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МЕТОД МНОГОЛИСТНЫХ НАПРАВЛЯЮЩИХ ФУНКЦИЙ В ЗАДАЧЕ
О БИФУРКАЦИИ РЕШЕНИЙ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
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В настоящей работе предлагается использовать метод многолистных направляющих
функций при исследовании бифуркационной задачи для дифференциальных уравне-
ний.
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1. Введение

Одним из наиболее эффективных и геометрически наглядных способов решения задачи
о существовании периодических решений дифференциальных уравнений является метод на-
правляющих функций, общие принципы которого сформулировали М.А. Красносельский и
А.И. Перов (см., например, [1, 2]). За более, чем полувековую историю своего существования,
метод был развит рядом исследователей в различных направлениях. Отметим в этой связи
одно из самых значительных развитий этого подхода на случай дифференциальных уравнений,
связанное с понятием многолистной направляющей функции Д.И. Рачинского (см. [3]).

В настоящее время достаточно активно развиваются различные методы исследования би-
фуркационного феномена в динамических системах, описываемых дифференциальными урав-
нениями и включениями (см., например, [4-11]).

В настоящей работе, предлагается использовать многолистную направляющую функцию
для исследования задачи о бифуркации периодических решений некоторых классов дифферен-
циальных уравнений. Заметим, что различные модификации метода многолистных векторных
направляющих функций применялись ранее только в задаче о существовании периодических
решений (см., например, [12, 13]).

2. Предварительные сведения

В дальнейшем используются известные понятия и терминология из анализа и теории мно-
гозначных отображений (мультиотображений) (см., например, [5, 14-16]). Напомним некоторые
из них.

Пусть (X, dX), (Y, dY ) и (Z, dZ) — метрические пространства. Символами P (Y ) и K(Y )
обозначаются совокупности всех, соответственно, непустых и компактных подмножеств про-
странства Y. Если Y — нормированное пространство, то символом Kv(Y ) обозначается со-
вокупность всех непустых выпуклых компактных подмножеств пространства Y.

О п р е д е л е н и е 1. Многозначное отображение (мультиотображение) F : X→P (Y )
называется:

(i) полунепрерывным сверху (пн. св.), если для любого открытого множества V ⊂ Y мно-
жество

F−1
+ (V ) := {x ∈ X : F (x) ⊂ V }

является открытым в X ;
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(ii) вполне пн. св., если оно пн. св. и каждое ограниченное множество U ⊂X переводит в
относительно компактное множество F (U) пространства Y ;

(iii) компактным, если множество
F (X) :=

∪
x∈X

F (x)

является относительно компактным в Y .

Множество M ∈K(Y ) называется асферичным, если для любого ε > 0 найдется δ > 0
такое, что каждое непрерывное отображение единичной сферы σ : Sn→Oδ(M), n=0, 1, 2, . . . ,
может быть продолжено до непрерывного отображения шара σ̃ : Bn+1→Oε(M) , где Sn={x∈
∈ Rn+1 : ∥x∥=1}, Bn+1 = {x∈Rn+1 : ∥x∥≤ 1} и Oδ(M) [Oε(M)] обозначает δ -окрестность
[соотв., ε -окрестность] множества M.

Множество A⊂X называется стягиваемым, если существует непрерывное отображение
(гомотопия) h :A× [0, 1]→A такое, что h(x, 0)=x, h(x, 1)=x0 для всех x∈A. Пространство
X называется локально стягиваемым, если оно локально стягиваемо в каждой своей точке.

Множество A ⊂ X называется Rδ -множеством, если его можно представить в ви-
де пересечения убывающей последовательности компактных, стягиваемых множеств, т. е.
A=∩{An :n=1, 2, ...}.

Множество A⊂X называется ретрактом пространства X, если существует такое непре-
рывное отображение (ретракция) r :X→A, сужение которого на A является тождественным,
т. е. r(x)=x для всех x∈A. Множество A⊂X называется окрестностным ретрактом, если
существует ретракция r :O(A)→A, где O(A) – некоторая окрестность A.

Вложением пространства X в пространство Y называется такое отображение h :X→Y,
которое обладает свойствами:

10 h(X)⊂Y – замкнутое множество;
20 ĥ :X→h(X) – гомеоморфизм.
Напомним, что пространство X называется абсолютным ретрактом, или AR –прост-

ранством, если для любого метрического пространства Y и любого вложения h :X → Y
множество h(X) является ретрактом пространства Y. Если же множество h(X) является
окрестностным ретрактом, то пространство X называется абсолютным окрестностным ре-
трактом, или ANR –пространством.

