metric space. Moreover, the
fact that W: W — Q(W) is a Volterra set-valued map on the family v implies that the restriction
U Wy, — QW) of ¥ is a set-valued Volterra map on the family v.

3. For each € (0,1), we define the canonical projection IL,:Q(W)—Q(W/v(y)) as 11,20 =

= U w,, WeQ(W). For a set-valued Volterra mapping ¥: W — Q(W) on the family v, we
weW
define the map W, :W/v(y) = Q(W/v(y)) as Vywy =11, Pw, where w is an arbitrary element
of W, . Choose an arbitrary g€ (0,1). The family v(v9) generates the corresponding equivalence
relation on W/v(yg). Let €€ (0,7), and let the elements w!,w? € W be v(£)-equivalent. Then
any w e@}m , w? 6@%0 are also v(§)-equivalent, which defines the notion of equivalence of the
classes W} and w2, . Namely, the classes w%o and W2 are Ty,(0)-equivalent (o€ (0,1)), if there
exist (which, actually, means "any") w! €W, , w? 6@%0 satisfying the equivalence relation v(§),
£ =70 . Thus, the family v, ={v,,(0)} of equivalence relations is defined on W/v(vyy). The

quotient set (W/ ’U(’ﬂ))) /U, with the distance

_ . 1 2 N\ _ . 12
dWhoo, Wapo) = . 1n£2 dw /v (y00) (w%o,wwo) = 1nf2 . pw (w*, w?)
Wy EWrgo W5, €EWago whewy ;w2 WS,

is isometric to W/v(ypo) and, hence, is a complete metric space as well. If the set-valued map
U:W —Q(W) is a Volterra map on the family v, then the operator W., : W/v(y9) = Q(W/v(v))
is a (set-valued) Volterra operator on the family o,
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Below we introduce the notion of local contraction for set-valued maps, which allows to
investigate the solvability and parametric dependence properties of operator inclusions.
We consider the following inclusion
w € Yw, (2.2)

where U: W — Q(W) is a Volterra set-valued map on the family v of equivalence relations.

Definition 2.2. We define a v(y)-local solution of the inclusion (2.2), v€(0,1), to be
an equivalence class w., € W/uv(y), that satisfies the inclusion w, € U, . Identifying the element
w, satisfying (2.2), with it’s v(1)-equivalence class w, we consider it a global solution to the
inclusion (2.2). We define a v(7y)-mazimally extended solution to (2.2), v€(0,1), to be a map
putting in correspondence to each £ € (0,7) a v(§)-local solution W , and satisfying the following
two conditions:

e for any 7,§, 0<n<{<7, it holds we Cw, (where wg is a restriction of w5 );

e for any w®€ W it holds lim d(wg,wg) =00.
§=7=0

For any v€(0,1), we denote by S, and S the sets of v(v)-local solutions and global solutions
to (2.2), respectively.

Let hyy/y(4) be the Hausdorff metric in the space of all non-empty closed subsets of the metric
space (W/U(FY)’ dW/v(’y)) :

Definition 2.3. We define a Volterra on the system v set-valued map ¥:W — Q(W)
to be locally contracting at a point v €[0,1) on the system v, if for any w, € W/v(7y), one can
find: an element w" €w, and ¢ <1 such that for any r>0 there exists 0 >0 such that for all
w}m,wgﬂ; € By /u(y+5) (@3+5, T) (E?YM €U, sw’), satisfying in the case y>0 for any &€ (0,7)
the inclusion w;+67@3+5 Cﬁg , where (@2 C We(w®, X)), it holds true that

W o(y+6) (W60 4 5> Uy 152 15) < Gl o(y6) (W 465 T 4.5)-

Definition 24. We define a Volterra set-valued map ¥: W — Q(W) to be locally
contracting on the system v, if it is locally contracting for any ~ € [0,1) with the constants ¢ u
§(r) independent of y€[0,1).

Theorem 2.1. Let the set-valued map U is a locally contracting Volterra map on the
system v .

Then the inclusion (2.2) has a local solution and each local solution is extendable to a global or
mazimally extended solution.

