Том 26, № 136

© Лабовский С.М., 2021 DOI 10.20310/2686-9667-2021-26-136-382-393 УДК 517.929, 517.927.6

О необходимом и достаточном условии отрицательности функции Грина двухточечной краевой задачи для функционально-дифференциального уравнения

Сергей Михайлович ЛАБОВСКИЙ

ФГБОУ ВО «Российский экономический университет им. Г.В. Плеханова» 117997, Российская Федерация, г. Москва, Стремянный пер., 36

Аннотация. Рассматриваются условия отрицательности функции Грина двухточечной краевой задачи

$$\mathcal{L}_{\lambda}u := u^{(n)} - \lambda \int_0^l u(s)d_s r(x,s) = f(x), \quad x \in [0,l], \quad B^k(u) = \alpha,$$

где $B^k(u) = (u(0), \dots, u^{(n-k-1)}(0), u(l), -u'(l), \dots, (-1)^{(k-1)}u^{(k-1)}(0)), \quad n \geq 3, \quad 0 < k < n,$ k нечетно. Функция r(x,s) предполагается неубывающей по второму аргументу. Получено необходимое и достаточное условие неотрицательности решения этой краевой задачи на множестве E функций, удовлетворяющих условиям

$$u(0) = \dots = u^{(n-k-2)}(0) = 0, \quad u(l) = \dots = u^{(k-2)}(l) = 0,$$

 $u^{(n-k-1)}(0) \geq 0$, $u^{(k-1)}(l) \geq 0$, $f(x) \leq 0$. Это условие заключается в терминах докритичности краевых задач с вектор-функционалами B^{k-1} и B^{k+1} . Пусть k четно, и λ^k — наименьшее положительное значение λ , при котором задача $\mathcal{L}_{\lambda}u=0$, $B^ku=0$ имеет нетривиальное решение. Тогда пара условий $\lambda < \lambda^{k-1}$ и $\lambda < \lambda^{k+1}$ необходима и достаточна для положительности решения задачи.

Ключевые слова: функция Грина, положительность, функционально-дифференциальное уравнение

Для цитирования: Лабовский С.М. О необходимом и достаточном условии отрицательности функции Грина двухточечной краевой задачи для функционально-дифференциального уравнения // Вестник российских университетов. Математика. 2021. Т. 26. № 136. С. 382–393. DOI 10.20310/2686-9667-2021-26-136-382-393.

© S. M. Labovskiy, 2021 DOI 10.20310/2686-9667-2021-26-136-382-393

On a necessary and sufficient condition for the negativeness of the Green's function of a two-point boundary value problem for a functional differential equation

Sergey M. LABOVSKIY

Plekhanov Russian University of Economics 36 Stremyanny lane, Moscow 117997, Russian Federation

Abstract. Conditions of negativity for the Green's function of a two-point boundary value problem

$$\mathcal{L}_{\lambda}u := u^{(n)} - \lambda \int_{0}^{l} u(s)d_{s}r(x,s) = f(x), \quad x \in [0,l], \quad B^{k}(u) = 0,$$

where $B^k(u) = (u(0), \ldots, u^{(n-k-1)}(0), u(l), -u'(l), \ldots, (-1)^{(k-1)}u^{(k-1)}(0)), n \ge 3, 0 < k < n, k$ is odd, are considered. The function r(x, s) is assumed to be non-decreasing in the second argument. A necessary and sufficient condition for the nonnegativity of the solution of this boundary value problem on the set E of functions satisfying the conditions

$$u(0) = \dots = u^{(n-k-2)}(0) = 0, \quad u(l) = \dots = u^{(k-2)}(l) = 0,$$

 $u^{(n-k-1)}(0) \geq 0$, $u^{(k-1)}(l) \geq 0$, $f(x) \leq 0$ is obtained. This condition lies in the subcriticality of boundary value problems with vector functionals B^{k-1} and B^{k+1} . Let k be even and λ^k be the smallest positive value of λ for which the problem $\mathcal{L}_{\lambda}u=0$, $B^ku=0$ has a nontrivial solution. Then the pair of conditions $\lambda < \lambda^{k-1}$ and $\lambda < \lambda^{k+1}$ is necessary and sufficient for positivity of the solution of the problem.

Keywords: Green's function, positivity, functional differential equation

Mathematics Subject Classification: 34B05, 34B27, 34K10.

For citation: Labovskiy S.M. O neobkhodimom i dostatochnom uslovii otritsatel'nosti funktsii Grina dvukhtochechnoy krayevoy zadachi dlya funktsional'no-differentsial'nogo uravneniya [On a necessary and sufficient condition for the negativeness of the Green's function of a two-point boundary value problem for a functional differential equation]. Vestnik rossiyskikh universitetov. Matematika – Russian Universities Reports. Mathematics, 2021, vol. 26, no. 136, pp. 382–393. DOI 10.20310/2686-9667-2021-26-136-382-393. (In Russian, Abstr. in Engl.)

