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Abstract. In this paper two-dimensional systems of differential equations are
considered together with their stabilization by a hybrid feedback control.
A stabilizing hybrid control for an arbitrary controlled system that belongs to a
certain category within two-dimensional systems is constructed as a result of this
study and some stabilization proprieties of the system with the obtained hybrid
control are presented.
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1. Notations

We will use the following notations: C(R™) is the set of all continuous functions
u : [0,00) = R" C4(R") is the set of all piecewise continuous functions such that
u: [0,00) — R", the euclidean norm || in the space R" will be denoted by |z|, the set
of all matrices with real entries of dimension m x n we denote by M (m,n,R), L(R" R™)
is the set of all linear operators from R" to R™ and o(A) is the set of all eigenvalues of a
square matrix A, called the spectrum of A.

2. Formulation of the problem
Let us consider a controlled system

{ & = Ax + Bu

en , (2.1)

where € R” is the state vector, y € R™ is the output vector, u € R’ is the control
vector. The system (2.1) is completely defined by the triple of matrices (A, B,C), where
Ae M(n,n,R), Be M(n,l,R) and C € M(m,n,R).

The work is partially supported by Linnaeus Palme project and SIDA/SAREC Global Research
Programme in Mathematics and Statistics.
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In this paper we will consider the system (2.1) together with the so called hybrid feedback
control. The notion of hybrid feedback control was given in several papers such as [1-3].

Definition 2.1. A hybrid automaton is a set of six objects A = (Q, 1, M, T, j,q),

where
1. @ is a finite set of all the automaton’s states;
2. [ is a finite set called the input alphabet;

3. M :Q x I — @ is an function that determines a new state of the automaton based
on its previous state ¢ and a element from the alphabet ¢ € I that corresponds to
the switching moment of the state;

4. T : Q — (0,00) is a function that establishes the time period 7 (q) between two
switching moments, satisfying in(af2 T(q) >0;
g€

5. 7 : R™ — I is a function that corresponds to the output vector y € R™ and the
element j(y) of I;

6. go = ¢q(0) is the automaton’s initial state.

Each hybrid automaton A = (Q,1,M,T,j,q) is associated to an operator Fa :
P(R™) — P(Q) called the hybrid operator. Such that P(X) is a set of functions
v :]0,00) — X. Let us present the recursive definition of Fa.

Definition 2.2. For any y(-) : [0,00) — R™, the function ¢(-) = (Fay)(:) :
[0,00) — @ is defined by:

L. q(0) =qo, t1 =T(q), q(t) =q (Vt€0,t1));
2. q(t)) = M(qo,j(y(t1))), ta =t14+T(q(t1)), q(t) =q(t1), (Vt€ [t1,t2));

3. Let k € {2,3,...}. Suppose that ty = 0,t1,...,t and that the values of ¢(t) for
t € [0,t;) were already defined. Then, ¢4, and q(t) for t € [ty, tx+1) are defined by:

qtr) = M(q(tr-1), J(y(te)),  trerr =t + T (a(te)),  a(t) = qltr)
(‘v’t < [tk, tk-l—l))-

Definition 23. A pair u = (A,®), where A = (Q,I,M,T,j,q) is a hybrid
automaton and ® : R™ x Q — R’ is a function, is called hybrid feedback control (HFC).
The hybrid control operator W,, : C(R™) — Cy(R"), associated to the control u = (A, ®),
is defined by
(Wuy)(t) = 2(y(t), (Fay)(t)),  t€0,00),

where FA is the operator that was recursively defined above.
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Remark 2.1. According to the Definition 2.3, the linear system (2.1) with the hybrid
control u = (A, ®) is equivalent to a functional differential equation [4]

#(t) = Ax(t) + BO(Cx(t), (FACT)(1)), t € [0,00). (2.2)

Definition 2.4. Let u= (A,®) be a hybrid control of the system (2.1), where
A=(Q,1,M,T,j,q)
The HFC wu is called linear hybrid control (LHFC) if it satisfies the following conditions:
(a) the function j: R™ — I, satisfies the condition j(\y) = j(y) for any y € R™ and
A>0;
(b) the function ®(y,q) is linear in relation to y.
We will denote the LHFC class by LH = LH (¢, m).
It is convenient to represent the LHFC wu in the following manner : v = (A, {Gy}q4ec0),
where G, € M(¢,m) (¢ € Q).
Therefore the hybrid control operator W, : C(R™) — C,(R*) associated with u =
(A, {G,}4eq) has the form of the following linear dependence:

(Wuy) (t) = G(FAy)(t)y(t)at S [07 OO)

Definition 2.5. Let (2.1) be a system with the triple Q@ = (A, B,C) and with

a control u € LH. The infimum of A € R with which for every solution of the system it
holds:

lz()] < MeM|z(0)],  t€[0,00). (2.3)

with M positive and independent from the solution constant is called upper Lyapunov
exponent of the system (2.1) with the control u and is denoted by A(€, ).

Definition 2.6. Upper exponent of the system (2.1) with linear hybrid feedback
control is the value A(2, LH) defined by

ANQ,LH) = ule%fy A(Q,u).

