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О РЕШЕНИИ ЛИНЕЙНЫХ
ФУНКЦИОНАЛЬНО-ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

c⃝ Т.Х. М. Тахир

Рассматриваются некоторые линейные функционально-дифференциальные уравнения,
решение которых можно записать аналитически. Для рассматриваемых уравнений по-
лучены функция Коши; функция Грина двухточечной (в частном случае, периодиче-
ской и апериодический) краевой задачи.
Ключевые слова: линейное функционально-дифференциальное уравнение; функция Ко-
ши; функция Грина; общее решение.

Введение

В статье рассматриваются конкретные линейные дифференциальные уравнения первого
порядка с запаздыванием и нейтрального типа, решение которых x(t), t≥0, удается записать
аналитически. Если запаздывающий аргумент h(t)≤ t−τ, τ >0, то решение строится последо-
вательно на каждом участке времени [0, τ ], (τ, 2τ), . . . . В других случаях решение основано
на представлении задачи Коши для соответствующего функционально-дифференциального
уравнения в операторной виде

y(t)− (Ky)(t) = f(t), t ∈ [0, T ],

где y= ẋ — производная искомого решения, K :L([0, T ],R)→L([0, T ],R) — линейный ограни-
ченный оператор со спектральным радиусом ρ(K)< 1, f ∈L([0, T ],R), T — любое положи-
тельное число. Для нахождения y мы используем ряд Неймана

y = f +Kf +K2f + . . . .

Отметим, что интегрируемые в квадратурах функционально-дифференциальные уравне-
ния используются, например, в качестве модельных уравнений при исследовании краевых
задач, проблем устойчивости, задачи о периодических решениях, получении оценок решений
(подробнее см. [1]). В отличие от обыкновенных дифференциальных уравнений, для кото-
рых случаи интегрируемости в квадратурах подробно изучены (см. [2]), в научной литера-
туре содержится очень мало сведений о конкретных уравнениях с запаздыванием, интегро-
дифференциальных уравнениях, уравнениях нейтрального типа и др., решение которых уда-
ется записать аналитически. Для линейных функционально-дифференциальных уравнений в
[3] предлагается построение функции Грина с использованием ряда Неймана. Методы нахож-
дения функции Коши рассмотрены в [4]–[7]. Вопросам выделения решаемых явно функциона-
льно-дифференциальных уравнений посвящена статья [8]; предлагаемая работа продолжает
это исследование.

Статья состоит из трех параграфов, в заголовок каждого параграфа вынесено рассмат-
риваемое в нем уравнение. Для каждого исследуемого уравнения найдено общее решение,
фундаментальное решение соответствующего однородного уравнения и функция Коши. Полу-
чены также условия однозначной разрешимости двухточечной краевой задачи, определена ее
функция Грина. На основании этих результатов исследуется периодическая краевая задача.

417



ISSN 1810-0198. Вестник ТГУ, т. 21, вып. 2, 2016

1. Уравнение ẋ(t)−x(t− 1)= f(t).

1.1. Задача Коши

Рассмотрим линейное дифференциальное уравнение с постоянным запаздыванием

ẋ(t)− x(t− 1) = f(t), t ≥ 0, x(ξ) = 0, если ξ < 0 (1)

при начальном условии
x(0) = α.

Если t∈ [0, 1], то x(t−1)∈ [−1, 0], следовательно получаем ẋ(t)−0=f(t). Решением этого

уравнения будет x(t)=α+
t∫
0

f(s)ds.

Если t∈ (1, 2], то x(t− 1)∈ (0, 1], следовательно получаем ẋ(t)−
(
α+

t−1∫
0

f(s)ds
)
= f(t).

Решением этого уравнения будет

x(t) = x(1) +

t∫
1

(
f(s) + α+

s−1∫
0

f(ξ)dξ
)
ds.