1. Знакоопределенность функций Грина

Пусть L(0,l) — пространство интегрируемых на [0,l] по Лебегу функций. Определим функционально-дифференциальный оператор (символ := означает равно по определению) равенством $\mathcal{L}u(x) := u^{(n)}(x) - \int\limits_0^l u(s)d_s r(x,s), \quad n \geq 3$. Пусть $Qu(x) := \int\limits_0^l u(s)d_s r(x,s), \quad x \in [0,l]$. Функцию $r(x,\cdot)$ считаем неубывающей при почти всех $x \in [0,l]$, r(x,0) = 0, $r(\cdot,l) \in L([0,l])$. Поэтому $\mathcal{L} = \mathcal{L}_0 - Q$, где $\mathcal{L}_0 u := u^{(n)}$, Q — положительный в обычном смысле оператор. Оператор \mathcal{L} будем рассматривать в пространстве AC^{n-1} функций, имеющих абсолютно непрерывную на [0,l] производную $u^{(n-1)}$, с обычной нормой. Решение задачи о знакоопределенности функции Грина (n-k,k)-задачи для уравнения $\mathcal{L}u = f$ с краевыми условиями

$$u(0) = u'(0) = \dots = u^{(n-k-1)}(0) = 0, \quad u(l) = u'(l) = \dots = u^{(k-1)}(l) = 0.$$
 (1.1)

(0 < k < n) существенно зависит от знака оператора Q. В простом случае получаем классическую схему, заключающуюся в следующем. Краевая задача $\mathcal{L}u = f$, $Bu = \alpha$, где $\mathcal{L} = \mathcal{L}_0 - Q$ базируется на краевой задаче $\mathcal{L}_0u = z$, $Bu = \alpha$. Ее решение имеет вид $u = G_0z + U\alpha$, и исходная задача преобразуется к уравнению $z - QG_0z = QU\alpha + f$. Если G_0 положителен, то и QG_0 положителен. В этом случае условие $r(QG_0) < 1$ становится необходимым и достаточным условием положительности оператора Грина G. В случае отрицательности G_0 ситуация сложней.

Пусть $G_0(x,s)$ — функция Грина задачи с условиями (1.1) для уравнения $u^{(n)}=z$, т. е. ее решение имеет вид $u(x)=\int_0^l G_0(x,s)z(s)\,ds$. Из интерполяционной формулы следует, что $(-1)^kG_0(x,s)>0$ внутри квадрата 0< x,s< l. Этого же мы ожидаем от функции Грина задачи с краевыми условиями (1.1) для уравнения $\mathcal{L}u=f$.

Считаем k нечетным. Поэтому речь пойдет об отрицательности функции Грина.

Краевые условия (1.1) могут быть записаны в виде $B^k u = 0$ с помощью векторфункционала с верхним индексом k (который не является показателем степени, конечно)

$$B^{k}u := (u(0), u'(0), \dots, u^{(n-k-1)}(0), u(l), -u'(l), u''(l), \dots, (-1)^{k-1}u^{(k-1)}(l)).$$

Решение однородной задачи $u^{(n)}=0,\ Bu=\alpha\geq\not\equiv 0$ (неравенство понимается покомпонентно) строго положительно в (0,l). Это решение — полином степени не выше n-1. Неоднородная краевая задача примет вид

$$\mathcal{L}u = f, \quad B^k u = \alpha. \tag{1.2}$$

Основной целью настоящей статьи является установление теоремы 4.1. С помощью оценки характеристических чисел она позволяет находить эффективные условия отрицательности функции Грина. В частном случае k=1 это утверждение получено в [1].

2. Оценка спектрального радиуса положительного компактного оператора

Наш основной инструмент — уравнение с положительным компактным оператором. Понятия в данной секции хорошо известны (см., например, книгу [2]). Пусть K почти воспроизводящий конус (конус K называется почти воспроизводящим, если замыкание

его линейной оболочки совпадает со всем пространством E) в пространстве Банаха E, и $A \colon E \to E$ — линейный компактный оператор, положительный относительно K, т. е. $AK \subset K$. Пусть r(A) — спектральный радиус оператора A.

Теорема 2.1 (М. Крейн, М. Рутман [3]). Если спектр А содержит точки, отличные от нуля, то r = r(A) является собственным числом оператора A и его сопряженного. Оператор A имеет положительный собственный вектор $v_0 \in K$, $Av_0 = rv_0$, uсопряженный A^* имеет положительный собственный вектор $\psi \in K^*$, $A^*\psi = r\psi$.

О пределение 2.1. Оператор $A: E \to E$ называется u_0 -ограниченным сверху, если для любого $x \in E$ существует $\beta > 0$ такое, что $Ax \leq \beta u_0$.