Surely, the upper exponent is important because it characterizes the asymptotic behaviour
of the solutions.

If the upper exponent A(2, LH) < 0, then existis v € LH such that the solution of the
controllable system (2.1) exponentially stable which means that the system is stabilizable
by LHFC.

It is clear, from the point of view of the stabilization of controllable systems, that it is
good when A\(Q, LH) = —o0 .

Consider the linear differential system with control:

{ r=A,x+Bou

= Cin with Q= (A, By, Co) = ([ wol H ? },[1 0]) (2.4)

1 u
this is, the system

i’l = UTq + x9

To = —X1+ prs +u

Yy=m
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called the generalized harmonic oscillator. Note that the triple €,y = (A, By, Cy) of the
system (2.4) is the canonical triple of the equivalence classes H(2,0, u) where p € {—1,0,1}.
As in [3] and [5] we will not limit the study of the system to these three values of the parameter
4 but will consider the system with an arbitrary parameter pu € R.

We have categories of systems that can be stabilized by hybrid control and a hybrid
control was already constructed for the canonical cases of these categories |3, 5]. Specifically,
the category H(2,0,u), which contains all the triples (A, B,C') that satisty BC = 0,
CAB # 0 will be examined. This category consists of three equivalence classes corresponding
to cases when p € {—1,0,1} and the characteristic propriety of each of these classes is
CB=0, CAB # 0 and signtr A = pu, tr A = a1 + ass + -+ + ay,, is the trace of matrix
A. The canonical form of these classes is

In (2) and (6) a class of hybrid controls was presented. It stabilizes the system

= Ax + Bu
y=Cx

with the canonical triple €.

Let ¥ = M(2,2,R) x (M(2,1,R) \ {O}) x (M(1,2,R) \ {O}), this means, X is the
set of all the triples of matrices (A, B,C) where A € M(2,2,R), B € M(2,1,R) and
C € M(1,2,R), so that B and C are non-zero matrices. Let us denote by GL(2) the
multiplicative group of the square non-singular real matrices of order 2.

Definition 2.7. We define the applications T1(D), Ts(my, ma,m3) and Ts(«)
from ¥ to ¥ by the formulas:

Ty\(D)(A, B,C) = (DAD™*, DB,CD™), D e GL(2);
Tg(ml,mg,mg)(A,B,C) = (mlA,sz,mgC),

mq >0, mo,mg € R\{O},
Ts3(a)(A,B,C) = (A+aBC,B,C), «a€eR.

Let us consider the set of all the applications defined above:

GTy ={T1(D): D € GL(2)}U
{Ty(mq,ma, m3): my > 0; mg,mg € R\ {0}} U{T3(a): @ € R}.

It is clear that any element in 7" € G is a bijective function 7' : ¥ — X, this means,
is a transformation of the set 3. Therefore, GT;, C B(X) where B(X) is the group of all
transformations on » with the binary operation that is the composition of transformations.
In that way we defined the transformation’s group GT, generated by the set GTj.

By having an arbitrary triple € that satisfies BC = 0, CAB # 0 the goal is to construct
a hybrid control with the triple €2 for the corresponding system, using the theorem from
the next section. This means, to construct a hybrid control for an arbitrary system that
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belongs to the category in question. For that it is necessary to determine the parameters
of the transformation 7' from GT so that T'(Q) = €, and with the aid on the inverse
transformation 7!, find the linear hybrid control that stabilizes the system 2 with any
upper Lyapunov exponent.

This paper contains the solution for the problem described above. This is the main
problem and the results presented are new.

3. Relation between hybrid trajectories of equivalent systems

Proposition 3.1. Let the transformation T € GT be given and represented in
the following form :
T = Tl(D) @) Tz(ml, ma, m3) 9} Tg(Oé)

for some matriz D € GL(2) and some constants my > 0, mg,m3 € R\ {0} and a € R.
Then, the inverse transformation T=' of T is defined by

T'=T3(—a)o Ty (my',my',mg') o Ty(D7H).

Theorem 3.1. Let the triples Q; = (A;, B;,C;) € ¥ (i = 1,2) be given, such that
Qo =T(), T € GT can be written as:

T = Ts(«) o To(my, ma, m3) o T1(D), (3.1)

with some matriz D € GL(2) and some constants my > 0, ma,m3 € R\ {0} and a € R.
Let us consider two controllable systems (S1) and (S2) :

with hybrid control

= A1x+ Bu
s {RZen T = G (o) € £H0L),
where A1 = (Q717 M77Eaj17q0)a
with hybrid control
T = Asx + Bou
s T = (el € £H0L ),

where AQ = (Q? [7 M7 7—27 j27 (10)7
such that the components Q,1,M,qg of the hybrid automatons A; are the same and
Ta(q) =mi'Ti(e) (Vg€ Q), Jay) = si(ysignms) (Yy €R),

@_ "™ W, (v
oy p— ) —a  (YgeQ).

(3.2)

Consider the hybrid trajectories h;(t) = (x9(t), ¢;(t), 7:(t)), (t € [0,00)) of the systems (S;)
(i = 1,2), such that the initial conditions of the components x%) of these trajectories satisfy
the relation 2*(0) = Dx(M(0). Then, the following relations take place: ¥t € [0, 00)

2@ (t) = DM (mit),  @(t) = a(mit), 7o(t) = my 7 (mat).