Отметим, что класс ANR –пространств достаточно широк. В частности, всякий конечный
полиэдр является ANR –пространством.

Более того, конечномерный компакт является ANR –пространством тогда и только то-
гда, когда он локально стягиваем. В частности, каждое компактное многообразие является
ANR –пространством и, кроме того, если X0, X1 – ANR –пространства и X0 ∩X1 – ANR –
пространство, то объединение X0 ∪X1 также является ANR –пространством.

О п р е д е л е н и е 2. Пн. св. мультиотображение G : X → K (Y ) называется
J−мультиотображением, или G ∈ J (X,Y ) , если для любого x ∈X множество G (x) яв-
ляется асферичным.

У т в е р ж д е н и е 1. Пусть Y является ANR –пространством. Тогда пн. св. многозначное
отображение G :X→K(Y ) является J− отображением в каждом из следующих случаев:

для любого x∈X множество G(x) является
(а) выпуклым множеством;
(б) AR –пространством;
(в) стягиваемым множеством;
(г) Rδ –множеством.
В частности, всякое непрерывное однозначное отображение σ : X → Y является

J− отображением.
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О п р е д е л е н и е 3. Классом CJ(X,Y ) называется совокупность мультиотображений
F : X→K(Y ) вида F = f ◦G, где G∈ J(X,Z) и f : Z→Y – непрерывное отображение.

Пусть U ⊂X – открытое ограниченное множество, F : U →K(X) – компактное CJ−
− мультиотображение такое, что x /∈F (x) для всех x∈∂U. Тогда определена топологическая
степень deg(i− F,U) многозначного векторного поля, порожденного мультиотображением
F (здесь i – отображение вложения). Эта топологическая характеристика обладает всеми
основными свойствами классической топологической стпепени Брауэра (см., например, [5]).

Рассмотрим следующее включение:

x ∈ F (x, µ), (1)

где F : X ×R→K(X) является CJ -мультиотображением, а µ∈R – параметром.
Пусть справедливы следующие предположения:

(F1) мультиотображение F является вполне пн. св. и 0∈F (0, µ) для всех µ∈R ;

(F2) существует ε0 > 0 такое, что для каждого µ , 0< |µ|< ε0 найдется δµ > 0 такое, что
x /∈F (x, µ) для всех x∈BX(0, δµ) \ {0}, где BX(0, δµ) обозначает замкнутый шар в X
радиуса δµ с центром в нуле;

(F3) бифуркационный индекс в точке (0, 0), определяемый равенством

Bi(F ; (0, 0)) = lim
µ→0+

deg(i− F,BX(0, δµ))− lim
µ→0−

deg(i− F,BX(0, δµ)),

отличен от нуля.

Символом S обозначим множество всех нетривиальных решений включения (1), т. е.

S = {(x, µ) ∈ X × R : x ̸= 0 и x ∈ F (x, µ)}.

Т е о р е м а 1. Пусть выполнены условия (F1)− (F3) . Тогда существует связное мно-
жество R⊂S такое, что (0, 0)∈R и либо R является неограниченным, либо R∋ (0, µ∗)
для некоторого µ∗ ̸=0 .

3. Постановка задачи

Рассмотрим дифференциальное уравнение следующего вида:

x′(t) = f(t, x(t), µ) (2)

в предположении, что

(f1) непрерывное отображение f : R×Rn ×R→Rn является T -периодическим по первому
аргументу (T > 0) ;

(f2) существует c> 0 и положительная функция h : [0,∞)→ [0,∞) такие, что h(0)= 0 и

|f(t, x, µ)| ≤ c h(|µ|) |x|

для всех (t, x, µ)∈ [0, T ]×Rn×R ;

(f3) для каждого µ∈R уравнение (2) имеет решение x : [0, T ]→Rn такое, что x(0)=x(T )=0 .

394



ISSN 1810-0198. Вестник ТГУ, т. 21, вып. 2, 2016

Пусть в пространстве Rn(n> 2) выделена двумерная плоскость R2 и дополнительное к
ней подпространство Rn−2 . Пусть q – оператор проектирования на плоскость R2 вдоль под-
пространства Rn−2, а p= i− q, где i – тождественный оператор. Ниже элементы Rn−2 обо-
значаются через ξ . Пусть φ, ρ – полярные координаты в R2.

