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Abstract. In this work, we propose new sufficient conditions to solve the spectral
pollution problem by using the generalized spectrum method. We give the theoretical
foundation of the generalized spectral approach, as well as illustrate its effectiveness
by numerical results.
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Introduction

Spectral approximation for differential operators takes place in different applications in
conjunction with the study of the mathematical modeling, as the case of Schrodinger operator
in the quantum physics. Numerical discretization of these problems leads to spurious results,
a phenomenon known as spectral pollution (see e.g. [1-5]). In this work, we establish new
sufficient conditions to deal with the spectral pollution by using the generalized spectrum
method. This method was introduced in [6], and recently was developed in [7].

Let T and S be two bounded operators defined on Banach space X, we define the
generalized resolvent set by

re(T,S) ={z¢€ C: (T — zS5) is bijective }.

The complementary of the generalized resolvent set is the generalized spectrum set, denoted
by sp(T,S). We say that \ is a generalized eigenvalue of (7',.5) if there exists u € X \ {0}
such that Tu = ASu (see [§]).

In [6], it is shown that the Schrédinger operator, say A, has a decomposition into two
bounded operators, say T and S, that allows to express its spectrum in terms of generalized
spectrum, i.e.

sp(A) = sp(T, S).

Through numerical approximation of the bounded operators T" and S by sequences of
bounded operators (7},)neny and (Sp)nen, we can prove that lim sp(7,,S,) = sp(T,95),
n—oo
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where the limit is defined to satisfy the property U: if T,, = T, S, = S, Ay € sp(T,, Sp)
and A, — A, then X\ € sp(T,9).

This propriety U is a natural extension of the classical case S =1 (see [9]).

In [6], the author showed that the Propriety U is valid under the norm convergence of
(T))neny and (Sp)nen to T and S'. In this work, we show that under the collectively compact
convergence of (7,,)nen and (Sy,)nen to T and S, the propriety U also takes place. Finally,
our numerical application (see |7]) shows the coherence and effectiveness of the generalized
spectrum method in comparison with other methods.

1. Generalized spectral approximation under collectively compact convergence

In this section, we prove that the propriety U can be obtained under the collectively
compact convergence. Let X be a Banach space, we denote by BL(X) the space of bounded
linear operators acting on X . Let T" and S be two operators in BL(X). We assume that
there exist (7},)nen and (Sp)nen in BL(X) such that

(B1) T, =T,
(B2) S, -5 S,
where S, < S stands for the collectively compact convergence, i.e. if the set

U {Suz = Sz:2e X, ||lzflx =1}

n>ng

is relatively compact in X and for all x € X, S,z — Sx pointwisely.

In what follows, the pointwise convergence will be denoted by - L

In this section, we state a set of lemmas which will be needed in the proofs of our main
theorems.

Lemma 1.1. If T, % T and S, 5 S, then for any bounded operator H in BL(X),
(T — T)H (S, — S)|| = 0.
Proof. Since T, % T, and the set

H(|J {Se ~ S : o] = 1),

n>ng

has compact closure, then ||(7,, — T)H(S, — S)|| — 0.

Lemma 1.2. Let T, f, S,§ € BL(X), and let z € re(T,S) be such that
~ ~ 1 2
I [(T-D)=2(s-8)) (=297 | <1.
Then z € re(f, g), and
IT = 28)7 0 [1+ ) (T =T) = 2(5 = 8) ) (T = 28) ]

I(T = 28) 7 < - - 2 -
L= (T =T)=2(5=8) ) (T =287 |
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Proof Wedenote E= (T —T)(T —25)"t, F=(S—28)(T—25)"", then

T —25=I—(E—zF)(T — 25).

So, by using the second Neumann expansion (see, [9]), we obtain that

(T—25)" = (T—29)7"> (E—zF)*

k=

T - 25) 12 )2k+1
_ (T—ZS)—l[J —zF}i[ E — 2F) ]k

N7 = 28)71 (1+ 1B = 2F)
1= (B - 2Fp]

0
oo
=0

(T = =8)7"|

IN

Proposition 1.1. If (B1) and (B2) are obtained, then for each z € re(T,S), z
belongs to re(T,,S,) for big enough n.

