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ШАРНИРНЫЕ КОНСТРУКЦИИ И КВАДРАТИЧНЫЕ ОТОБРАЖЕНИЯ

c⃝ М.Д. Ковалёв

Поставлены вопросы из теории вещественных квадратичных отображений. Вопросы
возникают при рассмотрении геометрических свойств шарнирно-рычажных конструк-
ций и пока остаются открытыми.
Ключевые слова: шарнирно-рычажные конструкции; рычажное отображение; квадра-
тичные отображения.

1. Введение

Сначала поставим основной вопрос на обыденном языке, а потом формализуем его мате-
матически. Мы ограничимся рассмотрением плоских конструкций. Эти конструкции состоят
из прямолинейных стержней, соединенных между собой и с точками плоскости шарнирами,
допускающими произвольное вращение стержней в плоскости. На рисунках стержни (рычаги)
есть отрезки, закрепленные в плоскости шарниры — крестики, незакрепленные (свободные)
шарниры — кружочки. Шарниры расположены лишь на концах рычагов, и на каждом конце
рычага имеется шарнир. Мы допускаем пересечение рычагов и совпадение различных шарни-
ров при движении конструкции. На рис. 1а) показана простейшая не допускающая непрерыв-
ного движения (неизгибаемая) конструкция в плоскости. На рис. 1б) показана конструкция,
допускающая непрерывное движение. В теории механизмов она называется шарнирным четы-
рехзвенником.

а)
б)

Рис. 1:

Рассмотрим конструкцию рис. 1а). Если ее свободный шарнир не лежит на прямой, соеди-
няющей закрепленные, то ее очевидным образом можно собрать и при произвольной достаточ-
но малой ошибке в длинах рычагов. Эту конструкцию можно назвать геометрически устой-
чивой. Однако она собирается не единственным способом (рис. 2а)). Вторая сборка показана
пунктиром. Длины всех рычагов и точки закрепления при этом неизменны. Единственным об-
разом эту конструкции можно собрать, лишь если все три ее шарнира лежат на одной прямой
(рис. 2б)). Но в этом случае конструкция геометрически неустойчива. А именно, при сколь
угодно малом уменьшении длины одного ее рычага мы уже не сможем собрать конструкцию!

Основной вопрос таков — существуют ли геометрически устойчивые конструкции, собира-
емые лишь единственным способом?

Ниже мы проведем математическую формализацию этого вопроса, выявим его связь со
свойствами квадратичных отображений, затронем близкие вопросы.
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а)

б)

Рис. 2:

2. Шарнирные схемы и шарнирники.

Рассмотрим абстрактный связный граф G1(V1, E1) с непустым множеством вершин
{v1 ,. . . , vm}= V1 , отвечающих свободным шарнирам1. Его ребра vivj ∈E1, |E1|= r1 отвеча-
ют рычагам шарнирного устройства, смежным лишь свободным шарнирам. И пусть связный
граф G(V,E) получается добавлением к G1(V1, E1) вершин vm+1, . . . , vm+n , составляющих
непустое множество V2 , и некоторых ребер vivj , vi ∈V2, vj ∈V1 , составляющих также непу-
стое множество E2 . Добавленные вершины отвечают закрепленным шарнирам, а ребра —
исходящим из них рычагам. Отметим, что из каждой добавленной вершины исходит хотя бы
одно ребро, и каждое из добавленных ребер соединяет вершину из V1 с вершиной из V2 . Граф
G(V,E), V =V1∪V2, E=E1∪E2 , мы называем шарнирной структурной схемой (ШСС). Вер-
шины vi∈V2 будем называть закрепленными, а vj ∈V1 — свободными. Далее мы также будем
называть ребра шарнирной схемы — рычагами, а вершины — шарнирами.

