ISSN 2686-9667. Bectauuk poccuiickux yauBepcureToB. Maremarnka

Tom 30, Ne 150 2025

SCIENTIFIC ARTICLE
© J.Kh. Seypullaev, D. A. Eshniyazova, D. D. Dilmuratov, 2025

®
https://doi.org/10.20310/2686-9667-2025-30-150-160-169 @ o

Characterizations of geometric tripotents
in strongly facially symmetric spaces

Jumabek Kh. SEYPULLAEV!?, Dilfuza A. ESHNIYAZOVA!,
Damir D. DILMURATOV!
! Karakalpak State University named after Berdakh
1 Ch. Abdirov St., Nukus 230112, Uzbekistan
2V.I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences
9 University St., Tashkent 100174, Uzbekistan

Abstract. The concept of a geometric tripotent is one of the key concepts in the theory of
strongly facially symmetric spaces. This paper studies the properties of geometric tripotents.
We establish necessary and sufficient conditions under which a norm-one element of the dual
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Annoramusa. [lonsTre reoMeTpuyecKOro TPUIOTEHTA SIBJISETCS OIHUM U3 KJIIOUEBBIX B TEOPHUH
CWJIBHO I'PaHEBO CUMMETPUYHBIX IPOCTPAHCTB. B manHoil cTaThe nccaeyioTcst CBOMCTBA reOMeT-
pudeckux TpunoreHToB. OnpeesieHbl HEOOXOIUMBIE U JIOCTATOYHBIE YCJIOBUS IJIsi TOTO, YTOOBI
9JIEMEHT C €JIMHUYHOII HOPMOH COIPSAKEHHOI'0 IIPOCTPAHCTBA JIeHCTBUTE/ILHOIO UJIA KOMILJIEKC-
HOI'O CHJIBHO I'DAHEBO CUMMETPHUYHOI'O IIPOCTPAHCTBA ABJIAJICA T'€OMETPUYECKUM TPHUIIOTEHTOM.
JokazaHno, 4TO JIBa TEOMETPUIECKUX TPUIIOTEHTA B CUJIBHO I'PAHEBO CUMMETPUIHOM ITPOCTPAH-
CTBE€ B3aMMHO OPTOIOHAJIbHBI TOrJIa M TOJIBKO TOI/a, KOIJa U HOpMa MX CYMMBbI, U HOpMa HX
pa3HOCTH PaBHBI eguHUIEe. Kpome TOro, moka3ano, 9TO MHOXKECTBA IKCTPEMAJIbHBIX TOYEK €11~
HUYHOI'O IIapa U MaKCUMAJbHBIX I'€OMETPUYECKUX TPUIIOTEHTOB COIIPSKEHHOI'O IIPOCTPAHCTBA
CUJIBHO I'PAHEBO CUMMETPUIHOTO ITPOCTPAHCTBA COBITAIAIOT. B 3aK/Tiovenne, NCC/ie/I0BaHbI CBA3M
Mezk Ty M-0pTOroHAJIBHOCTHIO M OPTOrOHAJIBHOCTHIO B COIPSI2KEHHOM ITPOCTPAHCTBE KOMILIEKC-
HOI'O CHJIBHO I'DAHEBO CUMMETPHUYHOI'O IIPOCTPAHCTBA, a TaK:Ke JlaHa I'eoMeTpHUYecKas XapakKTe-
PUCTUKA T'€OMETPUYECKUX TPUIIOTEHTOB.
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Introduction

In the early 1980s, the development of JB* -triple theory was initiated by Kaup, establishing
a framework that parallels the functional-analytic aspects of operator algebra theory [1,2].
These triples, distinguished by the holomorphic properties of their unit balls, constitute a
broad class of Banach spaces based on ternary algebraic structures, encompassing C* -algebras,
Hilbert spaces, and spaces of rectangular matrices. The axiomatic approach developed by
Alfsen and Schultz suggests the existence of unordered analogs of JB*-triples [3]. A significant
advancement in this direction was the introduction of facially symmetric spaces by Friedman
and Russo in [4, 5], motivated by the geometric characterization of predual spaces of Banach
spaces admitting an algebraic structure. Many of the properties required for such characteri-
zations arise naturally in state spaces of physical systems, making these spaces a compelling
geometric model for quantum mechanics.