The results of the theorem above follow naturally from the results that are found in [2],
however, some changes were necessary because of some inaccuracy found in it.



336 M.S. Alves, M. J. Alves

Corollary 3.1. Let us consider the same systems with hybrid controls (Sy) and (S3)
as in Theorem 8.1. For any solution xY of the system (Si) the exponential estimate is
satisfied:

12D (#)| < My ez (0)], t €0,00) (3.3)

such that the constants A € R and My, > 0 that do not depend on the solutions if and only
if for any solution ) of system (Ss) the exponential estimate is satisfied:

2® (1) < Mye™Mz®(0)],  t€[0,00) (3.4)

such that My > 0 do not depend on the solution and the constant my; > 0 is the same as in
the transformation (3.1).

P 1o o f. By the Theorem 3.1, a function 2% : [0, 00) — R? is a system’s solution (5;)
if and only if the function z(® : [0,00) — R? defined by

22 (t) = Dz (mqyt), t € 10,00),
which is the solution of the system (Ss). So, from the estimate (3.3) we have:
2@ (1) = | Dz (mat)] < || D] |20 (mat)| < [|D]| Mye™ |20 (0)] =

DI My e™ XD~ ®(0)] < Mz e™Xa®(0)], ¢ €[0,00)

where My = M, ||D||||D7!||. Reciprocally, from the estimate (3.4) we have:
2 O(0)] =D& (my )| < | D7 |2 (my )| < | D7 My e M2 3)(0)]

= | D7 My XDz (0)] < My XzD(0)], € [0, 00)

where M, = M, || D7} || D]|.

Corollary 3.2. Let us consider the same systems with the hybrid control (Sy) and (Ss)
as in the Theorem 3.1, which means, the systems with the triples Q; = (A;, B;, C;) such that
Qo = T(Qy) where T is defined by (3.1) with controls u; € LH connected by (3.2).Then
the upper Lyapunov exponents of (S;) satisfy the relation:

)\<Q2>U2) =y )‘<Qlau1)'

The corollary’s 3.2 proof follows from the Corollary 3.1.

4. Transformation of the triple (A, B,C) in case BC' =0, CAB #0
into canonical form

In this section the transformation 7' € GT' will be determined in the form of a composi-
tion of the transformations T;(-) (i =1,2,3) defined above that transform a triple Q that
satisfies BC' =0, CAB # 0, in the canonical triple

o == (| 4 LT o). weton @
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Let the initial triple 2 be given and defined by

air  a12 by
O=(AB,C) = , ,lca c
N (R R
such that CB = bjey + bace = 0, CAB # 0. Let p = sign(tr A). According to the
classification, there exists only one transformation 7" € GT such that T(2) = Q. The
goal now is to find the representation of this transformation 7' in terms of elements of
matrices A, B and C. The problem is solved in some steps, described bellow.

1) First, the transformation T3(/) is applied, where

2det A — tr2A
8= 2CAB if trA#0 :detA—%tr2A+|M|_1 )
A—1 AB . )
%%ﬂ?' i trA=0 ¢

We get a new triple
T:(8)(Q) = T3(8)(A, B,C) = (A+ BBC, B,C) = (A1, B1, (1) = (1.

As it can be noted, the only matrix that suffers some transformations is the matrix A, such
that in the triple €2y the matrices B; and C; are the same to the matrices B and C,
respectively, from the initial triple €. Now the form of the matrix A; will be determined:

A = {an CL12] e {h} [61 62] _ {an + Bbici ars +5b102:| |

o1 G2 by agy + Bbacy  agg + Bbacy

The goal of applying the transformation 73(/3) is to obtain the matrix A; with two complex
eigenvalues which have the same real and imaginary parts by modulo. More precisely, we

have A A A A
tr tr tr tr
—q- ) — if trA#0
o(Ay) = {2 oy 2}’1 rA#
{—i, i}, if trA=0

Note that the idea of using the transformation 7T3(/3) with the described propriety of the
spectrum of A; can be found in [6, p. 33|, however, some changes were necessary due to
some inaccuracy in the expressions of  and o(A;).

2) Next, the transformation T5(v,1,1) is applied to the triple €, with

2
S 1,1
y=d fwap Teei-Llp (4.3)
1, it u=0

The triple Qs = (A, By, Cy) = To(v,1,1)(A;y, Ag, A3) is obtained. Being that the two of the
last parameters of 75 are equal to 1, the matrices B and C' remain the same. Thus, Bs
and C5 are the same as By and (', that are the matrices B and C' from the initial triple
2. The matrix A, has the following form:

v(ay + Bbicr) v(aia + Bbics)

Ay =vA =
2 v I/(CL21+BZ)201) V(a22+/8b262)
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The goal of applying the given transformation 75(v, 1, 1) is to obtain the spectrum o(Ay) =
{p—ip+i} (Vpe{-1,01}).