Закрепленной шарнирной схемой (ЗШС) в плоскости назовем ШСС, каждой закреплен-
ной вершине vi ∈ V2 которой сопоставлена точка pi ∈R2 . Теперь можно рассмотреть всевоз-
можные проектирования абстрактного графа (ШСС) G(V,E) в плоскость, сопоставляющие
закрепленным вершинам уже выбранные точки, свободным вершинам vi ∈ V1 произвольные
точки с радиус-векторами pi=(xi, yi)∈R2 , а ребрам графа vivj — отрезки pipj прямых. Пусть
задана ЗШС, тогда существует взаимнооднозначное соответствие между множеством всех про-
ектирований графа G(V,E) в плоскость и точками p=(x1, y1, x2, y2, . . . , xm, ym) 2m -мерного
евклидова пространства параметров R2m . Одно такое проектирование, целиком определяе-
мое заданием пары (G, p) , мы называем шарнирником. (В англоязычной литературе принят
термин «framework».) Образ графа, получающийся при проектировании, можно мыслить как
шарнирную конструкцию в плоскости.

Пусть |E|= r , тогда закрепленная шарнирная схема определяет отображение F :R2m →
→ Rr , задающееся формулами dij =(pi − pj)

2, vivj ∈E , где в правой части стоят скалярные
квадраты векторов. Это отoбражение сопоставляет положениям свободных шарниров квадра-
ты длин рычагов, и называется рычажным (в англоязычной литературе — «rigidity mapping»
или «edge function» [3], [4]). Оно играет ключевую роль в геометрии шарнирных механиз-
мов. Точки пространства Rr мы называем кинематическими шарнирными схемами (КШС).
Образ F (R2m) рычажного отображения назовем множеством C существенных КШС. Если
dimC = r , то рычажное отображение F и соответствующая ЗШС называются правильными.
Правильная ЗШС называется изостатической, если 2m= r .

Полный прообраз F−1(d) точки при рычажном отображении называют конфигурацион-
ным пространством КШС d . При таком подходе каждой компоненте связности полного
прообраза F−1(d) отвечает определенное шарнирное устройство. Если компонента связно-

1Эта формализация изложена автором в работах [1], [2]

387



ISSN 1810-0198. Вестник ТГУ, т. 21, вып. 2, 2016

сти одноточечна, — то это устройство представляет собой шарнирную ферму. В противном
случае компонента связности состоит из бесконечного числа точек, и ей отвечает шарнирный
механизм. Такую компоненту связности множества F−1(d) называют конфигурационным про-
странством шарнирного механизма. Точки, составляющие эту компоненту, — шарнирники —
суть положения шарнирного механизма. Конфигурационное пространство шарнирного меха-
низма является (линейно) связным, что отвечает возможности перевести непрерывно механизм
из одного своего положения в любое другое.

Одной КШС может отвечать несколько шарнирных устройств. Машиноведы в этом случае
говорят о различных сборках шарнирного механизма. При нашем подходе естественнее вместо
различных сборок одного механизма говорить о различных устройствах с одной и той же
КШС.

3. Геометрическая устойчивость

Кинематическая шарнирная схема d называется геометрически устойчивой, если
d∈ IntC , в противном случае — геометрически неустойчивой. Далее, говоря о геометрической
устойчивости, мы часто будем опускать слово «геометрическая». Для неустойчивой КШС воз-
можно сколь угодно малое изменение квадратов длин рычагов, приводящее к несущественной
КШС, т. е. к такой, которой не отвечает шарнирников. Причем, квадраты dij длин некоторых
рычагов этой несущественной КШС могут оказаться отрицательными, и тогда она не будет
лежать в ортанте Q : dij ≥ 0 .