P roof. We construct the solution in the following way. We choose 1= (1—q) ! pw (w?, Pw®) +
+ 1 and find all § >0 that satisfy the theorem condition with r=r;. For 51:% sup{d}, we have

hyw ro(sy) (B, W2) < qdyy /o5, (0", 07)
at any @1, w' C BW/U(gl)(@gl ,71), which implies Ws, (BW/U(61) (Egl , 7’1)) C BW/U(61) (@gl , 7’1) . By the
Nadler theorem (see e.g. [21]), the mapping Ws, has a fixed point ws, in the ball BW/U((;l)(@gl ,T1) -
This fixed point is a v(d1)-local solution to (2.2).
Choose some solution ws, to the equation (2.2) and the corresponding radius
ro = (1—q) 'dwu(s,) (¥ (Ws,, w") . We find all possible § >0 that satisfy the theorem condition
with r=ry. For §o= % sup{d} at any w!, w?C BW/U(51+52)(W2177"2) Nws, we have

hyw fo(61+82) (BT, W) < qdyy (s, 4.6,) (W, T).
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According to the Nadler theorem there exists a fixed point ws, 5, of the mapping s 15, in
Bwu(5,+85) (W3, 5,,72) - This fixed point is a (61 + d2)-local solution to (2.2) extending the
chosen v(d1)-local solution ws, . Next, let us choose arbitrary v(d; + d2) -local solution ws, s,
the corresponding 3= (1 — q)*ldW/U((;lJr(;Q)(\Il@gﬁgz,wo) , find all possible § >0 that satisfy the
theorem condition with r =73 and repeat the procedure, etc.

If the distances from the obtained local solutions to the element w® € W are uniformly bounded
by some €€ R, then for r=&€+ 1 due to the local contractivity of the multi-valued operator
F(-,A): W —=Q(W) we find § such that ¢; > g at each of the steps described above. Therefore,
in a finite number of steps we will obtain a unique global solution to (2.2). But if such € does
not exist, then the number of steps becomes infinite. As a result, we obtain a unique maximally
extended solution to (2.2).

We now consider the following inclusion

w € F(w, \), (2.3)

parameterized by A€ A. We assume that for any A € A, the corresponding set-valued map
F(-,A): W —=Q(W) is a Volterra map on the family v and F(-,A\g) =¥ for some Ay €A .

At each A € A, we naturally apply Definition 2.2 to the inclusion (2.3). For any A€ A and
v€(0,1), we denote by S(\) and S(A) the sets of v(7)-local solutions and global solutions to
(2.3), respectively, corresponding to A€ A.

Definition 2.5.Let for any A€ A, the set-valued map F(-,A): W —Q(W) be a Volterra
map. We define a Volterra set-valued map F: W x A — Q(W) to be uniformly locally contracting
on the system v, if it is locally contracting for any y€[0,1) and A€ A with the constants ¢ and
d(r) independent of y€[0,1) and A€ A.

Theorem 22. Let the following two conditions be satisfied:

1) The set-valued maps F(-,\): W — Q(W), A€ A are uniformly locally contracting on the
system v .

2) For any weW and some Ay €A, the set-valued map V:W x A — QW) is lower semi-
continuous (in the Hausdorff metric) at (w, \g) .

Then for any A€ A, the inclusion (2.3) has a local solution and each local solution is extendable
to a global or maximally extended solution.

If the inclusion (2.3) has a global solution Wy=wy at A= Xy, then for any \ (sufficiently
close to X\ ), the inclusion (2.3) also has a global solution w=w(\). Moreover, the set-valued map
A—=S(A) is lower semi-continuous at Ao .

If the inclusion (2.3) has a mazimally extended solution Wy at A= Xg , then for any ~v€(0,(),
the inclusion (2.3) has a local solution W~ =w,(\). Moreover, the set-valued map X\—S,(X) is
lower semi-continuous at Ao .

P r oo f. The solvability of the inclusion (2.3) for any A€ Ba(Ag, 00) follows from Theorem
1.1.

We prove the continuous dependence of the sets of solutions on the parameter A. Consider
the case when the inclusion (2.3) has global solution. Choose an arbitrary global solution
wo=w(Ag) EW at A= Xg. Choose an arbitrary ¢ >0. Let us find 6 >0 satisfying Definition
1.3 at ri =p(wo,w’) +1, y=0 and any A€ Ba(Ao,00). For k=[§]+1 denote A;=15,
[=1,2,...,k. Since the condition 2) holds true, for any >0 one can find o1 >0 and g1 >0
such that for each A € By(\o, 01) we have

(1—q)e
6

hw(F<w, )\), F(w(], )\0)) <
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for all w € By (wp, 01) . Assume that o3 < (-9) et us find 02>0 and g9 such that for arbitrary