Нам потребуется простая лемма [4]:

Лемма 2.1. Пусть A является u_0 -ограниченным сверху, где $u_0 \in K$, u существует $v \in K$, удовлетворяющий неравенству $v - Av \geq \gamma u_0$ для некоторого $\gamma > 0$. Тогда r(A) < 1.

Двухточечные и трехточечная задача в классическом случае

3.1. Классическая двухточечная

Мы изучаем задачу (1.2) при нечетном k. Нам потребуется эта же задача как вспомогательная при четном значении k, которое будем обозначать другой буквой m, чтобы избежать недоразумений.

$$\mathcal{L}u = f, \quad B^m u = \alpha. \tag{3.1}$$

Для четного m проходит классическая схема. Эта задача изучена в [5], причем в сингулярном случае. Здесь мы кратко приводим основные утверждения, которые потребуются для исследования основной задачи (1.2).

Особые ситуации — псевдо-задачи Коши — возникают в случаях m=0 и m=n. Это уже не двухточечные задачи. Называем их псевдо-задачами, так как в случае произвольного отклонения аргумента нельзя априори гарантировать их однозначную разрешимость.

Неотрицательность функции Грина эквивалентна неотрицательности решения задачи (1.2) для $f \ge 0$ и $\alpha = 0$. Естественно рассмотреть и ненулевые краевые условия α .

Определение 3.1. Назовем задачу (3.1) положительно разрешимой, если из $f \geq 0$, $\alpha \geq 0$ следует $u \geq 0$.

З амечание 3.1. Неравенства для функций понимаются поточечно, причем для измеримых почти всюду, а для конечномерных векторов покомпонентно. Конечно, это частные случаи неравенств относительно конусов.

Базисная задача 3.1.1

Решение задачи $u^{(n)} = z$, $B^m u = \alpha$ имеет вид

$$u = H^m z + V\alpha, (3.2)$$

(m- верхний индекс, не степень), где $H^mz(x)=\int_0^l H^m(x,s)z(s)\,ds$ — решение задачи $\{u^{(n)}=z,\; B^mu=0\},\; V\alpha(x)$ — решение задачи $\{u^{(n)}=0,\; B^mu=\alpha\}$ (т. е. полином).

Пусть $u_0(x) := x^{n-m}(l-x)^m$.

Лемма 3.1. Пусть $u = H^m z$, причем $z \ge \not\equiv 0$. Тогда

1. если 0 < m < n, то $u(x) \ge \varepsilon u_0(x)$, $x \in [0, l]$, для некоторого $\varepsilon > 0$,

2. ecau m = 0, mo $u^{(i)}(x) \ge 0$, i = 0, ..., n - 1, $x \in [0, l]$,

3. $ecnu \ m=n, \ mo \ (-1)^i u^{(i)}(x) \geq 0, \quad i=0,\ldots,n-1, \ x \in [0,l].$

Лемма 3.2. Пусть $u = V\alpha$, $\alpha \ge \not\equiv 0$. Тогда для некоторого $\varepsilon > 0$

- 1. в случае $0 < m < n : u(x) \ge \varepsilon u_0(x)$,
- 2. $ec_{nu} m = 0$, $mo u(x) \ge \varepsilon x^{n-1}$,
- 3. если m = n, то $u(x) \ge \varepsilon (l x)^{n-1}$.

3.1.2 Положительная разрешимость

Подставляя (3.2) в (3.1), получим

$$z - QH^m z = QV\alpha + f.$$

Оператор $K := QH^m$ интегральный с ядром

$$K(x,s) := \int_0^l H^m(t,s) d_t r(x,t).$$

Действительно, $QH^m(x) = \int_0^l d_t r(x,t) \int_0^l H^m(t,s) z(s) \, ds = \int_0^l K(x,s) z(s) \, ds$. Пусть r(K) — спектральный радиус оператора K.

Лемма 3.3. Пусть $r(QH^m) < 1$. Тогда (3.1) положительно разрешима, причем, если $(f, \alpha) \ge \not\equiv (0, 0)$, то

- 1. если 0 < m < n, то $u(x) \ge \varepsilon x^{n-m} (l-x)^m$ для некоторого $\varepsilon > 0$.
- 2. $ecnu \ m=0 \ u \ \alpha \ge \not\equiv 0, \ mo \ u(x) \ge \varepsilon x^{n-1},$
- 3. если $m=n,\ u\ \alpha\geq\not\equiv 0,\ mo\ u(x)\geq \varepsilon(l-x)^{n-1}.$

Доказательство. Решение (3.1) есть $u = H^m z + V \alpha$, где

$$z = (I - QH^m)^{-1}(f + QV\alpha).$$

По лемме 3.2 $QV\alpha \ge 0$. Поэтому $z \ge f$. Теперь ссылаемся на леммы 3.1 и 3.2.