Подставим x(1)=α+
1∫
0

f(s)ds, получим

x(t)=α+

1∫
0

f(s)ds+

t∫
1

(
f(s)+α+

s−1∫
0

f(ξ)dξ
)
ds=

=α+

1∫
0

f(s)ds+

t∫
1

f(s)ds+

t∫
1

αds+

t∫
1

s−1∫
0

f(ξ)dξds=

=α+α(t− 1)+

t∫
0

f(s)ds+

t−1∫
0

t∫
ξ+1

dsf(ξ)dξ=

=α+α(t− 1)+

t∫
0

f(s)ds+

t−1∫
0

(t− s− 1)f(ξ)dξ.

Если t∈ (2, 3], то x(t− 1)∈ (1, 2], следовательно получаем

ẋ(t)−
(
α+ α(t− 2) +

t−1∫
0

f(s)ds+

t−2∫
0

(t− ξ − 2)f(ξ)dξ
)
= f(t).

Решением этого уравнения будет

x(t) = x(2) +

t∫
2

(
f(s) + α+ α(s− 2) +

s−1∫
0

f(ξ)dξ +

s−2∫
0

(s− ξ − 2)f(ξ)dξ
)
ds.
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Подставим x(2)= 2α+
2∫
0

f(s)ds+
1∫
0

(1− s)f(s)ds, получим

x(t)= 2α+

2∫
0

f(s)ds+

1∫
0

(1− s)f(s)ds+

+

t∫
2

(
f(s)+α+α(s− 2)+

s−1∫
0

f(ξ)dξ+

s−2∫
0

(s− ξ− 2)f(ξ)dξ
)
ds=

=2α+α(t− 2)+

2∫
0

f(s)ds+

1∫
0

(1− s)f(s)ds+

+

t∫
2

f(s)ds+

t∫
2

α(s− 2)ds+

t∫
2

s−1∫
0

f(ξ)dξds+

t∫
2

s−2∫
0

(s− ξ− 2)f(ξ)dξds=

=2α+α(t− 2)+

2∫
0

f(s)ds+

1∫
0

(1− s)f(s)ds+

+

t∫
2

f(s)ds+

t∫
2

α(s− 2)ds+

t∫
2

1∫
0

f(ξ)dξds+

t∫
2

s−1∫
1

dξds+

t−2∫
0

t∫
ξ+2

(s− ξ− 2)dsf(ξ)dξ=

=α+α(t− 1)+

2∫
0

f(s)ds+

1∫
0

(1− s)f(s)ds+

t∫
2

f(s)ds+

t∫
2

α(s− 2)ds+

1∫
0

(t− 2)f(s)ds+

+

t−1∫
1

(t− s− 1)ds+

t−2∫
0

(t− s− 2)2

2
f(s)ds=

=α+α(t− 1)+α
(t− 2)2

2
+

t∫
0

f(s)ds+

t−1∫
0

(t− s− 1)f(s)ds+

t−2∫
0

(t− s− 2)2

2
f(s)ds.

Докажем методом математической индукции, что для для любого n при t ∈ (n, n+ 1],
выполнено

x(t)=α+α(t− 1)+ . . .+
α(t−n)n

n!
+

t∫
0

f(s)ds+

+

t−1∫
0

(t− s− 1)f(s)ds+ . . .+

t−n∫
0

(t− s−n)n

n!
f(s)ds.
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Это равенство проверено при n = 1, 2, 3. Предположим, что равенство справедливо при
n= k− 1, т. е. для t∈ (k− 1, k], выполнено

x(t)=α+αt+ . . .+
α(t− k+1)k−1

(k− 1)!
+

t∫
0

f(s)ds+

+

t−1∫
0

(t− s− 1)f(s)ds+ . . .+

t−k+1∫
0

(t− s− k+1)k−1

(k− 1)!
f(s)ds.

Тогда при n= k для t∈ (k, k+1], так как x(t− 1)∈ (k− 1, k], получаем

ẋ(t)−
(
α+α(t− 1)+ . . .+

α(t− k)k−1

(k− 1)!
+

t−1∫
0

f(s)ds+

t−2∫
0

(t− s− 2)f(s)ds+ . . .+

+

t−k∫
0

(t− s− k)k−1

(k− 1)!
f(ξ)dξ

)
= f(t).