3) The goal of this third step is to obtain the canonical matrix Ay, defined by (4.1)
from the matrix A,. This transformation was obtained from the theorem 9 in [7, p. 299].

Let us determine an eigenvector v of the matrix A, associated to the eigenvalue
A=+

(AQ—(M+Z)]>U:0 =
{ (V(Cln + Bbier) — (u+ Z)) vy + v(aia + Bbicy) v =0
IJ(CL21 + 6[)261) v + (l/(agg + 5[)262) — (,U + Z)) Vg = 0

v — {Ul] _ 1 v(aig + Bbicy)
(& v(aiz + Bbice) [ — v(an + Bbicy) +if’

and define a real matrix V' by

1 0
V =[RevImov] = | p—v(an + Bbicy) 1
v(aiz + Bbics) v(ayz + Bbics)

Let us now apply the transformation T} (D) for the triple Qs where

_ -1 _ 1 0
D=V"= V(all + ﬁblcl) — l/(a12 + BblcQ)l . (44)

We obtain the triple Q3= (A3, Bs, C3)=T1(D)(§2), such that, (see [7, p. 299]),
As = DAD™ = VA,V = { a 1} .
Note that the matrices Bs and C3 are:

by
Bs; = DB = ,
° [V<a11b1 + aq2b2) — ,U/b1:|

Oy = D' =V = [Cl | e = v(an + fhicy)) e }

v(aiz + Bbicy) v(aiz + Bbicy)

So, by the steps 1), 2) and 3) the matrix A3 = Ay, is obtained from the canonical triple
Y. The goal of the next two steps in to find the transformations from the group GT' that
transform Bz and Cs, to By = [0 1]7 and Cy = [1 0], conserving the matrix A = Ay

4) As it was deducted in [6, p. 32|, the matrix A3 commutes with any matrix of form
p €
I —
(p,€) { ey }
such that L(p,e)As(L(p,e))~! = As. Let us now find the values of ¢ and e such that
L(p,e)Bs = By = [0 1]". Solving the linear system L(p,e)Bs = By, this means

{ bl Y+ (I/(a,llbl + alzbg) - ,ubl) e =0
(V(aubl + alzbg) - ,Lbbl) Y — bl e =1 ’
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in respect of ¢ and e, we obtain

_ I/(anbl + a12b2) - ,ub1 c— _ bl (4 5)
b% + (V(anbl + CL12b2) — ,LLbl)Q’ b% + (V(a11b1 + (1121)2) — Nbl)2 ’ ’

¥

Let us now apply the transformation 7)(L), where L = L(yp,e) with ¢ and ¢ defined by
(4.5), that means

L

1 [V(a11b1 + ai2by) — pby —b1 (4.6)

- b% + (V(allbl + a12b2) - Hb1)2 bl I/(allbl + a12b2) — ubl )
The triple Q4 = (A4, By, Cy) = T1(L)(Q3) is obtained, where

0

A4:LA3L—1:A3:[“ 1 X

], B4:L33:BO:[

}, ComCyL = [5 0] |

where

& —v(ay; + Bbic bic
0= (V(aubl —|—a12b2> _ubl) . (cl“f‘ 2(1u ( 11 B 1 1)) . 1C2

v(aiz + Bbics) v(ays + Bbicy)’

Simplifying the expression of 4, according to (4.2), (4.3) and CB = bycy + bycy = 0, we
obtain

d=v-det[B AB] -w(B,(), (4.7)
where c
—b—l, if by #£0
W(Bac> = cg .
—, if b1 7é 0.
by

Note that —c;/by = ¢3/b; in case of biby # 0, because CB = 0. The constant w(B, ()
has the following geometric interpretation: if consider B and CT as vectors in R?, then we
have w(B,C) = |C"|/|B| if the angle between the vectors B and C' are equal to /2,
and w(B,C) = —|C"|/|B| if the angle between the vectors B and CT is equal to —m/2.

5) At last, we apply the transformation T5(1,1,57'), obtaining the canonical triple
defined by (4.1).

6) Thus, a resultant transformation is presented:
T =Ty(1,1,6 1) o Ty (L) o Ty (D) o Ty(v, 1,1) o T3(p),

such that T'(2) = Q. By applying the propositions of the lemma 2.6 from the article [1],
the transformation 7' can be presented in a much compact form:

T = Ty(LD) o Ty(v,1,671) o T5(J),

such that the matrices L, D and the real constants v, § and [ are defined in (4.6), (4.4),
(4.3), (4.7) and (4.2), respectively. To conclude the formalization of 7T, we compute the
matrix LD and simplify the expressions of its entries.
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Thus, the following theorem has been proved:

Theorem 4.1. Let be given a triple of matrices

Q=(4,B,0) = ([Zi o } Hl } e ])

where CB =0 and CAB # 0 and the triple
1 0
Q[M]:(A[M]’B()?CU):([ " :|7|:1}7[1 0]>7

-1 u

where pu = sign (tr A). Therefore there exists a unique transformation T € GT such that
T(2) = Qp and that transformation can be represented as following:

T =Ty(P) o Ty(v,1,6 ") o T3(B),

where
—, if ~1,1 det A — tr?A -1
U= ’trA|7 1 /,LE{ 7}’ ﬂ: € 2rA +|M| ’
1, if p=0 CAB
—Z—l, if by #£ 0
d=v-det[B AB] -w(B,C) such that w(B,C)= 02
5_2’ if b #£0
1

and the elements of the matriz P = {pl pz} are defined by
P3 D4

V(Clubz - 55%01)

. b% + (l/(anbl + algbz) - ,ubl)Q’
Dy — —biv(arz + Bbics)
b + (v(anby + aiaby) — uby)?’
pg = bl + (u(a11b1 + Cllgbg) — ubl)(z/(an + 5[)101) — /L)
b% + (u(allbl + a12b2) — ubl)Q ’
Py = V(V(a11b1 + a12b2) — ,LLb1>(CL12 -+ ﬁb1C2)

b3 + (v(a11br + aizbe) — pby)?

Let us now present three examples of the triples Q = (A, B,C) € ¥ from the category
with the invariant CB =0, CAB # 0 that belong to the three different equivalence classes
H(2,0,u) for pw =1, p = —1 and p = 0, and construct for each of the triples, basing
ourselves on the Theorem 4.1, the transformation 7' that maps this triple into the canonical
triple Q).

Example 4.1. Consider the triple of matrices

o-wsor-([1 2] 4] a).
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Of course that CB =0, CAB # 0 and p = sign (tr A) = sign4 = 1. So, 2 € H(2,0,1).
Also note that o(A) = {2—3i,2+43i}. The transformation 7' that maps € to the canonical

form
11 0
(T € GT, such that T(£2) = () ) is defined by the formula:
1 1 5
T="T ol =,1,—=|oT5| = ).
1( )02(2”37)03<74)
Example 4.2. Let us consider the triple of matrices

owna-(3 2] (2] b )

CB =0, CAB # 0 and p = sign(tr A) = sign(—1) = —1. Therefore 2 € H(2,0,—1).
Also note that o(A) = {—4,3}. The transformation 7' that maps € into a canonical form

(13 A (2]
T:TI(

Example 4.3. Consider the triple

Q:(A,B,C):([_g _é][‘f][—fi 2x/§])

1 4

37 37

19 1
4 37

is defined by:

-1 3

CB = 0,CAB # 0 and pu = sign(trA) = sign0 = 0. So, 2 € H(2,0,0). Note,
o(A) = {-5,5}. T that transforms 2 into the canonical form

oo ([ 32 00)

this means, 7' € GT such that T'(Q) = (), is defined by:

T="T, SHIOVZ 3GH0VD L (1 1 —) 0Ty <——) .
5 91+152 »
i L5 18 + 604/2 9+ 30V2

5. Inverse Transformation

Let Q = (A, B,C) be an arbitrary triple, such that CB = 0, CAB # 0. Having the
transformation

Ty =Ti(P)oTy(v,1,671) o T5(f),
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such that T'(2) = Qp, where p = sign (tr A) (see the Theorem 4.1), let us now determine the
inverse transformation of Ty, this is, the transformation T = T, such that T(Q,) = Q.

According to the Proposition 3.1 the transformation 7' can be represented in the following
form:

T = T3(«) o Tx(a, b, c) o T1 (D),

where

D =P, a=—, b=1, c=09, a=—pf.

v
Using the formulas of the Theorem 4.1, by rewriting the parameters of T in function of the
matrices of the triple €2, we get the following theorem:

Theorem 5.1. Let the triple of matrices

Q= (4,B,0) = ([ . } / { " } e CQ])

be given, where CB =0, CAB # 0 and the triple

Q= (Apy, Bo, Co) = ([ _/f H,[H,[l 0]>,

where i = sign (tr A). There exists a unique transformation T € GT such that T(§2,)) =
and that transformation can be represented in the following form:

T = T3(a) o Tx(a, b, c) o T (D),

where

1tr2A —det A+ 1 — |y |tr A
=2 = 41- =1
! A , a=——+1-|ul, b=1,
X —z—l, if by #£0
c==det[B AB]w(B,C) with w(B,C)=4 .2 :
@ 2 by #£0 (5.1)
by
(@11 — ag)by + 2a12b; b
D= 2a !
2a101 — (@11 — ag)by b
2
2a

For each triple from the examples 4.1, 4.2 and 4.3 let us present a transformation 7' that
maps the canonical triple to these triples. The transformation 7" can be obtained from the
Theorem 5.1 or by inverting the transformation that was obtained in each of the examples
in the Section 4 with the use of the Proposition 3.1.

Example 5.1. Consider the triple of matrices

o-wn= ([ 4[] ),
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in which CB =0, CAB # 0 and p = sign (tr A) = 1. The transformation 7' € GT such
that T'(Qp) = Q is defined by the formula,
-1 4

5
T=1T 15(2,1,37)0oT5 | —== | .
( _1)oZ<,, o1 (-2;)

Example 5.2. Consider the triple

o-uno=([1 2310,

such that CB =0, CAB # 0 and pu = sign (tr A) = —1. The transformation 7" € GT
such that T'(Q_q) = Q is defined by the formula

T=T ({ __13 _é D o Ty (%1-%) oTs(-2).