З а м е ч а н и е 3.2. В условиях леммы 3.3 в случае $\alpha \neq 0$ решение u имеет в точках 0 и l не более n-1 нулей (считая нули вместе с кратностями).

3.1.3 Характеристические числа

Однородная задача с параметром λ

$$u^{(n)} - \lambda Q u = 0, \quad B^m u = 0 \tag{3.3}$$

сводится, как и задача (3.1), к уравнению

$$z - \lambda Q H^m z = 0. (3.4)$$

Наименьшее положительное значение λ , при котором задача (3.3) имеет нетривиальное решение, обозначим через λ^m (m — верхний индекс, не степень). Если таких чисел нет, то по определению $\lambda^m = +\infty$. Отрицательные значения λ оставим без внимания.

Следствие 3.1. $\lambda^m = 1/r(QH^m)$. При $\lambda = \lambda^m$ задача (3.3) имеет нетривиальное неотрицательное решение.

Доказательство. Спектральный радиус оператора λQH^m равен $\lambda r(QH^m)$. Отсюда в силу уравнения (3.4) следует первое утверждение. Существование неотрицательного решения следует из теоремы 2.1.

3.1.4 Теоремы о дифференциальных неравенствах

Эффективные условия положительной разрешимости можно получить, используя теоремы об оценке спектрального радиуса положительного оператора. Инструментом является лемма 2.1. Напомним, что m считается четным.

Теорема 3.1. Пусть 0 < m < n, и существует неотрицательное решение неравенств $\mathcal{L}u = \psi \geq 0$, $B^m u = \alpha \geq 0$, $(\psi, \alpha) \neq (0, 0)$. Тогда $r(QH^m) < 1$.

Доказательство. Отметим, что спектральные радиусы операторов QH^m и H^mQ совпадают. Имеем $u^{(n)}=Qu+\psi=z,\ u=H^mz+V\alpha,$

$$u - H^m Q u = H^m \psi + V \alpha,$$

и $H^m\psi + V\alpha \ge \varepsilon u_0$, где $u_0(x) = x^{n-m}(l-x)^m$ (леммы 3.1 и 3.2). Так как H^mQ u_0 -ограничен сверху, по лемме 2.1 $r(H^mQ) < 1$.

Теорема 3.2. Пусть m=0 или m=n, и существует неотрицательное решение неравенств $\mathcal{L}u=\psi\geq 0,\ B^mu=\alpha\geq\not\equiv 0.$ Тогда $r(QH^m)<1.$

Доказательство. Пусть m=0. Имеем, как и в предыдущей теореме,

$$u - H^0 Q u = H^0 \psi + V \alpha.$$

Так как $\mathcal{L}u=\psi\geq 0,\ \alpha\geq\not\equiv 0,$ то (лемма 3.2) для некоторого $\varepsilon>0$ правая часть $H^0\psi+V\alpha\geq V\alpha\geq \varepsilon x^{n-1}.$

Обратимся к лемме 2.1. Так как конус неотрицательных функций является почти воспроизводящим в AC^{n-1} , и оператор H^0Q u_0 -ограничен сверху, где $u_0(x)=x^{n-1}$, то $r(QH^0)<1$.

Случай m = n рассматривается идентично (в силу симметрии).

3.2. Трехточечная задача

Пусть $\xi \in (0, l), n \ge 3$, и k < n — нечетно. Рассмотрим BVP

$$\mathcal{L}u = f, \quad B_{\varepsilon}u = 0, \tag{3.5}$$

где вектор-функционал B_{ξ} определяется равенством

$$B_{\xi}u := (u(0), u'(0), \dots, u^{(n-k-2)}(0), u(\xi), u'(\xi), u(l), -u'(l), u''(l), \dots, (-1)^{k-2}u^{(k-2)}(l)).$$
 (3.6)

Если k=n-1, группа условий на левом конце отсутствует. Аналогично при k=1 отсутствует группа условий при x=l.

Пусть H_{ξ} — оператор Грина BVP $u^{(n)} = z$, $B_{\xi}u = 0$, т. е. решение этой задачи $u = H_{\xi}z$.

Лемма 3.4. Пусть $u = H_{\xi}z$, $u \ z \ge \not\equiv 0$. В случае k = 1 предположим дополнительно, что $z \not\equiv 0$ на $[0,\xi]$, а если k = n-1, то предположим дополнительно, что $z \not\equiv 0$ на $[\xi,l]$. Тогда $u(x) \ge \varepsilon x^{n-k-1}(x-\xi)^2(l-x)^{k-1}$, $x \in [0,l]$, для некоторого $\varepsilon > 0$.