In [6], it was established that the predual space of a complex von Neumann algebra, as
well as that of a general JB*-triple, forms a neutral strongly facially symmetric space. Further
developments in [7] demonstrated that the predual of the real part of a von Neumann algebra
is a strongly facially symmetric space if and only if the algebra is the direct sum of an Abelian
algebra and a type I algebra. A similar result was obtained for JBW -algebras in [8], where
it was shown that the predual space of a JBW -algebra is a strongly facially symmetric space
if and only if the algebra is the direct sum of an Abelian algebra and an algebra of type I .

Subsequent studies provided further geometric characterizations: in [9], a characterization
of complex Hilbert spaces and spin factors was given, while in [10], a description of atomic
facially symmetric spaces was presented, establishing that a neutral strongly facially symmetric
space is isometrically isomorphic to the predual of one of the Cartan factors of types 1-6.
Neal and Russo [11] identified geometric conditions under which a facially symmetric space is
isometric to the predual of a complex JBW™-triple. A complete description of strongly facially
symmetric spaces that are isometrically isomorphic to the predual of an atomic commutative von
Neumann algebra was obtained in [12]. In [13], a classification of finite dimensional real neutral
strongly facially symmetric spaces with property (JP) (joint Peirce decomposition property)
was proposed. It was shown that every real neutral strongly facially symmetric space with a
unitary tripotent is isometrically isomorphic to L1(€, 2, i), where (2, %, u) is a measure space
satisfying the direct sum property.

It is worth noting that the study of the relationship between M-orthogonality and orthogo-
nality in strongly facially symmetric spaces within their dual space was presented in [14],
where a geometric characterization of geometric tripotents in reflexive complex strongly facially
symmetric spaces was provided. In the present work, we establish necessary and sufficient
conditions under which an element of the dual space of a strongly facially symmetric space is
geometric tripotent.

1. Preliminaries

We present necessary information from the theory of facially symmetric spaces, [4,5]. Let
Z be a real or complex normed space, and let Z* denote its dual space. We say that elements
fi9 € Z are orthogonal and write fog if ||f+g| = |f —gll = [f|l + [lgll. We say subsets
S,T C Z are orthogonal and write S o T, if fog for all (f,g) € S xT. For a subset S of
Z, weput S®={fe€Z:VgeS fog}; the set S°® is called the orthogonal complement of
S. Recall that a face F' of a convex set K is a non-empty convex subset of K such that if
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g,h € K satisty A\g+ (1 —A\)h € F for some A € (0,1), then g, h € F.

A norm exposed face of the unit ball Z; = {f € Z : ||f]| < 1} of Z is a non-empty set
(necessarily # Z; ) of the form F, ={f € Z, : u(f) =1}, where u € Z* with ||ul| = 1. While
every norm exposed face is a face, the converse does not hold in general.

Example 1.1. Let the set Z; be the unit ball of the space Z = R? with respect to
some norm. A point f on this ball is a face, but not a norm exposed face, since there is no
hyperplane H such that HNZ; = {f} (see Fig. 1).

Fig. 1
An element u € Z* is called a projective unit if ||u]| =1 and u(g) =0 for all g € F?.

Definition 1.1. A norm exposed face F, in Z; is called a symmetric face if there
exists a linear isometry S, from Z to Z such that S? = I whose fixed point set coincides
with the topological direct sum of the closure spF,, of the linear hull of the face F, and its
orthogonal complement FY, i. e., with SpF, @ F}.

Definition 1.2. A space Z is said weakly facially symmetric (WFS) if each norm
exposed face in Z; is symmetric.

For each symmetric face F,, contractive projections (i. e., linear operator P : Z — Z such
that P? = P and ||P|| < 1) Py(u),k =0,1,2 on Z are defined as follows (see [5]). First,
Pi(u) = (I — S,)/2 is the projection on the eigenspace corresponding to the eigenvalue —1
of the symmetry S,. Next, Py(u) and Py(u) are defined as projections of Z onto SpF, and
F?, respectively; i. e., Po(u)+ Py(u) = (I+5,)/2. The projections Py(u) are called geometric
Peirce projections.