Дифференциальное уравнение (2) эквивалентно следующей системе:
dξ
dt = g(t, ξ, φ, ρ, µ),
dφ
dt =h(t, ξ, φ, ρ, µ),
dρ
dt =w(t, ξ, φ, ρ, µ),

(3)

где непрерывные функции g, h, w являются T -периодичными по первому аргументу.
Для (z, µ)∈Rn×R символом Σz обозначим множество решений следующей задачи:{

x′= f(t, x, µ),

x(0)= z.

Известно, что Σz является Rδ -множеством в пространстве C([0, T ];Rn) (см., например,
[5, 15]). Определим мультиотображение Σ: Rn×R→C([0, T ];Rn) как

Σ(z, µ) = Σ(z,µ).

Тогда Σ является J -мультиотображением (см., например, [5, 15]).
Определим мультиоператор UT : Rn ×R→K(Rn) сдвига по траекториям уравнения (2)

следующим образом
UT (z, µ)=

{
x(T ) : x∈Σ(z, µ)

}
.

Тогда дифференциальное уравнение (2) эквивалентно включению

z ∈ UT (z, µ). (4)

Из условий (f1)− (f2) следует, что UT является CJ -мультиоператором (см., например,
[5, 15]). Кроме того, 0 ∈ UT (0, µ) для всех µ ∈R . Символом S обозначим множество всех
нетривиальных решений включения (4), т. е.

S = {(z, µ) ∈ Rn × R : z ̸= 0 и z ∈ UT (z, µ)}.

4. Основной результат

Рассмотрим многолистную риманову поверхность

Π = {(φ, ρ) : φ ∈ (−∞,∞), ρ ∈ (0,∞)}.

На Π для каждого µ∈R пусть W : Π×R→R задает скалярную непрерывно дифференци-
руемую функцию W (·, ·, µ), для которой

∂

∂φ
W (φ, ρ, µ) > 0, (φ, ρ) ∈ Π, (5)

W (φ+ 2π, ρ, µ) =W (φ, ρ, µ) + 2π, (φ, ρ) ∈ Π. (6)

Из (6) легко следует, что

∇W (φ+ 2π, ρ, µ) = ∇W (φ, ρ, µ),
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где ∇W (φ, ρ, µ)=
(
∂W
∂φ ,

∂W
∂ρ

)
.

Для r∗> 0 определим область G(r∗)= {z ∈Rn : |pz|<r∗, |qz|<r∗}.
О п р е д е л е н и е 4. Пара функций {V (ξ, µ),W (φ, ρ, µ)}, обладающих свойствами (5)–(6),

называется локальной многолистной направляющей функцией задачи (4) относительно (0, 0) ,
если для всех µ∈R выполняется равенство ∂V (0,µ)

∂ξ =0, и если существует ε0> 0 такое, что
для каждого µ : 0< |µ| ≤ ε0 найдется rµ> 0 такое, что:

(a1) для 0< |pz|<rµ и |qz|<rµ : ⟨
∂V (ξ, µ)

∂ξ
, g(t, ξ, φ, ρ, µ)

⟩
< 0;

(a2) для 0< |qz|<rµ :

∂W (φ, ρ, µ)

∂φ
h(t, 0, φ, ρ, µ) +

∂W (φ, ρ, µ)

∂ρ
w(t, 0, φ, ρ, µ) < 0;

(a3) функции α(t, µ) и β(t, µ), определяемые равенствами

α(t, µ) = sup
z∈G(rµ)

⟨
∂W (qz, µ)

∂qz
, qf(t, z, µ)

⟩
,

β(t, µ) = inf
z∈G(rµ)

⟨
∂W (qz, µ)

∂qz
, qf(t, z, µ)

⟩
,

являются непрерывными;

(a4) существует такое целое число Nµ, что

2π(Nµ − 1) <

∫ T

0
α(s, µ)ds,

∫ T

0
β(s, µ)ds < 2πNµ.