Отметим, что в крайних случаях k=1 или k=n-1, когда на одном из концов условия пропадают, решение может обращаться тождественно в нуль между оставшимися нулями даже при $z \ge \not\equiv 0$. Подстановка $u=H_{\xi}z$ в (3.5) дает

$$z - QH_{\xi}z = f. \tag{3.7}$$

Оператор $K_{\xi} := QH_{\xi}$ интегральный с ядром

$$K_{\xi}(x,s) := \int_{0}^{l} H_{\xi}(t,s) d_{t} r(x,t).$$

Действительно, $QH_{\xi}(x) = \int_0^l d_t r(x,t) \int_0^l H_{\xi}(t,s) z(s) \, ds = \int_0^l K_{\xi}(x,s) z(s) \, ds$. Пусть $r(K_{\xi})$ — спектральный радиус оператора K_{ξ} .

Лемма 3.5. Пусть $r(K_{\xi}) < 1$. Тогда BVP (3.5) имеет единственное решение u(x). Если $f \ge \not\equiv 0$, причем в случае k = 1 имеет место $f \not\equiv 0$ на $[0,\xi]$, а в случае k = n-1 неравенство $f \not\equiv 0$ имеет место на $[\xi,l]$, то для некоторого $\varepsilon > 0$, $u(x) \ge \varepsilon x^{n-k-1} (x-\xi)^2 (l-x)^{k-1}$, $x \in [0,l]$.

Доказательство. Решение (3.5) есть $u = H_{\xi}z$, где $z = (I - K_{\xi})^{-1}f$ (см. уравнение (3.7)). Поэтому $z \ge f$. Теперь ссылаемся на лемму 3.4.

З а м е ч а н и е 3.3. Если задача (3.5) однозначно разрешима при любом $\xi \in (0,l)$, то всякое нетривиальное решение $\mathcal{L}u=0$, имеющее (n-k-1)-кратный нуль в точке x=0 и (k-1)-кратный нуль в точке x=l, не может иметь кратных нулей при 0 < x < l. Действительно, в противном случае имеем ненулевое решение однородной задачи (3.5).

Однородная задача с параметром λ

$$u^{(n)} - \lambda Q u = 0, \ B_{\xi} u = 0 \tag{3.8}$$

сводится к уравнению

$$z - \lambda Q H_{\xi} z = 0. \tag{3.9}$$

Наименьшее положительное значение λ , при котором задача (3.8) имеет нетривиальное решение, обозначим через λ_{ξ} . Если таких чисел нет, то по определению $\lambda_{\xi} = +\infty$. Опираясь на уравнение (3.9), получаем

Следствие 3.2. $\lambda_{\xi} = 1/r(QH_{\xi})$. При $\lambda = \lambda_{\xi}$ задача (3.8) имеет нетривиальное неотрицательное решение.

3.3. Сравнение характеристических чисел

Лемма 3.6. При любом $\xi \in (0, l)$ справедливо $\lambda_{\xi} \ge \min\{\lambda_{k-1}, \lambda_{k+1}\}.$

Доказательство. Предположим, что $\lambda_{\xi} < \lambda_{k-1}$ и $\lambda_{\xi} < \lambda_{k+1}$. В дальнейшем для простоты будем считать, что $\lambda_{\xi} = 1$. В таком случае в силу следствия 3.2 существует неотрицательное нетривиальное решение $\mathcal{L}u = 0$, $B_{\xi}u = 0$. Рассмотрим два решения u_1 и u_2 уравнения $\mathcal{L}u = 0$, оба удовлетворяющие условиям

$$u(0) = \dots = u^{(n-k-2)}(0) = 0, \ u(l) = \dots = u^{(k-2)}(l) = 0,$$
 (3.10)

а также $u_1^{(n-k-1)}(0)=1,\ u_1^{(n-k)}(0)=0,\ u_2^{(n-k-1)}(0)=0,\ u_2^{(n-k)}(0)=1.$ В силу леммы 3.3 (при m=k-1) оба решения положительны на (0,l), причем $u_1^{(k-1)}(l)>0,\ u_2^{(k-1)}(l)>0.$

Любое нетривиальное решение уравнение $\mathcal{L}u=0$ с точностью до множителя равно $u=u_1+Cu_2$. При некотором $C=C_1$ будет $u^{(k-1)}(l)=0$. Тогда $u^{(k)}(l)\neq 0$, так как в противном случае это решение было бы тривиальным решением задачи $\mathcal{L}u=0$, $B^{k+1}u=0$. Это решение u(x) сохраняет знак (положительно) на (0,l) в силу леммы 3.3 при m=k+1.

При $C > C_1$ решение тоже положительно, а при $C < C_1$ решение меняет знак. Эти три случая противоречат свойствам нетривиального решения задачи $\mathcal{L}u = 0$, $B_{\xi}u = 0$.

4. Основная задача

Для задачи (1.2) положительная разрешимость может не иметь места даже при знакоопределенной функции Грина. В то же время удобно использовать суженное понятие положительной разрешимости, как будет видно из дальнейшего. Пусть $E \subset AC^{n-1}$ множество функций, удовлетворяющих условиям (3.10).