Плоский шарнирник p (геометрически) устойчив, если для любой его шаровой
ε -окрестности O(p, ε)⊂R2m найдется δ -окрестность O(d, δ)⊂Rr точки d= F (p) целиком
лежащая в образе F (O(p, ε)) . Если достаточно мало изменить длины рычагов устойчиво-
го шарнирника, то шарнирник с измененными длинами рычагов можно будет собрать таким
образом, что все его шарниры окажутся близки к соответствующим шарнирам исходного шар-
нирника. Неправильной ЗШС не отвечает устойчивых шарнирников. Этим обстоятельством
и обусловливается практическая важность правильных ЗШС. Из неустойчивости КШС d ,
очевидно, следует неустойчивость любого шарнирника p∈F−1(d) .

Кратностью КШС d называется количество точек в прообразе F−1(d) ; КШС однократна,
если ей отвечает всего лишь одна шарнирная ферма. Вопрос, поставленный во введении, можно
сформулировать так.

В о п р о с 1. Возможна ли однократная и устойчивая КШС?
Кинематической схеме рис. 2б) отвечает единственный шарнирник. Эта схема неустойчива,

ибо при произвольном уменьшении длин рычагов ей уже не будет отвечать ни одного шар-
нирника. КШС рис. 2а) устойчива, но ей отвечает два зеркально симметричных шарнирника.

В о п р о с 2. Возможна ли устойчивая КШС d , для которой каждый шарнирник p∈F−1(d)
неустойчив?

Эти вопросы пока остаются открытыми. Отметим, что КШС d , которой отвечает изоста-
тическая ферма, с необходимостью устойчива. В одномерном случае множества правильных и
изостатических ЗШС совпадают. ЗШС, составляющие эти множества, имеют всего лишь один
закрепленный шарнир, а их графы не содержат циклов. В этом случае ответы на вопросы 1 и
2 отрицательны.

Ответы на вопросы 1, 2 неизвестны даже для распрямленной ЗШС, изображенной на рис. 3.
Распрямленной мы называем ЗШС, все закрепленные шарниры которой лежат на одной пря-
мой. Шарнирник называем распрямленным, если все его шарниры лежат на одной прямой.
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Рис. 3:

Отметим, что эта ЗШС обладает свойствами, не имеющими места для простейших плоских
ЗШС. А именно, автором [5] было установлено существование для нее устойчивой распрям-
ленной фермы, она изображена на рис. 4а). На рис. 4б) изображена нераспрямленная ферма с
той же самой КШС. Также для этой ЗШС обнаружен неустойчивый распрямленный шарнир-
ник, однако, устойчивый по «шевелению» длины каждого своего рычага в отдельности. Этот
шарнирник показан на рис. 4в).

Рис. 4:
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4. Квадратичные отображения.

Если рычажное отображение является неоднородным квадратичным отображением, т. е.,
задается по некоторым координатам неоднородными многочленами второй степени, то ниже
пойдет речь об однородных квадратичных отображениях. Однородные квадратичные отобра-
жения задаются покоординатно квадратичными формами.

Очевидно, однократные КШС для распрямленной ЗШС могут отвечать лишь распрямлен-
ным шарнирникам. ЗШС рис. 3 является простейшей изостатической схемой, не содержащей
трехвершинников. Трехвершинником мы называем либо треугольный цикл графа G(V,E) с
вершинами в свободных шарнирах, либо совокупность свободного шарнира и двух смежных
ему закрепленных. Распрямленный шарнирник, содержащий трехвершинник, очевидно, гео-
метрически неустойчив.

Попытка решить вопрос 1 для распрямленной схемы рис. 3 приводит к следующему. Пусть
закрепленные шарниры имеют координаты: p5=(0, 0), p6=(1, 0), p7=(v7, 0), p8=(v8, 0). Рас-
смотрим распрямленный шарнирник p0 с координатами свободных шарниров x1, x2, x3, x4 .
Имеем Rank dF (p0) = 4 , и касательное многообразие T (p0) = dF (p0)(p− p0)⊂Rr, p ∈R2m

отображения в этой точке также четырехмерно. Ядерное многообразие L касательного отоб-
ражения в точке p0 , т. е., многообразие векторов p− p0 , для которых dF (p0)(p− p0) = 0 ,
состоит из векторов, имеющих нулевые абсциссы в R2 , и ординаты, принимающие произволь-
ные вещественные значения: (y1, y2, y3, y4)∈R4 . Его образ задается следующим образом:

K = [y21, y
2
2, y

2
3, y

2
4, (y1 − y2)

2, (y1 − y4)
2, (y2 − y3)

2, (y3 − y4)
2].