Из приведенного определения следует, что для каждого µ : 0< |µ| ≤ ε0 корректно опреде-
лена топологическая степень deg

(∂V (·,µ)
∂ξ , BRn−2(0, rµ)

)
(см., например, [2]). Обозначим

indV = lim
µ→0+

deg

(
∂V (·, µ)
∂ξ

,BRn−2(0, rµ)

)
− lim

µ→0−
deg

(
∂V (·, µ)
∂ξ

,BRn−2(0, rµ)

)
.

Т е о р е м а 2. Пусть выполнены условия (f1)− (f3) . Предположим, что для уравнения
(2) можно указать локальную многолистную направляющую функцию относительно (0, 0)
такую, что indV ̸=0. Тогда существует связное множество C ⊂S такое, что:

(i) каждой точке (z, µ)∈C соответствует решение x : [0, T ]→Rn уравнения (2), для ко-
торого x(0)=x(T )= z ;

(ii) (0, 0)∈C и либо C неограничено, либо C ∋ (0, µ∗) для некоторого µ∗ ̸=0 .

В частности, существует последовательность {xn} решений уравнения (2), {zn} ⊂ S ,
xn(0)= xn(T ) = zn, такая, что {xn} неограничена или {xn} сходится к решению x∗ урав-
нения (2), для которого x∗(0)=x∗(T )= 0 .

Д о к а з а т е л ь с т в о. Очевидно, мультиоператор сдвига UT удовлетворяет условию
(F1) теоремы 1. Покажем, что он удовлетворяет и условию (F2) . Для этой цели покажем,
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что включение (4) имеет для каждого µ, 0< |µ| ≤ ε0 только тривиальные решения на шаре
BRn(0, δµ) , где

δµ =
1

2ecTh(|µ|) rµ.

Предположим противное, что существует нетривиальное решение z ∈BRn(0, δµ) . Тогда суще-
ствует функция x такая, что {

x′= f(t, x, µ) для t∈ [0, T ],

x(0)=x(T )= z.

Из равенства

x(t) = x(0) +

∫ t

0
f(s, x(s), µ)ds

следует, что

|x(t)| ≤ |z|+
∫ t

0
|f(s, x(s), µ)|ds ≤ |z|+

∫ t

0
c h(|µ|) |x(s)|ds.

Применяя лемму Гронуэлла, получаем

|x(t)| ≤ |z|ecTh(|µ|) ≤ 1

2
rµ < rµ.

Если найдется Ω⊂ (0, T ) такое, что

ξ(t) = px(t) = 0 для t ∈ Ω

и
ξ(t) ̸= 0 для t ∈ (0, T ) \ Ω,

то из определения 4 следует соотношение⟨
∂V (ξ, µ)

∂ξ
, g(t, ξ, φ, ρ, µ)

⟩
< 0

для всех t∈ (0, T ) \Ω . Следовательно,∫ T

0

⟨
∂V (ξ, µ)

∂ξ
, g(t, ξ, φ, ρ, µ)

⟩
dt < 0.

С другой стороны,∫ T

0

⟨
∂V (ξ, µ)

∂ξ
, g(t, ξ, φ, ρ, µ)

⟩
dt=

∫ T

0

⟨
∂V (ξ, µ)

∂ξ
,
dξ

dt

⟩
dt=

=V (ξ(T ), µ)−V (ξ(0), µ)= 0.

Получили противоречие.
Если ξ(t)=0 для всех t∈ (0, T ) , например, x(t)= qx(t)∈R2 для всех t∈ (0, T ) , то, из того,

что x ̸=0 следует, что найдется Ω⊂ (0, T ) такое, что x(t) ̸=0 для всех t∈ [0, T ] \Ω и x(t)=0
для t∈Ω . Поэтому

∂W (φ, ρ, µ)

∂φ
h(t, 0, φ(t), ρ(t), µ) +

∂W (φ, ρ, µ)

∂ρ
w(t, 0, φ(t), ρ(t), µ) < 0
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для t∈ [0, T ] \Ω .
Следовательно,∫ T

0

⟨
∂W (φ, ρ, µ)

∂φ
h(t, 0, φ(t), ρ(t), µ) +

∂W (φ, ρ, µ)

∂ρ
w(t, 0, φ(t), ρ(t), µ)

⟩
dt < 0.

С другой стороны,∫ T

0

⟨
∂W (φ, ρ, µ)

∂φ
h(t, 0, φ(t), ρ(t), µ)+

∂W (φ, ρ, µ)

∂ρ
w(t, 0, φ(t), ρ(t), µ)

⟩
dt=

=W
(
φ(T ), ρ(T ), µ)−W

(
φ(0), ρ(0), µ)= 0.