О пределение 4.1. Назовем задачу (3.1) E-положительно разрешимой, если из $f \le 0, \ \alpha \ge 0, \ u \in E$ следует $u \ge 0$.

Собственно, только на множестве E будем рассматривать задачу (1.2).

Нам будет нужна неполная неосцилляция в интервале [0, l].

О п р е д е л е н и е 4.2. Уравнение $\mathcal{L}u=0$ является E-неосцилляционным в интервале [0,l], если любое его решение из E имеет не более n-1 нулей в интервале [0,l], считая кратные нули столько раз, какова их кратность.

З а м е ч а н и е 4.1. Так как решение $u \in E$ уже имеет n-2 нулей, считая кратности, оно может иметь только один простой нуль в (0,l). В этом случае, сумма кратностей нулей в точках 0 и l равна n-2.

Основной целью настоящей статьи является установление следующей теоремы.

Теорема 4.1. Эквивалентны следующие утверждения.

- 1. Задача (1.2) E -положительно разрешима, причем если $(f,\alpha) \ge (0,0), \ u \in E, \ u \not\equiv 0,$ то $u(x) \ge \varepsilon x^{n-k} (l-x)^k$ для некоторого $\varepsilon > 0$.
- 2. Уравнение $\mathcal{L}u=0$ E-неосцилляционно на [0,l].
- 3. $\lambda^{k-1} > 1$ $u \lambda^{k+1} > 1$.

Третье условие является критерием положительной разрешимости задачи (1.2). Оно эффективно проверяется с помощью теорем о дифференциальных неравенствах 3.1, 3.2.

4.1. Доказательство необходимости

Мы здесь противопоставляем условия 1 и 2 условию 3.

Теорема 4.2. Пусть задача (1.2) является E-положительно разрешимой, причем если $(f,\alpha) \geq (0,0), \ u \in E, \ u \not\equiv 0, \ mo \ u(x) \geq \varepsilon x^{n-k} (l-x)^k$ для некоторого $\varepsilon > 0$. Тогда $\lambda^{k-1} > 1 \ u \ \lambda^{k+1} > 1$.

Д о к а з а т е л ь с т в о. В силу симметрии задачи достаточно доказать одно из неравенств, например, $\lambda^{k+1} > 1$. Пусть u — решение задачи

$$\mathcal{L}u = 0, \ u(0) = \dots = u^{(n-k-2)}(0) = 0, u^{(n-k-1)}(0) = 1, u(l) = \dots = u^{(k-1)}(l) = 0.$$

Это решение положительно на (0,l), и $(-1)^k u^{(k)}(l) > 0$ (по условию).

Если k < n-1, т. е. $n-k \ge 2$, то по теореме 3.1 для m = k+1 имеем $r(QH^{k+1}) < 1$. В случае k = n-1 ссылаемся на теорему 3.2.

Теорема 4.3. Пусть уравнение $\mathcal{L}u=0$ является E-неосцилляционным на [0,l]. Тогда $r(QH^{k-1})<1$ и $r(QH^{k+1})<1$.

 $\mathbb Z$ о к а з а т е л ь с т в о. E -неосцилляция влечет однозначную разрешимость задачи (3.1) при m=k-1 и m=k+1, так как нетривиальное решение этой задачи имеет n нулей.

Сначала предположим, что $2 \le k \le n-2$. Пусть u — решение задачи $\mathcal{L}u=0,\ u \in E,$ $u^{(n-k-1)}(0)=0,\ u^{(n-k)}(0)=1$. По предположению u не имеет нулей в (0,l). По теореме $3.1\ r(QH^{k-1})<1$.

Аналогично, пусть теперь u — решение $\mathcal{L}u=0,\ u\in E,\ u^{(k-1)}(l)=0,\ u^{(k)}(l)=-1.$ По предположению u не имеет нулей в (0,l). По теореме 3.1 $r(QH^{k+1})<1.$

Случаи k=1 и k=n-1 рассматриваются аналогично с применением теоремы 3.2. \square

4.2. Достаточность

Однозначную разрешимость гарантирует одно из неравенств $\lambda^{k-1} > 1$ или $\lambda^{k+1} > 1$.

Лемма 4.1. Пусть $\lambda^{k-1} > 1$ или $\lambda^{k+1} > 1$. Тогда задача (1.2) однозначно разрешима.

Д о к а з а т е л ь с т в о. В силу фредгольмовости достаточно показать, что однородная задача $\mathcal{L}u=0,\ B^ku=0$ имеет только тривиальное решение. Нетривиальное решение имеет не менее n нулей в точках 0 и l. Однако в силу замечания к лемме 3.3 это невозможно в условиях леммы.