Example 12. Let A be a C*-algebra. If v is a partial isometry from A then
the elements [ = vv* and r = v*v are projections. For each partial isometry v, we define
projections E(v), F(v) and G(v) on the Banach space A. We put

Ew)z =ler, F)r=(1-0)z(1—-r), Gz =Ilz(l—r)+ (1 —1azxr.

We call E(v), F(v) and G(v) the Peirce projections corresponding to wv.
Let v is a partial isometry from a von Neumann algebra A and A, is a predual space of
A . Then the operator
S, = E(v) — G(v) + F(v)

defined in terms of the Peirce projections is a linear isometry from A, onto A, such that
S? = I and the set of fixed points coincides with E(v)A, ® F(v)A, (see [6, Lemma 2.8]).
Hence, A, is a weakly facially symmetric space (see [6]).
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Definition 1.3. A WFS-space Z is said to be strongly facially symmetric (SFS) if
for each norm exposed face F, of Z; and each y € Z* satisfying the conditions |ly|]| =1 and
F, C F,, we have S;y =y, where S, is the symmetry corresponding to Fj,.

A projective unit u € Z* is called geometric tripotent if F, is a symmetric face and
Siu = u for the symmetry S, corresponding to F),. It should be noted that some properties
of geometric tripotents were established in [15]. By GT7 and SF we denote the sets of all
geometric tripotents and symmetric faces, respectively; the correspondence GT > u+— F, € SF
is one-to-one [5, Proposition 1.6].

Geometric tripotents w and v are said to be orthogonal if u € Py(v)*Z* (which implies
v € Py(u)*Z*) or, equivalently, u£tv € GT (see [4, Lemma 2.5]). More generally, elements z
and y of Z* are said to be orthogonal, denoted z <y, if one of them belongs to Ps(u)*Z* and
the other belongs to FPy(u)*Z* for some geometric tripotent u. The orthogonal complement
X ofa X C Z* is defined as X°® = {y € Z* : Vo € X zoy}. For a singleton set {z} we
write z° instead of {z}°.

We present examples of SFS-spaces.

Example 1.3. Endowing R" with the norm ||z|| = |z1| + ... + |z,|, where z =
(x1,...,2,) € R™, we obtain a strongly facially symmetric space (see [13]).

Example 1.4. Every Hilbert space H is a SFS-space (see [13]). Each element v € H
with ||u|| =1 is a geometric tripotent and F,, = u. Moreover, the symmetry S, corresponding
to a face F,, is defined as follows:

Sy Mu+4z) = u—z, Iu+z€spudu-=H,
where ut is the orthocomplement of w in the Hilbert space H.

Example 1.5. The predual space of a von Neumann algebra A is a strongly facially
symmetric space. Notice that there exists a bijective correspondence between the set of geometric
tripotents and the set of nonzero partial isometries, (see [6, Theorem 2.11]). If v is a geometric
tripotent then the geometric Peirce projections corresponding to v are defined in terms of the
Peirce projections corresponding to v, i. e., we have

Py(v) = E(v), P (v)=G(u), PF(v)=F(v).

Example 1.6. The predual space of a JB*-triple U is a strongly facially symmetric
space in which the set of geometric tripotents coincides with the set of tripotents (see [6,
Theorem 3.1]).

2. Main results

Let Z be areal or complex normed space and = € Z*, ||z|| = 1. For x consider sets D;(z)
and Dy(z) defined as

Di(x) ={y € 2" :3a>0 |z + ay| = [lz — ayl| = 1},

Dy(z) ={y € Z" : VB € C ||z + By|| = max{L,||By }}.



CHARACTERIZATIONS OF GEOMETRIC TRIPOTENTS 165

Theorem 2.1. Let Z be a real or complex strongly facially symmetric space and x € Z*
norm-one element. Then x is a geometric tripotent if and only if F, # 0 and D;(x) = Da(x).