Решением этого уравнения будет

x(t)=x(k)+

t∫
k

(
f(s)+α+α(s− 1)+ . . .+α(s− k)k−1+

s−1∫
0

f(ξ)dξ+

s−2∫
0

(s− ξ− 2)f(ξ)dξ+

+ . . .+

s−k∫
0

(s− ξ− k)k−1

(k− 1)!
f(ξ)dξ

)
ds.

Подставим

x(k)=α+αk+
α(k− 1)2

2!
+ . . .+

α2k−2

(k− 2)!
+

α1k−1

(k− 1)!
+

k∫
0

f(s)ds+

+

k−1∫
0

(k− s− 1)f(s)ds+

k−2∫
0

(k− s− 2)2

2!
f(s)ds+ . . .+

1∫
0

(1− s)k−1

(k− 1)!
f(s)ds,

получим

x(t)=x(k)+

t∫
k

(
f(s)+x(s− 1)

)
ds=α+αk+

α(k− 1)2

2!
+ . . .+

α2k−2

(k− 2)!
+

α1k−1

(k− 1)!
+

+

k∫
0

f(s)ds+

k−1∫
0

(k− s− 1)f(s)ds+

k−2∫
0

(k− s− 2)2

2!
f(s)ds+ . . .+

1∫
0

1− s

(k− 1)!
f(s)ds+

+

t∫
k

f(s)ds+

t∫
k

(
α+α(s− 1)+ . . .+α(s− k)k−1+
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+

s−1∫
0

f(ξ)dξ +

s−2∫
0

(s− ξ− 2)f(ξ)dξ+ . . .+

s−k∫
0

(s− ξ− k)k−1

(k− 1)!
f(ξ)dξ

)
ds=

=α+αk+
α(k− 1)2

2!
+ . . .+

α2k−2

(k− 2)!
+

α1k−1

(k− 1)!
+

k∫
0

f(s)ds+

+

k−1∫
0

(k− s− 1)f(s)ds+

k−2∫
0

(k− s− 2)2

2!
f(s)ds+ . . .+

1∫
0

1− s

(k− 1)!
f(s)ds+

+

t∫
k

f(s)ds+

t∫
k

αds+

t∫
k

α(s− 1)ds+ . . .+

t∫
k

α(s− k)k−1ds+

t∫
k

k−1∫
0

f(ξ)dξds+

+

t∫
k

s−1∫
k−1

f(ξ)dξds+ . . .+

t∫
k

k−2∫
0

(s− ξ− 2)f(ξ)dξds+

t∫
k

s−2∫
k−2

(s− ξ− 2)f(ξ)dξds+ . . .+

+

t−k∫
0

t∫
ξ+k

(s− ξ− k)k−1

(k− 1)!
dsf(ξ)dξ=

=α+αk+
α(k− 1)2

2!
+ . . .+

α(2)k−2

(k− 2)!
+
α(1)k−1

(k− 1)!
+

k∫
0

f(s)ds+

k−1∫
0

(k− s− 1)f(s)ds+

+

k−2∫
0

(k− s− 2)2

2!
f(s)ds+ . . .+

1∫
0

1− s

(k− 1)!
f(s)ds+

t∫
k

f(s)ds+

t∫
k

αds+

+

t∫
k

α(s− 1)ds+ . . .+

t∫
k

α(s− k)k−1ds+

k−1∫
0

t∫
k

dsf(ξ)dξ+

t−1∫
k−1

t∫
ξ+1

dsf(ξ)dξ+ . . .+

+

k−2∫
0

t∫
k

(s− ξ− 2)dsf(ξ)dξ+

t−2∫
k−2

t∫
ξ+2

(s− ξ− 2)dsf(ξ)dξ+ . . .+

+

t−k∫
0

t∫
ξ+k

(s− ξ− k)k−1

(k− 1)!
dsf(ξ)dξ=
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=α+αk+
α(k− 1)2