Теорема 4.4 (E-неосцилляция). Eсли $\lambda^{k-1} > 1$ и $\lambda^{k+1} > 1$, то любое решение одно-родного уравнения $\mathcal{L}u = 0$, удовлетворяющее условиям

$$u^{(i)}(0) = 0 \ (i = 0, \dots, n - k - 2), \ u^{(j)}(l) = 0 \ (j = 0, \dots, k - 2)$$
 (4.1)

имеет не более одного простого нуля в интервале (0,l) (суммарное количество нулей в [0,l] не больше n-1, считая кратности).

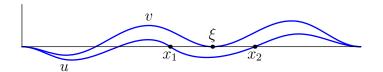


Рис. 1. К теореме 4.4

Д о к а з а т е л ь с т в о. Соглашение: для краткости ниже в доказательстве рассматриваются только решения $\mathcal{L}u=0$, удовлетворяющие (4.1). Пусть $u_1(x)$ — решение (n-k-1,k+1)-задачи (3.1) при m=k+1

$$\mathcal{L}u = 0, \ u^{(k-1)}(l) = 0, \ (-1)^k u^{(k)}(l) = -1.$$

По лемме 3.3 $u_1(x) < 0$, $x \in (0, l)$, $u_1^{(n-k-1)}(0) < 0$.

С точностью до множителя любое решение (см. соглашение выше) можно представить в виде

$$u(x) = u_1(x) + Cu_2(x),$$

где C — константа, и $u_2(x)$ — решение (n-k+1,k-1)-задачи (3.1) при m=k-1

$$\mathcal{L}u = 0, \ u^{(n-k-1)}(0) = 0, \ u^{(n-k)}(0) = 1.$$
 (4.2)

По лемме 3.3 решение $u_2(x) > 0$ на (0,l), и $(-1)^{k-1}u_2^{(k-1)}(l) > 0$.

Если $C \le 0$, то u(x) не имеет нулей в (0,l), так как в этом случае $u(x) = u_1(x) + Cu_2(x) \le u_1(x) < 0$.

Пусть теперь C > 0. Тогда

$$u^{(k-1)}(l) = u_1^{(k-1)}(l) + Cu_2^{(k-1)}(l) = Cu_2^{(k-1)}(l) > 0,$$

но $u^{(n-k-1)}(0)=u_1^{(n-k-1)}(0)<0$. Поэтому u(x) имеет нули в (0,l). Пусть x_2 — наибольший нуль (первый справа) (рис. 1). Этот нуль может быть простой или кратный. Сначала рассмотрим случай простого нуля, когда $u'(x_2)>0$. Покажем, что в этом случае нет других нулей. Предположим, напротив, что они имеются, и $x_1< x_2$ — ближайший к x_2 . Пусть $v(x)=u(x)+Du_2(x)$, где

$$D = \max_{x \in [x_1, x_2]} \left(-\frac{u(x)}{u_2(x)} \right) = -\frac{u(\xi)}{u_2(\xi)}, \ \xi \in (x_1, x_2).$$

Тогда на $[x_1, x_2]$ имеем $v(x) \ge 0$, поэтому v(x) есть нетривиальное решение задачи $\mathcal{L}v = 0$, $B_{\xi}v = 0$. А это противоречит $\lambda_{\xi} > 1$ (по лемме $3.6 \ \lambda_{\xi} > 1$). В случае кратного x_2 полагаем $\xi = x_2$.

Лемма 4.2. Пусть $\lambda^{k-1}>1$, $\lambda^{k+1}>1$, и функция u(x) — решение задачи

$$\mathcal{L}u = f, \ B^k u = 0. \tag{4.3}$$

Если $f(x) \ge \not\equiv 0$, то $u^{(n-k)}(0) < 0$ и $u^{(k)}(l) > 0$.

Д о к а з а т е л ь с т в о. По лемме 4.1 задача (4.3) имеет единственное решение. Оно является также и ненулевым решением задачи (3.1) при m=k-1, с условиями $u \in E$, $u^{(n-k)}(0)=c$. Предположим, что $u^{(n-k)}(0)\geq 0$. По лемме 3.3, $u^{(k-1)}(l)<0$, что противоречит (4.3). Противоречие показывает, что $u^{(n-k)}(0)<0$.

Неравенство $u^{(k)}(l) > 0$ доказывается аналогично.

Теорема 4.5. Пусть $\lambda^{k-1} > 1$, $\lambda^{k+1} > 1$. Если $f(x) \ge \not\equiv 0$, то задача (4.3) однозначно разрешима, ее решение отрицательно в (0,l), и $u(x) \le -\varepsilon x^{n-k}(l-x)^k$ для некоторого $\varepsilon > 0$.

Доказательство. Пусть u(x) — решение задачи (4.3). По лемме 4.2 u(x) < 0 в окрестностях точек 0 и l.

Предположим, что $u(x_0) \ge 0$ в некоторой точке $x_0 \in (0, l)$. Можно считать, что x_0 — точка максимума: $u(x_0) = \max\{u(x) : x \in [0, l]\}$. Построим неположительное решение задачи (3.5), т. е. решение, имеющее кратный нуль в некоторой точке $\xi \in (0, l)$.