P roof. Necessity. Let ©x € Z* be a geometric tripotent. Then we have already noted that
F, # 0. Let us assume that y € Dy(x), y # 0, and put a = ||y||~!. Then it follows from the
definition of the set Dy(z) that

[+ ayll = llz — ayll = 1.
This shows that Ds(z) C Dy(z).
Let now y € D;(x). Then for every g € F, we have
11+ ay(g)| =z £ ay)(g)| < llz+ayl| =1.

But this inequality is true only when y(g) = 0. Therefore, F,, C F,.4,. Then, by [4, Lemma 2.§],
we get
r+ay=x+ F(z) (x4 ay) =z + aBy(z)"y,
e., y = Py(z)*y. So, x{y. Then it follows from [4, Lemma 2.8(i)| that

[l + Byl = max{||z|, [|Byl[} = max{1, [|Py[|},

for every § € C. Therefore, Di(xz) C Do(x). Thus, if x is a geometric tripotent, then
Dy (x) = Do(z).

Sufficiency. Suppose that F, # () and D;(x) = Ds(x), but x is not a geometric tripotent.
Since Z is a strongly facially symmetric space, F), is a symmetric face. Consequently, by
[5, Proposition 1.6] there wu is a geometric tripotent such that F, = F,. Therefore, by
[4, Lemma 2.8] we have x = u + Py(u)*x.

= w) x| — & en emma it follows tha
Set y = (|| Po(u)*z|| 1)IIP() ik Then by [4, L 2.1(i)] it follows that
o o = [+ @) = 1) o | = ol 2 PuCael = 1} = 1.
— = ({|U ()* = max u =
||l’ y” - T T o e ||P( )* {H ||71} L.
So, y € D;(x).

On the other hand, again according to [4, Lemma 2.1(i)], the following equalities hold for
every € C

) Py(u)*z
[Po(w) ]|
(

a=llz+ Byl = |ju+ (I[Po(u)z|| + Bl Po(u)*z|| —

)|l = BllPo(w) x|l — B},

|

<

Bo(w)x

(u)z|| 8 — ﬁ)m

bzmwﬂwwwm}zmw{

(uyzll - B}
Since ||Po(u)*z|| > 0, then a # b. From here
[l + Byl # max{1, [[Byl|}.

This contradicts the assumption that D;(x) = Ds(z), hence z must be a geometric tripotent.
[l
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Corollary 2.1. Let Z be a reflexive SFS-space, and let x be a norm-one element of Z*.
Then x is a geometric tripotent if and only if Di(x) = Do(x).

The following corollary follows directly from the proof of necessity in Theorem 2.1.
Corollary 2.2. Let Z be a SFS-space and uw € GT. Then Py(u)*Z* = D;(u).
Corollary 2.3. Elements u,v € GT are orthogonal if and only if |ju£v|| = 1.
The geometric tripotent w is called maximal if Py(u) = 0.

Corollary 2.4. Let Z be a strongly facially symmetric space and x € Z*, ||z|] = 1,
F, # 0. Then the following statements are equivalent:

1) z is a mazimal geometric tripotent,

2) x 1is an extreme point in Z7,

3) Di(x) = {0}.

Two elements = and y of Z* are said to be M-orthogonal (see [16]) and denoted as zy
i o =yl = mac{|z]) lyl]}

The M-orthogonal complement (M-complement) HY of a subset H of Z* is defined as
HY ={y € Z*:Vx € H x0y}. For a singleton set {x} we write 2" instead of {z}".

For each element x € Z* with unit norm, the tangent disc S, is defined as

Sy ={yeZ :VaeCla<1=|z+ayl|=1}.

Theorem 2.2. Let Z is a complex strongly facially symmetric space and x € Z*, ||z| = 1,
FE, # 0. Then the following conditions are equivalent:
1) z €dT,
2) 2N Zr =2°nZ;,
3) 2"NZ; =i Nz,
4) S, =z°NZ;.

P r oo f. The implication 1) = 2) follows from [14, Lemma 3|.
1) = 3). Suppose x € GT and y € 2N Z; . Then, from |16, Lemma 2.2(i)], it follows that

"Nz ={yez":vte|[-1;1] ||z +ty|| = 1} C Dy(x).
Therefore, from Theorem 2.1, we have y € Do(z). Specifically,
liw £ yl| = llu F iyll = max{{|ul], liy[|} = max{[jul], [ly|}.