2!
+ . . .+

α2k−2

(k− 2)!
+

α1k−1

(k− 1)!
+

k∫
0

f(s)ds+

k−1∫
0

(k− s− 1)f(s)ds+

+

k−2∫
0

(k− s− 2)2

2!
f(s)ds+ . . .+

1∫
0

1− s

(k− 1)!
f(s)ds+

t∫
k

f(s)ds+

t∫
k

αds+

+

t∫
k

α(s− 1)ds+ . . .+

t∫
k

α(s− k)k−1ds+

k−1∫
0

(t− k)f(ξ)dξ+

t−1∫
k−1

(t− ξ− 1)f(ξ)dξ+ . . .+

+

k−2∫
0

[(t− ξ− 2)2]− [(k− ξ− 2)2]

2
dξ+

t−2∫
k−2

(t− ξ− 2)2

2
f(ξ)dξ+ . . .+

t−k∫
0

(t− ξ− k)k

k!
f(ξ)dξ.

Итак, при t∈ (k, k+1] имеем

x(t)=α+α(t− 1)+ . . .+
α(t− k)k

k!
+

t∫
0

f(s)ds+

+

t−1∫
0

(t− s− 1)f(s)ds+ . . .+

t−k∫
0

(t− s− k)k

k!
f(s)ds . . .

Таким образом, при любых t≥ 0 решение задачи Коши представимо в виде

x(t) =

∞∑
n=0

χ[n,∞)(t)
(αpn(t− n)n

n!
+

t−n∫
0

pn(t− s− n)n

n!
f(s) ds

)
. (2)

Отсюда для уравнения (1) определяем функцию Коши

C(t, s) =

∞∑
n=0

pn(t− s− n)nχ[n,∞)(t)χ[0,t−n](s)

n!
.

и фундаментальное решение соответствующего однородного уравнения

X(t) =

∞∑
n=0

pn(t− n)nχ[n,∞)(t)

n!
.

1.2. Двухточечная краевая задача

Рассмотрим задачу

ẋ(t)−x(t− 1)= f(t), t∈ [0, k], x(ξ)= 0, если ξ < 0, (3)
Ax(0)+Bx(k)=C. (4)

Аналогично представлению (2) общего решения уравнения (1), для уравнения (3) получаем
общее решение в виде

x(t) =

k∑
n=0

χ[n,k](t)
(αpn(t− n)n

n!
+

t−n∫
0

pn(t− s− n)n

n!
f(s) ds

)
, t ∈ [0, k]. (5)
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Отсюда, учитывая равенство χ[n,k](k)= 1, вычисляем

x(0) = α, x(k) = α
k−1∑
n=0

pn(k − n)n

n!
+

k−1∑
n=0

k−n∫
0

pn(k − s− n)n

n!
f(s) ds.

Подставим эти соотношения в краевые условия (4):

α
(
A+B

k−1∑
n=0

pn(k − n)n

n!

)
+B

k−1∑
n=0

k−n∫
0

pn(k − s− n)n

n!
f(s) ds = C.

Краевая задача (3), (4) имеет единственное решение тогда и только тогда, когда

A+B
k−1∑
n=0

pn(k − n)n

n!
̸= 0.

В этом случае получаем

α =

C −B
k−1∑
n=0

k−n∫
0

pn(k−s−n)n

n! f(s) ds

A+B
k−1∑
n=0

pn(k−n)n

n!

.

Таким образом, решением краевой задачи (3), (4) является

x(t)=

C −B
k−1∑
n=0

k−n∫
0

pn(k−s−n)n

n! f(s) ds

A+B
k−1∑
n=0

pn(k−n)n

n!

k∑
n=0

χ[n,k](t)
pn(t−n)n

n!
+

+

t−n∫
0

k∑
n=0

χ[n,k](t)
pn(t− s−n)n

n!
f(s) ds, t∈ [0, k].