Example 5.3. Consider the triple

Q:(A,B,C):({_g _é}{\f}[—6 2\/§]>

19

2

such that CB =0, CAB # 0 and pu = sign (tr A) = 0. The transformation 7' € GT such
that T'(Q) = Q is defined by the formula,

—3-5v2 V2 13
T=T 0Ty (1,1,18 4+ 60v2) o T <—)
1( 15 ﬂ) : ) o 9+ 302

6. Construction of a stabilizing hybrid control for case CB =0, CAB # 0

Consider the controllable differential linear two-dimensional system:

T1 = a1 + a1202 + biu

To = A9 X1 + Q29T + bout (6.1)

Y = C1x1 + C2%2
where u(-) : [0,00) — R depends only from the output u(-) : [0,00) — R by a linear hybrid
control. Suppose that the real parameters a1, ai2, as1, ass, by, by, ¢, co of the system
that satisfy the conditions:

b101 -+ bQCQ = O, a11b101 + CL126201 —+ CL21b1C2 -+ CLQQbQCQ 7£ 0. (62)

This section contains the main results of this paper: the control v € LH that stabilizes the
system (6.1), satisfying (6.2), such that the solution’s norm decreases exponentially with any
Lyapunov exponent.

Note that the system (6.1) with the conditions (6.2) in its vectorial form is:

{j::Ax—i—Bu

S Cn (6.3)
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in which the triple of matrices

Q= (A,B,C) = ([ . ] | [ " } e C“’])

satisfies CB =0 and CAB # 0. Thus, we have the triple from the class H(2,0, ) where
p =sign (tr A) € {—1,0,1}. The canonical form of the class H (2,0, u) is

QMZ(AM,BoaCo):Q " 1},{(”7[1 0])-

—1 u
According to the Theorem 5.1 the transformation 7 € GT exists and is unique and
T(yy) = . This transformation can be presented as following:

T = Ts(a) o Ty(a, b, c) o T1(D) (6.4)

such that the constants «,a,b,c and the matrix D are defined by the formulas (5.1).
Let us generalize the results concerning the stabilization of the system (2, by a control
A(R,0,m) € LH, for the system with an arbitrary triple € such that CB =0, CAB # 0.

The generalization is based on the theorems 3.1 and 5.1.

Firstly, let us define the LHFC H(Q2, R,0,m) € LH such that R > 0, 6 > 0 and
m € {0,1} in the following way. If (S;) is the system with the triple Qp, and control
u; = A(R,0,m) and (S3) is the system with the triple Q and control us = H (S, R, d,m),
then the parameters of the control us can be expressed by the parameters of the control u;
using the formulas (3.2) from the Theorem 3.1 with the use of the expressions (5.1) from
the Theorem 5.1 for the transformation parameters 7" (7 has the form (6.4) such that
T(Qp) = Q).

Definition 6.1. Given Q € ¥ defined by (6.3) where CB = 0 and CAB # 0
and given R > 0, § > 0 and m € {0,1} the LHFC H(, R,0,m) € LH is defined by
H(QR,0,m) = (A, {ag}seq) where the components of the hybrid automaton
A=(Q,I,M,T,j, q) are given by

Q = {Qd7Q—}7 I = {i+vi—}7
M(qa,iy) = M(qa,i-) = M(q—,i)=q-, M(q_,iy)= qa,

3m (6.5)
T(qa) = Ta(R,a) = ———=, Tl(q-) =4, '
(Qd) d( CL) 2@\/1—|——R (q )
ooy Jig if vy >0 g if m=0
](y)_{i_ if vy <0 qo_{qd it m=1
such that
tr A
a:%—l—l—\m, where p = sign (tr A),
X —z—l, if by # 0
c=—det[B AB|w(B,C) where w(B,C)= 02 ) (6.6)
a b—2 if by #0
1

Str2A —det A+ 1 — |y .
o= , v =sign(c),

CAB
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and {og}eeq = {oy_,aq,} where a, =0 and oy, = — <%R + oz) :

The families of hybrid controls are introduced:

H(Q,R):{H(Q,R,é,m):0<5< me{o,l}} (R >0),

T
4ar/1+ R’
H(Q) = RLiOH(Q, R).

It is clear that H(Q, R) C H(Q) C LH.
We define the function A : (0,00) — (0,00) by

A(R) = V1+RIn(1+ R)
T(3+V1+R)
We remember that in this section we always consider the system (6.1) satisfying the
conditions (6.2), or, indeed, the system (6.3) with triple Q2 = (A, B,C) satisfying the
condition CB =0, CAB # 0. For convenience we designate this system for (5).
From the Corollary 2, Theorem 3 and the main results about the stabilization of the
system with the triple €, from the papers (2) and (6) we get the main result of this paper
which is stated in the following theorem:

(6.7)

Theorem 6.1. For any R >0 , A(Q,H(Q, R)) = a(pp — A(R)), where p and a are
defined in (6.6).

Theorem 6.2. We have the following statements:

1. If tr A < 0 (this is, when p = —1 ou p = 0), then VR > 0 the system (S) is
stabilizable by a family of hybrid controls H(Q, R).