Thus, y € iz° N Z;, i. e, 22N Z; C ixP N Z;. The reverse implication follows from similar
reasoning. Hence, 22 N Z; =ia® N Z;.

1) = 4). Assume =z € GT and y € z°N Z}. From Corollary 2.2, y € D;(z), and from
Theorem 2.1, y € Dy(x). Therefore, for all a € C, |a| < 1, we have

[l + oyl = max{|], [layl[} = 1,

i.e, yes,.
Let x € GT and y € S,. Then y € Dy(z), and from Corollary 2.2, y € Py(z)*Z*, i. e.,
yex®NZ;. Thus, S, =2°NZ;.
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To prove the reverse implications, assume z is not a geometric tripotent, leading to a
contradiction with the problem’s conditions in each case. Since Z is strongly facially symmetric,
F, is a symmetric face. Therefore, by [5, Proposition 1.6|, there exists a geometric tripotent u
such that F, = F,. From [4, Lemma 2.8|, we have x = u+ Fy(u)*z

3) = 1). Suppose z” N Z; =iz” N Z; and

Py(u)*z

y=iV1 = [[Po(uw)allPrp
[ Po(w)* ]|

Since ||Py(u)*z|| <1, |ly|| <1. According to [4, Lemma 2.1(i)],

e £yl =

wt (1w el + iv/T = [ Polu ”)ﬁ‘

(w)a] +iy/T= [R(w)al?|} =1

:max{

Thus,

max{|z|, [ly[|} = max {1, V1= ||Po(U)*$|I2} =1=z+yl.
This means = and y are M-orthogonal. On the other hand, by [4, Lemma 2.1(i)|,

mase{ 2], ligl}} = mas{ 2], 1y} = max {1, /T= [Bou) 2l } = 1,

o — iyl = [[u+ (1Pl + VT = TPo(w)z]?)
— max {1, 1Py (u)*z]| + /T — ||P0(u)*x||2} > 1.

Thus, = and iy are not M-orthogonal, and y is not in iz".

2) = 1). Assume 22N Z; =2°NZ; and y = (1 — ||Po(u)*z]|)
1 —||Po(u)*z|| < 1. From [4, Lemma 2.1(i)],

Bo(u)

By Fhen |lyl| =
[[Po (w) ||

Py(u)*z ’
r—yl = lu+ 2||Po(u)*z|| — 1)————|| = max {||ul, |2||Py(u)*z| — 1|} =1,
o =l = |l (20 Py = R | = e . 2Py = 11
Py(u)*x
ool =+ o | = w13 = 1
|| FPo(u)*z|]

Thus,
max{ ||z, [y[l} = max{1,1 —[[Fy(u)"z[|} =1 = [lz £y

This shows x and y are M-orthogonal, i. e., y € 2 N Z;. Assume z oy. Then z ¢ ay for
every a € C. By [4, Lemma 2.1(i)],

|2 + ayl] = max{1, flay]|}. (2.1)
On the other hand, from [4, Lemma 2.1(i)|, for every « € C, we have

Po(u)*x '
|| Po(u) x|
= max{1, ||| Po(u)*z|| + a — a||Py(u)*=|||},

Iz + ayll = [|u+ ([ Po(w) =]l + o — o Po(w) )
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max(lel oy} = mox {1 e = all (el oy o

| Po(u)*|]
= max{1, |a — a||Py(u)*z|||}.

Hence, ||z + ay|| # max{1, |[ay||}, contradicting equality (2.1). Therefore, y is not in x°.

P *
4) = 1). Suppose S, = 2°NZ; and y = (1— Hm(@mﬂ)%. By [4, Lemma 2.1(i)],
o\u)"x
for each v € C, |a| <1,
Py(u)*x
[+ oyl = |lu+ (1Bo(w) 2| + o — al[Po(u) ]| 77— '
( TRy
= max{L, [[[Fo(u)"z|| + o — af[Po(u) x|} = 1.
Thus, y € S,. However, y is not in z° as in case 2) = 1). ]
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