6
A € Ba(Ao, 02) it holds that

(1—q)oy

h'W/'U(Ak—l)(FAk—l (ﬁAk—N A), Fa,, (@OAI@—N Ao)) < 6

(1-q)o1
6

for all @A, , € BW/U(Ak_l)(WOAk,1702)~ Assume that o9 < , 02 <p1. There exist o3>0

and p3 such that for any A€ By(Ao, 03) it holds true that

(1 —q)o2

hW/v(Ak—2) (FAk72 (ﬁﬁkfz’ A)s Fa, (@0&%2’ Ao)) < 6

for any @a,_, € Bw/u(a,_,) (Wor,_,,03); 03< % , 03 <2 etc. We perform k iterations and

at the last step find o4 and o5, 0<o} < (I_Q)% . 0k < Ok—1 -

Let wpa, denote a v(Aj)-local solution to the inclusion (2.3) at A= \g, that is a fixed point
of the multi-valued mapping Fa, (-, o) : W/v(A1)=QW/v(A1)) . If hyjya(@ar, Woa,) < ok,
then
(1 —q)ok—1

hW/v(Al) (FA1 (5A1 ) )‘)a Fa, (@OAN /\0)) < 6

for all A€ Ba(Xo, ok) -
Taking into account the condition 1), we get for any natural number m that

hW/v(Al)(Fgll (Woa,, A);, woa,) < hW/v(Al)(FEl (Woa,, A), FZ_l(@OAu M)+

(1-q)or-1 _ ok-1

6 - 6
Due to the convergence of the sequential approximations FJ! (Won,,A) to the fixed point
set Sa,(A) of the multi-valued operator Fa,(-,A): W/v(A1) = Q(W/v(A1)), we obtain the
relation Ay /y(a,)(Sa, (A), Woa,) < Z2 for each A€ Ba(Ao, ) - Further, let woa, be a v(Ay)-

local solution to the inclusion (2.3) at A= Ag. Choose some wa, € Sa,(A). Then, for all
A€ Ba(Nos 0k), 0k < ok—1 and any Wa, € Byy/y(a,) (Woa,, 0k—1) (1WA, we get

et hW/'U(Al)(FA1(w0A17)‘)7@0A1) < (qm_l +...4+qg+1)

1—q)og—
hW/U(AQ)(FAQ (ﬁAw A)’EOAQ) = hW/U(AI)(FAz (EA27 )‘)7 FAQ (EOAza >\0)) < w

Then

1—gq)o_ 1—gq)op_
hW/v(A2)(FA2(ﬁA27)‘)7ﬁA2) < kal"i_( (é) k2 < ( (é) i 2‘

For all m=1,2,... we have
hW/v(Az)(FXLg (ﬁﬁzv )\)’EAQ) < hW/’U(AQ)(FAnQ (EA27 /\)7 Fglg_l(ﬁﬂzv A)) +...

(- a)ok-2 _ o2

3 -3
Taking into account the convergence of the approximations FX! (ua,,A) to Sa,()), for any wa, €
€ Sa,(A), we obtain

N hW/U(Az)(FAQ(ﬁAQ’)‘)vﬁAz) < (qul +...t+qg+ 1)

P fo(20) (WA WoA,) < My ju(ag) WAy, FA, (Ta,, A))+

Ok—2 Ok—2
+ o1 < .
3 k=l = "9

+hW/v(A2)(FK; (ﬁAw )‘)a ﬁA2) + hW/v(Ag)(ﬁA2’w0A2) <
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Using the convergence of the sequential approximations FY' (@as,A) to the fixed point set S, ()
of the multi-valued operator Fa,(-,\): W/v(As) — Q(W/v(A3)) for any wWa, € Sa,(N), @a, €
€ Bw/u(as)(Wons, 0k—2) (1WA, and each A€ Ba(Xo,0k), ok < 0k—1, we obtain the following
estimate: dW/U(As)(@Ag,@oAS) < J’“—f’ . We, then, repeat this procedure. At the k-th step we prove
in an analogous way that the inequality pyw (w(X), wp) <e holds true for some w(A) € S(A) for all
A € Ba(Ao, o) - Therefore, hy (S(A),wp) —0 as A— Ao, and, thus, the set-valued map A—S(\) is
lower semi-continuous at g

Let now a solution @, to the inclusion (2.3) at A=X\g be maximally extended. Fix arbitrary
v€(0,m) and let Wy, denote the restriction of the solution @y, . For the equation @, = F, (., \o)
the element W, € W/v(y) is a global solution. As is shown above, for all A from some neighborhood
of Ao, the inclusions @, € F;,(%,,A) have global solutions (), and Ay, ) (S (A), Woy) — 0
as A — Ao . Therefore, the set-valued map A—S,(\) is lower semi-continuous at Ag .
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OITEPATOPHBIE BKJIFOYEHN A BOJIBTEPPDI
B OBOBIIIEHHBIX MO/IEJISIX HEMPOIIOJIEN C YIIPABJIEHUEM. I
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