2. If tr A > 0 (this is, when p = 1), then in case R > A7'(1), the system (S) is
stabilizable by a family of hybrid controls H(Q, R) and in case R < A7'(1) the system
(S) is not stabilizable by a family of hybrid controls H (2, R).

Theorem 6.3. Forany Q € X, CB =0, CAB # 0 it is valid that A\(2, H(Q2)) = —o0.

Remark 6.1. According to the Theorem 6.3, the system (.S) is stabilizable by the
hybrid controls from the family H(2), such that the negative upper Lyapunov exponent in
the solution estimate can be as large by modulo as we define it.

Let us complement the theorems 6.1-6.3 with a result which wording is more convenient
for the applications. Also note that exists A~': (0,00) — (0, 00) such that 1i%1+ A(s)=0
s—

and ligl A~'(s) = +oc. For convenience, let us extend the function A~! to any set R by
S—+00

assigning, by definition A7(s) =0 when s < 0.

Theorem 6.4. Let N > 0 be an arbitrary constant. Then, for any positive number R
that satisfies

R> A (sign (trA)+ N (@ +1-— |,u|)_1> (6.8)
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where A(R) is defined in (6.7), exists a 09 = do(tr A, N, R) > 0 such that ¥§ € (0,d0) and
Vm € {0,1} any solution of the equation x : [0,00) — R? of the system (S) with LHFC
H(Q, R, 6, m) satisfies the exponential estimate

()] < Me™™Mz(0)],  t€0,00)
where the constant M =M (Q, R,5,m)>0 does not depend on the solution x(-).

7. Examples of the systems that satisfy C'B =0, CAB # 0 and stabilizing
hybrid controls

In this section we will consider three specific systems of type (6.1) that correspond to the
triples (A, B,C') considered in the examples from the sections 4 and 5. For these systems,
based on the results of the Section 6, linear hybrid controls that stabilize it will be presented.
Even more, the chosen control parameters are the ones that decrease the solution’s norm
as in (6.4) with a given upper Lyapunov exponent —N. For convenience, consider that the
function A~! is prolonged to R where by definition, A=*(s) =0 when s < 0.

Example 7.1. Consider the system:
Zi'l =T —21’2+4U
Lt'z = 55131 + 3%2 —Uu (71)
y = x1 + 4o
or, in the vectorial form:

{y'c—Ax—l—Bu

e with Q:(A,B,C):([; _g},[_ﬂ,u 4]). (7.2)

We have CB =0 and C'AB # 0. Let us compute the constants pu, a,c, v, « by the formulas
(6.6):

tr A
pu=sign (tr A) =1, a:%+1—|u|:2, c:%det[B AB| = 37,
a0y
(7.3)
g (0) = 1 CstrPA—detA+1—|ul 5
v=sign(c)=1, a= OAB ==

Consider the hybrid control H(, R,d,m) = ((Q,I,M,T,j,q),{a—,aq}) € LH defined
in the Section 6. According to the Definition 6.1 and the expressions (7.3), the control
components are given by:

Q = {Qd7Q—}7 I = {i+7i—}7
M(qa,iy) = M(qg,i-) = M(q—,i-) =q-, M(q_,iy) = qa,

3m
T (qa) = Ta(R, a) = WiTE T(q-) =4,
oy g i y>0 g if m=0
](y)_{z'_ if y<0’ q“‘{ g if m=1"
1
a, =0, g, = ﬂ(’é —4R).
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The theorems 6.2 and 6.4 imply the following conclusions about the system (7.1) with
linear hybrid control H(2, R,d,m).

Conclusion 1. For any m € {0,1}, R > A7'(1) ~ 69.89 where A is defined in (6.7)
and for all sufficiently small § > 0 the system (7.1) is stabilizable by the hybrid control
H(2, R, 5,m).

Conclusion 2. Let N > 0. For any m € {0,1}, R > A7'(1 + N/2) and for all
sufficiently small 6 > 0, any solution x : [0,00) — R? of the system (7.1) with control
H(S2, R, 5, m) satisfies the exponential estimate

()] < MeMz(0)], € [0,00),

where the constant M =M (2, R,d, m)>0 does not depend on the solution z(-).

For example, if a decrease of the solution with N = 2 is needed, then we can conclude
that if R > A7!(2) =~ 977.35 and § > 0 is sufficiently small, then any solution z of the
system (7.1) with control H(2, R,0,0) or H(Q2, R,d, 1) satisfies the condition

()] < Me™[x(0)],  t€[0,00)
where M > 0 does not depend on the solution.