Преобразуем полученное выражение

x(t)=
C

A+B
k−1∑
n=0

pn(k−n)n

n!

k∑
j=0

χ[j,k](t)
pj(t− j)j

j!
−

−
B

k−1∑
n=0

k−n∫
0

pn(k−s−n)n

n! f(s) ds

A+B
k−1∑
n=0

pn(t−n)n

n!

k∑
j=0

χ[j,k](t)
pj(t− j)j

j!
+

k∑
j=0

χ[j,k](t)

t−j∫
0

pj(t− s− j)j

j!
f(s) ds=

=
C

A+B
k−1∑
n=0

pn(k−n)n

n!

k∑
j=0

χ[j,k](t)
pj(t− j)j

j!
+

k∑
j=0

χ[j,k](t)

k∫
0

χ[0,t−j](s)
pj(t− s− j)j

j!
f(s) ds−

−
k∫

0

B

A+B
k−1∑
n=0

pn(k−n)n

n!

k−1∑
n=0

χ[0,k−n](s)
pn(k− s−n)n

n!
f(s) ds

k∑
j=0

χ[j,k](t)
pj(t− j)j

j!
.
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Отсюда для задачи (3), (4) определяем функцию Грина

G(t, s)=

k∑
j=0

χ[n,k](t)χ[0,t−j](s)
pj(t− s− j)j

j!
−

− B

A+B
k−1∑
n=0

pn(k−n)n

n!

k−1∑
n=0

χ[0,k−n](s)
pn(k− s−n)n

n!

k∑
j=0

χ[j,k](t)
pj(t− j)j

j!

и фундаментальное решение соответствующего однородного уравнения

X(t) =
1

A+B
k−1∑
n=0

pn(k−n)n

n!

k∑
j=0

χ[j,k](t)
pj(t− j)j

j!
.

Рассмотрим частный случай задачи (3), (4) — периодическую краевую задачу с условием

X(k)−X(0) = C. (6)

Это условие совпадает с (4), если A=−1, B=1. Таким образом, задача (3), (6) однозначно
разрешима при любых f, c тогда и только тогда, когда

k−1∑
n=0

pn(k − n)n

n!
̸= 1. (7)

При k=1 это условии нарушено, то есть задача (3), (6) не является однозначно разреши-
мой. При k≥ 2 условие (7) эквивалентно неравенству

k−1∑
n=1

pn(k − n)n

n!
̸= 0. (8)

При выполнении (8), решение краевой задачи (4), (6) определяется формулой

x(t)=
C

k−1∑
n=1

pn(k−n)n

n!

k∑
j=0

χ[j,k](t)
pj(t− j)j

j!
+

k∑
j=0

χ[n,k](t)

k∫
0

χ[0,t−j](s)
pj(t− s− j)j

j!
f(s) ds−

−
k∫

0

1
k−1∑
n=1

pn(k−n)n

n!

k∑
n=0

χ[0,k−n](s)
pn(k− s−n)n

n!
f(s) ds

k∑
j=0

χ[j,k](t)
pj(t− j)j

j!
.

Следовательно, функция Грина задачи (3), (6) равна

G(t, s)=

k∑
j=0

χ[n,k](t)χ[0,t−j](s)
pj(t− s− j)j

j!
−

− 1
k−1∑
n=1

pn(k−n)n

n!

k∑
n=0

χ[0,k−n](s)
pn(k− s−n)n

n!

k∑
j=0

χ[j,k](t)
pj(t− j)j

j!
.
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Фундаментальное решение соответствующего однородного уравнения равно

X(t) =
1

k−1∑
n=1

pn(k−n)n

n!

k∑
j=0

χ[j,k](t)
pj(t− j)j

j!
.

2. Уравнение ẋ(t)− p x(t/2)= f(t).

2.1. Задача Коши

Здесь рассматривается линейное дифференциальное уравнение с переменным запаздыва-
нием вида

ẋ(t)− p x(t/2) = f(t), t ≥ 0. (9)

Задача Коши с начальным условием x(0)=0 для уравнения (9) заменой y= ẋ сводится к
интегральному уравнению

y(t) = p

t/2∫
0

y(s) ds+ f(t), t ∈ [0, T ], x(ξ) = 0, если ξ < 0, (10)

где T — любое положительное число. Так как спектральный радиус вольтеррова интегрально-

го оператора K :L([0, T ],R)→L([0, T ],R), (Ky)(t)= p
t/2∫
0

y(s) ds+ f(t), равен нулю, то суще-

ствует единственное решение уравнения (10), и это решение представимо суммой ряда Неймана
y(t)= f(t)+ (Kf)(t)+ (K2f)(t)+ . . . .