Получили противоречие. Таким образом, условие (F2) так же выполняется.
Итак, топологическая степень deg

(
i−UT (·, µ), BRn(0, δµ)

)
существует. Для ее вычисления

выберем r̃µ> 0 такое, что
G(r̃µ) ⊂ BRn(0, δµ).

Так как включение (4) имеет только тривиальные решения на BRn(0, δµ), то

deg
(
i− UT (·, µ), BRn(0, δµ)

)
= deg

(
i− UT (·, µ), G(r̃µ)

)
.

Рассмотрим мультиотображение

Φ(t, z, µ) = z − pUt(z, µ)− qUT (z, µ), t ∈ (0, T ], z ∈ G(r̃µ).

Так как pΦ(t, z, µ)= p(z−Ut(z, µ)), qΦ(t, z, µ)= q(z−UT (z, µ)) и нет нетривиальных решений
на G(r̃µ), то имеем

0 /∈ pΦ(t, z, µ), t ∈ (0, T ], z ∈ ∂G(r̃µ);

0 /∈ qΦ(t, z, µ), t ∈ (0, T ], z ∈ ∂G(r̃µ).

Поэтому
0 /∈ Φ(t, z, µ), t ∈ (0, T ], z ∈ ∂G(r̃µ).

Если Ut(z, µ) – траектория, выпущенная из точки z, то

d

dt
Ut(z, µ) = f(t, Ut(z, µ)),

поэтому
d

dt
pUt(z, µ) = pf(t, Ut(z, µ)).

Полагая здесь t=0, получим

lim
t→+0

pUt(z, µ)− pz

t
= pf(0, z, µ).

Откуда следует, что поля −pf(0, z, µ) и p(z−Uε(z, µ)) при малых ε>0 направлены непро-
тивоположно.

В силу (a1)
⟨∇V (pz, µ),−pf(0, z, µ)⟩ > 0, z ∈ ∂G(r̃µ),

где ∇V (pz, µ)= ∂V (pz,µ)
∂pz .

Так как
0 /∈ q(z − UT (z, µ)), t ∈ (0, T ], z ∈ ∂G(r̃µ),
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то поля
−pf(0, z, µ) + q(z − UT (z, µ)),

∇V (pz, µ) + q(z − UT (z, µ)),

а также поля
−pf(0, z, µ) + q(z − UT (z, µ)),

p(z − Uε(z, µ)) + q(z − UT (z, µ)) = Φ(ε, z, µ)

непротивоположно направлены при z ∈ ∂G(r̃µ).
Поэтому

deg(∇V (pz, µ) + q(z − UT (z, µ)), G(r̃µ)) =

= deg(−pf(0, z, µ) + q(z − UT (z, µ)), G(r̃µ)) = deg(Φ(ε, z, µ), G(r̃µ)).

Откуда
deg(i− UT (·, µ), G(r̃µ)) = deg(∇V (pz, µ) + q(z − UT (z, µ)), G(r̃µ)). (7)

Из условия (5) вытекает, что уравнение

W (φ, ρ, µ) = w

однозначно разрешимо относительно φ.
Определим функцию Ψ(λ, z, µ) : [0, 1]×G(r̃µ)×R→R2 равенствами

φ(Ψ(λ, z, µ)) = θ((1− λ)ρ(qUT (z, µ)), W (φ(qUT (z, µ)), ρ(qUT (z, µ)), µ)),

ρ(Ψ(λ, z, µ)) = (1− λ)ρ(qUT (z, µ)).

Полагая φ=φ(qUT (z, µ)), ρ= ρ(qUT (z, µ)) в тождестве θ(ρ,W (φ, ρ, µ))≡φ, получим

θ(ρ(qUT (z, µ)), W (φ(qUT (z, µ)), ρ(qUT (z, µ)), µ)) = φ(qUT (z, µ))

или
θ(Ψ(0, z, µ)) = φ(qUT (z, µ)).

Отсюда и из соотношений ρ(Ψ(0, z, µ))= ρ(qUT (z, µ)), ρ(Ψ(1, z, µ))≡ 0 следуют равенства

Ψ(0, z, µ) = qUT (z, µ), Ψ(1, z, µ) ≡ 0.