Example 7.2. Consider the system:

j,’l =T + 21’2 —Uu
Zifg = 51‘1 — 21’2 (74)
Y= %xz

or, in its vectorial form:

{izéiJrBu with Q:(A,B,C):([é _;],{_H,{o %D (7.5)

We have CB =0 and C'AB # 0. Let us compute the constants u, a, ¢, v, « by the formulas
(6.6):

tr A 1 2
p=sign (tr A)=—1, azu—l—l—m\:—, c:gdet[B 143]:__57

2 2 aby 2 (7.6)
srA)? —det A+1—|u| ‘

CAB —2

v =sign (¢) = —1, a=

Consider the hybrid control H(Q, R,0,m) = (Q,I, M, T,j,q),{a_,aq}) € LH, defined in
the Section 6. According to the Definition 6.1 and the expressions (7.6), the components of
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this control are given by:
Q:{QCbQ—}? I:{i+7i—}7
M(qq,iy) = M(qq,i-) = M(q-,i-) = q-, M(q-,i4) = qu,

3T
T(qa) = Ta(R,a) = AR (¢-) =9,
ooy Jag i y <0 _J g if m=0
](y)_{i_ if y>0" q“_{ g if m=1"
R
o, =0, aqd:%+2.

Theorems 6.2 and 6.4 imply the following about the system (7.4) with linear hybrid
feedback control H(Q, R,d,m).

Conclusion 1. For any m € {0,1}, R > A7!(1) = 69.89 where A is defined in (6.7)
and for all sufficiently small 6 > 0 the system (7.4) is stabilizable by the hybrid control
H(, R, 5,m).

Conclusion 2. Let N > 0. For any m € {0,1}, R > A"*(2N —1) and for all small
§ > 0, any solution x : [0,00) — R? of the system (7.4) with control H(Q, R,d,m) satisfies
the exponential estimate

()] < Me~™2(0)],  t€[0,00),
where the constant M =M (2, R,0,m)>0 does not depend on the solution z(-).

For example, if a decrease of the solution with N = 2 is needed, then we can conclude
that if R > A71(3) &~ 15545 and ¢ > 0 is sufficiently small, then any solution z of the
system (7.4) with control H(2, R,d,0) or H(, R,d,1) satisfies the condition

2 (t)] < Me™|z(0)], € [0,00)
where M > 0 does not depend on the solution.

Example 7.3. Consider the system

l"l = —55(31 —£E2+\/§’LL
jZ'Q = 51’2 — 21’2 + 3u (77)
Yy = —61’1 + 2\/§I2

and in its vectorial form

{;:gz-i-BU with Qz(A,B,C):d_g _éH\wa 2\/§D (7.8)

CB =0 and CAB # 0. Let us compute the constants p,a,c,v,a by the formulas (6.6):

trA
p =sign (tr A) = 0, a:| r2 |

+1—|pl=1, c:C—bZdet [B AB]=18 + 60v/2,
aoy

(7.9)
Cgtr?A—det A+1—|u 13

v =sign (c) = 1, a = = .
gu (c) CAB 9+ 30v2
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Consider the hybrid control H(Q, R,0,m) = ((Q,I, M, T, j,q),{a—,aq}) € LH, defined in
the Section 6. According to the Definition 6.1 and the expressions (7.9), the components of
this control are given by:

Q = {qmqf}? I= {Z'+,Z',},
M(Qdai-l-) = M(Qd7i—) = M(Q—>i—) =dq-, M(q—7i+) = qd;

3
T(Qd) = %(R, G) = ﬁ, T(Q—) = 5;
oo Jig i y>0 g it m=0
](y)_{i it y<0 qo_{ g if m=1"
I Y R+ 26
- 4 6(3+10v2)

Theorems 6.2 and 6.4 imply the following about the system (7.7) with linear hybrid
feedback control H(Q, R,d,m).

Conclusion 1. For any m € {0,1}, R > A~(1) ~ 69.89 where A is defined in (6.7)
and for all sufficiently small § > 0 the system (7.7) is stabilizable by the hybrid control
H(, R, 5,m).

Conclusion 2. Let N > 0. For any m € {0,1}, R > A7Y(N) for all small § > 0
any solution z : [0,00) — R? of the system (7.7) with control H(Q, R,d,m) satisfies the
exponential estimate

()] < MeM2(0)],  t€[0,00),

where the constant M =M (2, R, 0, m)>0 does not depend on the solution z(-).

For example, if a decrease of the solution with N = 2 is needed, then we can conclude
that if R > A7!(2) =~ 977.35 and § > 0 is sufficiently small, then any solution z of the
system (7.7) with control H(2, R,0,0) or H(2, R,d, 1) satisfies the condition

2 (t)] < Me™|z(0)], € [0,00)
where M > 0 does not depend on the solution.
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O CTABNJINSAIINN JTNOPEPEHITNMAJIBHBIX TMBPV/THBIX
VIIPABJISEMBIX CIUCTEM C OBPATHOM CBSI3bIO

© M. C. Aasec, M. 2K. Ansec

Yuusepcurer Jayapao Momiane
IL.a. 257, naBueiit kamiryc, Mamyty, Mozambuk
E-mail: m4ria.alvess@gmail.com, mjalves.moz@gmail.com

Annomayus. B maHHOR crarhbe pacCMaTpUBAIOTCS ABYMEPHBIE CHCTEMbI quddepeH-
[UAJBHBIX yPAaBHEHUH CO CTAOMIN3UPYIOMUM IUOPUIHBIM YIIPABJIEHHEM C IOMOIIBIO
obparHoit cBsi3u. B pesyiibrare nccaeoBaHus J1JId TPOU3BOJILHON CHCTEMBI yIIpaBJIe-
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