Proof. Let zere(T,S), for big enough n we consider
Ty, — 28, = [I — (Ep — 2F)|(T — 25),

where E, = (T —T,)(T — 28)™" and F, = (S — S,)(T — 2S)~" . Firstly, we have

(B, — 2F,)? = (Ey)? + (2F,)? — 2E, F, — 2F, E,,.
So, according to lemma 1.1, we find ||(E, — zF,)2|| — 0. Thus, by applying lemma 1.2, we
obtain that z € re(T,,S,) for big enough n.

i

The following theorem shows that the property U is valid under the collectively compact
convergence.

Theorem 1.1. Under (B1) and (B2), if for each n big enough, A\, € sp(T,,S,) and
An = A, then A € sp(T, S) .

Proof Assume that A\ & sp(7,S), knowing that sp(T,S) is closed (see e.g. [6]),
there exists 7 > 0 such that the ball B(\,r) is contained in re(7,S). Hence according to
proposition 1.1, B(\,r) is contained also in re(T,,,S,) for n big enough. On the other hand,
we have A\, — A. Thus there exists ng such that for any n > ng, \, € B(A\,r) C re(T,, Sp)
which forms the contradiction.

i
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2. Numerical application

As an example, for which the numerical results are available by other approaches, we
consider the following problem from [10], which is also studied in [1].
We consider the unbounded operator A defined in L?(0, +00) by the differential equation

—u" +2*u =0, u(0)=0.

This is the harmonic oscillator problem with domain
D(A) = H*(0, 00) ﬂ {u € L*(0,00) : / 2? |u*dz < —1—00} .
0

First, according to the theory of pseudo spectrum for self-adjoint operators (see [6,7, 11|

) we can find

sp(A) = | sp(4a), (2.1)

a>0

where A, is the Schrédinger operator which has the same formula as A in L?(0,a), but
with the Dirichlet condition at the point a. The domain of A, is given by

D(A,) = H*(0,a) () Hy (0, a).
Let a > 0, we denote by L, the Laplacian operator defined on L?(0,a) by
Lou=—u", D(L)=H*(0,a)()H;(0,a).

Proposition 22. L, s invertible and its inverse is the bounded operator S,
defined by
SQU(.T) = / G{O,a}(ma y)U(y)dy, u € L2<Oa CI,),
0
where

@) < p<y<
a - =V=a
G{o,a}(Ly):{M 0<y<z<a

a — —

Proof See[12].

Let T, be the bounded operator defined on L?*(0,a) to itself by
Tu(e) = u(e) + | Gow . p)Pulw)dy, Vo € 0.
0

Theorem 2.2. sp(A) = U sp(Ty, Sa),

a>0
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P r o o f. According to equality (2.1), we only need to show that sp(A,) = sp(Ty, S,) for
a>0.Let A be an eigenvalue of A, with eigenvector u € D(A,)\ {0}, by applying S, to
Asu = du we get

T,u = A\S,u,

which implies that A is a generalized eigenvalue of the couple (7,,S,) with eigenvector
u € L*(0,a) \ {0}. Inversely, let A be a generalized eigenvalue of the couple (7,,S5,) with
eigenvector u € L*(0,a) \ {0}, i.e. T,u= AS,u, so

U= ASau— Se(vu) = u=S,(A\u—vu),
where v(z) = 2?. Since Au —vu € L*(0,a), we find u € D(L,) = D(A,), then

u+ Sy(vu) = ASqu = Lou+ vu = Au.

g

Now, we use numerical methods to approach the operators T, and S,. We begin by the
Nystrom method then the Sloan method and the Kantorovich method.

1. Nystrom method: We define a subdivision of [0,a] for n > 2 by

Let T, and S,, be approximation of T, and S, respectively, according to the Nystrom
method (see [13]),

Tantn(z) = up(x)+ Z w; G003 (2, 23) 2 U (Y5,

i=1

Sanlin(T) = ZwiG{O,a}(xa:Bi)un(:Bi),

=1

n
where {w;},_, are real weights such that sup E |w;| < 00
n>2 "
=" =1

Then, we get the matrix generalized eigenvalue problem, A = A\, B where
A(i, g) = 1(i,7) + wiG{o,a}($j7$i)$$> B(i, j) = wiGo.a) (25, T:),

I« represents the identity matrix. Finally, we use the function "eig” in Matlab to calculate
the generalized eigenvalue of the couple (A, B).