Имеем

(K2f)(t) = p2
t/2∫
0

s/2∫
0

f(ξ) dξ ds = p2
t/4∫
0

t/2∫
2ξ

f(ξ) ds dξ = p2
t/4∫
0

( t
2
− 2ξ

)
f(ξ) dξ.

Аналогичными вычислениями по индукции устанавливаем

(Knf)(t) = pn
t/2n∫
0

2021 . . . 2n−2

(n− 1)!

( t

2n−1
− 2ξ

)n−1
f(ξ) dξ.

Таким образом,

x(t)=

t∫
0

∞∑
n=0

(Knf)(s) ds=

∞∑
n=0

t∫
0

(Knf)(s) ds=

=

∞∑
n=0

pn
t∫

0

s/2n∫
0

2021 . . . 2n−2

(n− 1)!

( s

2n−1
− 2ξ

)n−1
f(ξ) dξ ds=

=
∞∑
n=0

pn
t/2n∫
0

t∫
2nξ

2021 . . . 2n−2

(n− 1)!

( s

2n−1
− 2ξ

)n−1
f(ξ) ds dξ=

=

∞∑
n=0

pn
t/2n∫
0

2n(n−1)/2

n!

( t

2n−1
− 2ξ

)n
f(ξ) dξ.
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Итак, получено общее решение уравнения (9)

x(t) =

t∫
0

∞∑
n=0

pnχ[0,t/2n](s)
2n(n−1)/2

n!

( t

2n−1
− 2s

)n
f(s) ds. (11)

Заметим, что справедливость этого равенства следует из теоремы Лебега о предельном пере-
ходе под знаком интеграла (см. [9], с. 200). Действительно, подынтегральная функция удовле-
творяет при t∈ [0, T ], s∈ [0, t] неравенству

∣∣∣ ∞∑
n=0

pnχ[0,t/2n](s)
2n(n−1)/2

n!

( t

2n−1
− 2s

)n
f(s)

∣∣∣≤
≤

∞∑
n=0

|p|n 2
n(n−1)/2

n!

( T

2n−1

)n
|f(s)|= |f(s)|

∞∑
n=0

|p|nTn

n!2n(n−1)/2
,

где числовой ряд
∞∑
n=0

(
n!2n(n−1)/2

)−1|p|nTn сходится.

Из (11) для уравнения (9) получаем функцию Коши

C(t, s) =

∞∑
n=0

pnχ[0,t/2n](s)
2n(n−1)/2

n!

( t

2n−1
− 2s

)n

и фундаментальное решение соответствующего однородного уравнения (см. [1], с. 63)

X(t) = C(t, 0) =

∞∑
n=0

pntn

n!2n(n−1)/2
.

2.2. Двухточечная краевая задача

Рассмотрим задачу

ẋ(t)− p x(t/2)= f(t), t∈ [0, T ], (12)
Ax(0)+Bx(T )=C. (13)

Аналогично представлению (11) общего решения уравнения (9), для уравнения (12) получаем
общее решение в виде

x(t) = α

∞∑
n=0

pntn

n!2n(n−1)/2
+

t∫
0

∞∑
n=0

pnχ[0,t/2n](s)
2n(n−1)/2

n!

( t

2n−1
− 2s

)n
f(s) ds. (14)

Из предоставления (14) получаем

x(0) = α, x(T ) = α

∞∑
n=0

pnTn

n!2n(n−1)/2
+

T∫
0

∞∑
n=0

pnχ[0,T/2n](s)
2n(n−1)/2

n!

( T

2n−1
− 2s

)n
f(s) ds.