Таким образом, кривая Γz,µ(λ)=Ψ(λ, z, µ), где 0≤λ≤1 а z, µ фиксированы, соединяет точки
ξ0= qUT (z, µ) и ξ1=0. Далее, так как W (θ(ρ,w), ρ, µ)=w, то

W (φ(Ψ(λ, z, µ)), ρ(Ψ(λ, z, µ)), µ) =W (φ(qUT (z, µ)), ρ(qUT (z, µ)), µ),

т. е. функция W (φ, ρ, µ) имеет постоянное значение на Γz,µ(λ).
Положим

Φ1(λ, z, µ) = ∇V (pz, µ) + qz −Ψ(λ, z, µ), λ ∈ [0, 1], z ∈ G(r̃µ).

Непрерывная деформация Φ1(λ, z, µ) соединяет поля

∇V (pz, µ) + q(z − UT (z, µ)) и ∇V (pz, µ) + qz.

Покажем, что она невырождена на ∂G(r̃µ) и, более того,

0 /∈ qΦ1(λ, z, µ), λ ∈ [0, 1], z ∈ ∂G(r̃µ). (8)
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Предположим противное: найдутся λ∗ ∈ [0, 1], z∗ ∈ ∂G(r̃µ) такие, что

0 ∈ qΦ1(λ∗, z∗, µ), 0 ∈ qz∗ − qΨ(λ∗, z∗, µ).

Тогда
φ(Ψ(λ∗, z∗, µ)) = φ(qz∗) + 2πk, ρ(Ψ(λ∗, z∗, µ)) = ρ(qz∗).

Из условия (6) вытекает равенство

W (φ(Ψ(λ∗, z∗, µ)), ρ(Ψ(λ∗, z∗, µ)), µ) =W (φ(qz∗), ρ(qz∗), µ) + 2πk.

Но
W (φ(Ψ(λ∗, z∗, µ)), ρ(Ψ(λ∗, z∗, µ)), µ) =W (φ(qUT z∗), ρ(qUT z∗), µ)

и, следовательно,

W (φ(qUT (z∗, µ)), ρ(qUT (z∗, µ)), µ)−W (φ(qz∗), ρ(qz∗), µ) = 2πk. (9)

Положим ω∗(t, µ)=W (φ(qUt(z∗, µ)), ρ(qUt(z∗, µ)), µ). Так как z∗ ∈G(r̃µ), то

Ut(z∗, µ) ∈ G(rµ), t ∈ (0, T ].

Поэтому верны оценки

2π(Nµ − 1) < ω∗(T, µ)− ω∗(0, µ) < 2πNµ.

Подставляя сюда равенства

ω∗(0, µ) =W (φ(qz∗), ρ(qz∗), µ),

ω∗(T, µ) =W (φ(qUT (z∗, µ)), ρ(qUT (z∗, µ)), µ),

получим

2π(Nµ − 1) < W (φ(qUT (z∗, µ)), ρ(qUT (z∗, µ)), µ)−W (φ(qz∗), ρ(qz∗), µ) < 2πNµ,

что противоречит оценкам (9). Из соотношения (8) и

pΦ1(λ, z, µ) = ∇V (pz, µ) ̸= 0, z ∈ G(r̃µ),

следует, что Φ1(λ, z, µ) невырождена. Поэтому

deg(∇V (pz, µ) + q(z − UT (z, µ)), G(r̃µ)) =

= deg(∇V (pz, µ) + qz,G(r̃µ))

и в силу (7)
deg(i− UT (·, µ), G(r̃µ)) = deg(∇V (pz, µ) + qz,G(r̃µ)).

Отсюда, применяя теорему о произведении степеней и свойство нормализации топологи-
ческой степени, получаем

deg(∇V (pz, µ) + qz,G(r̃µ)) = deg(∇V (pz, µ), G(r̃µ)) · deg(qz,G(r̃µ)) = deg(∇V (pz, µ), G(r̃µ)).

Таким образом, получаем

deg(i− UT (·, µ), G(r̃µ)) = deg(∇V (pz, µ), G(r̃µ)) = deg(∇V (pz, µ), BRn−2(0, rµ)).
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Теперь утверждение следует из теоремы 1 и того факта, что ind V ̸=0 . Теорема доказана.

Авторы искренне благодарны профессору В.В. Обуховскому за полезные обсуждения за-
тронутых в статье вопросов.
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