Проекция этого конуса на четырехмерное координатное подпространство R4 , дополнительное
к T (p0) , является конусом πK [5]:
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+
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2
4
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2

]
,

(y1, y2, y3, y4)∈L.

с вершиной в точке d0=F (p0) .
Топологическая степень рычажного отображения равна нулю [1]. Если допустить одно-

кратность точки d0=F (p0) , то выписанное выше отображение R4→R4 должно также иметь
степень нуль, и в случае геометрической устойчивости КШС d0 быть отображением на.

Возможно ли это? В размерностях от одного до трех не существует квадратичных (од-
нородных) отображений на степени нуль. До последнего времени вопрос существования та-
ких отображений в высших размерностях оставался открытым. Недавно А.В. Арутюновым
и С.Е. Жуковским наконец были построены в размерностях начиная с пяти квадратичные
отображения на, имеющие степень нуль. Но, интересующий нас, четырехмерный случай пока
остается неисследованным!

390



ISSN 1810-0198. Вестник ТГУ, т. 21, вып. 2, 2016

СПИСОК ЛИТЕРАТУРЫ

1 . Ковалев М.Д. Геометрическая теория шарнирных устройств // Известия РАН. Серия: Математика.
1994. Т. 58. № 1. С. 45–70.

2 . Ковалев М.Д. Вопросы геометрии шарнирных устройств и схем // Вестник МГТУ. Серия Машиностро-
ение. 2001. № 4. С. 33–51.

3 . Asimov L., Roth В. The rigidity of Graphs. II. // Journal of Mathematical analysis and applied. 1979. V. 68.
I. 1. Р. 171–190.

4 . Crapo H., Whiteley W. Statics of Frameworks and Motions of Panel Structures, a Projective Geometric
Introduction // Structural Topology. 1982. № 6. P. 43–82.

5 . Ковалев М.Д. О распрямленных шарнирных конструкциях // Математический сборник. 2004. Т. 195.
№ 6. С. 71–98.

Поступила в редакцию 1 февраля 2016 г.
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Some questions on real quadratic mappings are formulated. These questions appear from
the analysis of geometrical properties of hinged constructions, and are still open.
Key words: hinged constructions; rigidity mapping; quadratic mappings.

REFERENCES

1. Kovalev M.D. Geometricheskaya teoriya sharnirnyh ustrojstv // Izvestiya RAN. Seriya: Matematika. 1994. T.
58. № 1. S. 45–70.

2. Kovalev M.D. Voprosy geometrii sharnirnyh ustrojstv i skhem // Vestnik MGTU. Seriya Mashinostroenie.
2001. № 4. S. 33–51.

3. Asimov L., Roth В. The rigidity of Graphs. II. // Journal of Mathematical analysis and applied. 1979. V. 68.
I. 1. Р. 171–190.

4. Crapo H., Whiteley W. Statics of Frameworks and Motions of Panel Structures, a Projective Geometric
Introduction // Structural Topology. 1982. № 6. P. 43–82.

5. Kovalev M.D. O raspryamlennyh sharnirnyh konstrukciyah // Matematicheskij sbornik. 2004. T. 195. № 6. S.
71–98.

Received 1 February 2016.

Kovalev Mikhail Dmitrievich, Lomonosov Moscow State University, Faculty of Mechanics and
Mathematics, Moscow, the Russian Federation, Doctor of Physics and Mathematics, Professor of the Discrete
Mathematics Department, e-mail: mkovalev@mtu-net.ru

391