Подставим эти соотношения в краевые условия (13):

Aα+Bα

∞∑
n=0

pnTn

n!2n(n−1)/2
+B

T∫
0

∞∑
n=0

pnχ[0,T/2n](s)
2n(n−1)/2

n!

( T

2n−1
− 2s

)n
f(s) ds = C.
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Краевая задача имеет единственное решение тогда и только тогда, когда

A+B

∞∑
n=0

pnTn

n!2n(n−1)/2
̸= 0.

В этом случае получаем

α =

C −B
T∫
0

∞∑
n=0

pnχ[0,T/2n](s)
2n(n−1)/2

n!

(
T

2n−1 − 2s
)n
f(s) ds

A+B
∞∑
n=0

pnTn

n!2n(n−1)/2

.

Следовательно, решением краевой задачи (12), (13) является

x(t) =

C −B
T∫
0

∞∑
n=0

pnχ[0,T/2n](s)
2n(n−1)/2

n!

(
T

2n−1 − 2s
)n
f(s) ds

A+B
∞∑
n=0

pnTn

n!2n(n−1)/2

∞∑
n=0

pntn

n!2n(n−1)/2
+

+

t∫
0

∞∑
n=0

pnχ[0,t/2n](s)
2n(n−1)/2

n!

( t

2n−1
− 2s

)n
f(s) ds=

=

C
∞∑
n=0

pntn

n!2n(n−1)/2

A+B
∞∑
n=0

pnTn

n!2n(n−1)/2

−
B

T∫
0

∞∑
n=0

pnχ[0,T/2n](s)
2n(n−1)/2

n!

(
T

2n−1 − 2s
)n ∞∑

k=0

pktk

k!2k(k−1)/2 f(s) ds

A+B
∞∑
n=0

pnTn

n!2n(n−1)/2

+

+

T∫
0

∞∑
n=0

pnχ[0,t/2n](s)
2n(n−1)/2

n!

( t

2n−1
− 2s

)n
f(s) ds.

Таким образом, получена функция Грина уравнения (12),(13)

G(t, s)=− B

A+B
∞∑
n=0

pnTn

n!2n(n−1)/2

∞∑
n=0

pnχ[0,T/2n](s)(T − 2ns)n

n!2n(n−1)/2

∞∑
k=0

pktk

k!2k(k−1)/2
+

+

∞∑
n=0

pnχ[0,t/2n](s)(t− 2ns)n

n!2n(n−1)/2
.

Для уравнения (12) рассмотрим периодическую краевую задачу с условием

x(T )−x(0)=C. (15)

Условие (15) — частный случай условия (13) при A=−1, B=1. Из приведенных выше ре-
зультатов получаем, что краевая задача (12),(15)) однозначно разрешима тогда и только тогда,
когда выполнено неравенство

∞∑
n=0

pnTn

n!2n(n−1)/2
̸= 1 ⇔

∞∑
n=1

pnTn

n!2n(n−1)/2
̸= 0.
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Таким образом, получена функция Грина задачи (12),(15)

G(t, s) =

∞∑
n=0

pnχ[0,T/2n](s)

∞∑
n=1

pnTn

n!2n(n−1)/2

(T − 2ns)n

n!2n(n−1)/2

∞∑
k=0

pktk

k!2k(k−1)/2
+

∞∑
n=0

pnχ[0,t/2n](s)(t− 2ns)n

n!2n(n−1)/2
.

3. Уравнение ẋ(t)− p ẋ
(
t/2

)
= f(t).

3.1. Задача Коши

В заключение рассмотрим линейное уравнение нейтрального типа

ẋ(t)− p ẋ
(
h(t)

)
= f(t), t ≥ 0, x(ξ) = 0, если ξ < 0. (16)

Будем предполагать, что измеримая функция h :R+ →R удовлетворяет условию h(t)≤ t и
выполнено следующее условие

|p|
µ
(
h−1(Ω)

)
µΩ

< 1, (17)

где символом µ обозначена мера Лебега.