Note that in this case of using the Nystrom method, the collectively compact convergence
takes place (see [13]).
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2. Sloan method: By using the previous subdivision of [0, a], we define the approximate
operators Ty, and S,, of T, and S, respectively, by using the Sloan method (see [9]), i.e
for all z € [0,q],

fanun(x) = Z un(z)e;(z) + Z wy i () un(x;),

Santin() = Y wai(x)un (),
where

wyi(r) = / Groay(z, y)yei(y)dy, we(x) = / Groay (T, y)ei(y)dy, 1 <i<n,
0 0

and for 2<i<n-—1,

I |$_$i|7 Tic1 S o < Tiq
0, otherwise.
To— X
L, n<a<a
el(z) = I,
0, otherwise.
T — Ty
—nl7 Tn—1 S xz S L
en(z) = I,

0, otherwise.

Then, we get the matrix generalized eigenvalue problem A= )\né , where
A(i, ) = 100, ) + wialay), Bli,j) = waal;):

Finally, we use the function "eig" in Matlab to calculate the generalized eigenvalue of the
couple (A, B).

Note that on the case of the Sloan projection method, the collectively compact conver-
gence also takes place (see [9]).

3. Kantorovich method: By using again the previous subdivision of [0,a], we apply
the Kantorovich projection method (see [9]), we get for all = € [0, d]

+Z/ G{Oa} a:z,y)y2un( ) _)‘ Z/ G{Oa} Tiy Y )un(y)dy)el(x) (22)

Multiplying first by Gyoa(zj,z)z* then by Gyoq(z;, ) and integrating over [0,a] the
equation (2.2), this leads to the matrix generalized eigenvalue problem

|:Bl:|:/\2 Oan {51]
ﬁ2 ! Oan 52 7

%/—'— ]an 7’L><7l
B Inxn
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Table 1. The numerical results for a=>5

Nystrom Sloan Kantorovich results of [10]

2.9998027  3.0001972  3.0001972 2.9621125
6.9990159  7.0009887  7.0009887 6.8083144
10.9977898 11.0026039  11.0026039 10.5272610
15.0013776 15.0103317 15.0103317 14.1401140
19.0656824 19.0806050  19.0806050 17.8348945

where

a

B1(5) :/0 Gro.03 (5, )y un(y)dy, B2(j) :/0 Go.a) (T, Y)un(y)dy, 1 < j <,

and (E, E) are the same matrices presented in the Sloan method. Finally, we use again the
function "eig" in Matlab to calculate the generalized eigenvalue of

( )

In this case of the Kantorovich projection method, the norm convergence takes place

(see [9]).

Onsn A

O’FLXTL B

g+ [n><n On><n
B Luxn

Y

We fix n = 200 to approach the eigenvalues in our example by using the three numerical
methods, we compare our results with those in [10]. Table (3.) shows the numerical results.

3. Conclusion

Our study shows the efficiency of the generalized spectrum method, from both theoretical
and numerical points of view. This technique appears to be a computationally attractive tool
for resolving the spectral pollution. We resolved it by treating the analytical question, to find
the bounded operators 7" and S representing the spectrum proprieties of the Schrodinger
operator in the theory of generalized spectrum.

As perspective, we will try to answer this question in more complicated case, for two
dimensions and then for three dimensions, where the geometry of the domain and the
boundary conditions, will form the main part of the problem. We will also try to generalize
this method to other unbounded operators.
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HOBBIE JJOCTATOYHBIE YCJIOB4A OBOBILIEHHOI'O
CIIEKTPAJIBHOTI'O ITIOAXO/TIA
AJId PEHHNTEHN A CITEKTPAJIBHOI'O BATPA3HEHU A

A. Xennad
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24000, r. Tenbma, Asxup, B.P. 401
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Annomayusa. B atoit paboTe MBI pesjiaraeéM HOBBIE JOCTATOUHBIE YCIOBHS LTSI Pe-
[eHUS 33/1a91 CIIEKTPAJIBHOIO 3arPS3HEHUsI C UCIIOJIb30BAHUEM METO/a 000DIIEHHOTO
cuekTpa. Mbl IPUBOJUM TEOPETUIECKYIO OCHOBY OOODIEHHOTO CIIEKTPAJIBHOIO TOJI-
XOJ/ia, a TaK¥Ke WIIIOCTPUPYEM ero 3(HMEeKTUBHOCTh Ha UNCIEHHBIX PE3yIbTaTax.
Kmouesvie caosa: obobmmenubiii cuekTp; omeparop llIpénunarepa; anmpokcHMAaITms
CODCTBEHHDBIX 3HAYEHUIH
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