Определим оператор (Shy)(t)=

{
y
(
h(t)

)
, если h(t)≥ 0,

0, если h(t)< 0,
Вследствие принятых предпо-

ложений, при любом T > 0 оператор Sh действует в L([0, T ],R) и ∥Sh∥< 1 (см. [1], с. 21),
следовательно, при любых α, f задача Коши с начальным условием x(0) = α однозначно
разрешима. Решение может быть определено через ряд Неймана

ẋ(t) = f(t) + p (Shf)(t) + p2 (Sh2f)(t) + . . . . (18)

Для упрощения выкладок приведем решение уравнения (16) в частном случае при h(t)= t/2.
Итак, рассмотрим уравнение

ẋ(t)− p ẋ
(
t/2

)
= f(t), t ≥ 0. (19)

Условие (17) приобретает вид неравенства |p|< 1/2. В силу (18) имеем

ẋ(t) =
∞∑
n=0

pn f(t/2n), x(t) = α+
∞∑
n=0

t/2n∫
0

(2p)n f(s) ds. (20)

Таким образом, функция Коши уравнения (19) равна

C(t, s) =

∞∑
n=0

χ[0, t/2n](s) (2p)
n,

или, что то же самое

C(t, s) =
1− (2p)n+1

1− 2p
, если c ∈ [t/2n, t/2n+1], n = 0, 1, 2, . . . .

В [3] предложен метод нахождения функции Грина уравнения (16), использующий, как и
в нашей работе, ряд Неймана (18).
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3.2. Краевая задача

Рассмотрим краевую задачу для линейного уравнения

ẋ(t)− p ẋ(t/2) = f(t), t ∈ [0, T ] (21)

с условием
Ax(0) +Bx(T ) = C. (22)

Представление (20) общего решения уравнения (19) при t∈ [0, T ] дает и общее решение
уравнения (21). Таким образом, получаем

x(t) = α+

∞∑
n=0

t/2n∫
0

(2p)n f(s) ds, t ∈ [0, T ]. (23)

Отсюда имеем

x(0) = α, x(T ) = α+

∞∑
n=0

T/2n∫
0

(2p)n f(s) ds.

Подставим эти соотношения в краевые условия (22):

α(A+B) = C −B
∞∑
n=0

T/2n∫
0

(2p)n f(s) ds.

Краевая задача имеет единственное решение тогда и только тогда, когда

(A+B) ̸= 0.

В этом случае получаем

α =

C −B
∞∑
n=0

T/2n∫
0

(2p)n f(s)ds

A+B
.

Таким образом, решением краевой задачи (21), (22) является

x(t) =

C −B
∞∑
n=0

T/2n∫
0

(2p)n f(s)ds

A+B
+

∞∑
n=0

t/2n∫
0

(2p)n f(s) ds.

Таким образом, получена функция Грина краевой задачи (21), (22)

G(t, s) = −
B

∞∑
n=0

χ[0, T/2n](s) (2p)
n

A+B
+

∞∑
n=0

χ[0, t/2n](s) (2p)
n.

Для уравнения (21) рассмотрим периодическую краевую задачу с условием

x(T )−x(0)=C. (24)
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Как уже отмечалось, условие (24) — частный случай условия (22) при A=−1, B=1. Так как
A+B=0, периодическая задача не является однозначна разрешимой ни при каких значениях
p, T.

В отличие от периодической задачи апериодическая задача с условием

x(T )+x(0)=C (25)

однозначно разрешимой при любых p, T, так как A+B=2 ̸=0. Ее функция Грина равна

G(t, s) = −1

2

∞∑
n=0

χ[0, T/2n](s) (2p)
n +

∞∑
n=0

χ[0, t/2n](s) (2p)
n.
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ON SOLVING LINEAR FUNCTIONAL-DIFFERENTIAL EQUATIONS

c⃝ T.Kh.M. Takhir

We consider some linear functional-differential equations the solutions of which can be
written analytically. For these equations we derive the Cauchy function, the Green function
for a two-point (in particular, for periodic and aperiodic) boundary value problem.
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