Если $u(x_0) = 0$, то x_0 — кратный нуль, так как x_0 — точка максимума. В этом случае, сама u является нужным решением. Если же $u(x_0) > 0$, можно построить неположительное решение $\mathcal{L}u = f$ с кратным нулем (рис. 2). Пусть $v(x) = u(x) - Cu_2(x)$, где $u_2(x)$ — решение задачи (4.2), и

$$C = \max_{(0,l)} \frac{u(x)}{u_2(x)} = \frac{u(\xi)}{u_2(\xi)}, \ \xi \in (0,l).$$

Этот максимум существует, так как u(l) = 0 и u(x) < 0 в некоторых окрестностях точек x = 0, x = l.

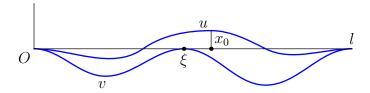


Рис. 2. К теореме 4.5

Функция v(x) неположительна, так как

$$v(x) = u(x) - Cu_2(x) = u(x) - \frac{u(\xi)}{u_2(\xi)}u_2(x) \le u(x) - \frac{u(x)}{u_2(x)}u_2(x) = 0.$$

Итак, $v(\xi) = v'(\xi) = 0$, и функция v(x) — решение задачи (3.5).

По лемме 3.6 $\lambda_{\xi} > 1$. По лемме 3.5 $v(x) \geq 0$. Но это противоречит $v(x) \leq u(x)$ и отрицательности u в окрестностях концов интервала. Противоречие показывает, что u(x) < 0 в (0, l).

Неравенство $u(x) < -\varepsilon x^{n-k}(l-x)^k$ для некоторого $\varepsilon > 0$ следует из леммы 4.2.

Теорема 4.6. Пусть $\lambda^{k-1} > 1$, $\lambda^{k+1} > 1$. Тогда нетривиальное решение u(x) задачи

$$\mathcal{L}u = 0, u \in E, u^{(n-k-1)}(0) = c_1 \ge 0, u^{(k-1)}(l) = c_2 \ge 0, (c_1 + c_2 > 0)$$

положительно на (0,l), $u(x) > \varepsilon x^{n-k}(l-x)^k$ для некоторого $\varepsilon > 0$.

Доказательство. Достаточно рассмотреть два случая: $c_1 = 1, \ c_2 = 0$ и $c_1 = 0, \ c_2 = 1$. В первом случае

$$u(x) = \frac{1}{u_1^{(n-k)}(0)} u_1(x),$$

где $u_1(x)$ — решение задачи $\mathcal{L}u=0,\ u\in E,\ u^{(k-1)}(l)=0,\ u^{(k)}(l)=-1.$ По лемме 3.3 u(x)>0 в (0,l). Неравенства $u^{(n-k-1)}(0)>0,\ u^{(k)}(l)<0$ обеспечивают неравенство $u(x)>\varepsilon x^{n-k}(l-x)^k$ для некоторого $\varepsilon>0$.

Во втором случае

$$u(x) = \frac{1}{u_2^{(k-1)}(l)} u_2(x),$$

где $u_2(x)$ — решение $\mathcal{L}u = 0$, $u \in E$, $u^{(n-k-1)}(0) = 0$, $u^{(n-k)}(0) = 1$. Теперь ссылаемся на лемму 3.3 и неравенства $u^{(n-k)}(0) > 0$, $u^{(k-1)}(l) > 0$.

References

- [1] С. Лабовский, "О положительности функций Грина функционально-дифференциального уравнения", Вестник Тамбовского университета. Серия: естественные и технические науки, 20:5 (2015), 1246–1249. [S. Labovskiy, "On positivity of Green's functions of a functional-differential equation", Tambov University Reports. Series: Natural and Technical Sciences, 20:5 (2015), 1246–1249 (In Russian)].
- [2] M. Krasnosel'skii, E. Lifshits, A. Sobolev, *Positive Linear Systems, the Method of Positive Operators*, Heldermann–Verlag, Berlin, 1989, 354 pp.
- [3] М. Крейн, М. Рутман, "Линейные операторы, оставляющие инвариантным конус в пространстве Банаха", УМН, **3**:1(23) (1948), 3–95. [М. Кгеїп, М. Rutman, "Linear operators leaving invariant a cone in a Banach space", Uspekhi Mat. Nauk, **3**:1(23) (1948), 3–95 (In Russian)].
- [4] С. М. Лабовский, "О положительных решениях линейных функционально-дифференциальных уравнений", Дифференциальные уравнения, **20**:4 (1984), 578–584; англ. пер.:S. М. Labovskiĭ, "Positive solutions of linear functional differential equations", Differential Equations, **20** (1984), 428–434.
- [5] С. М. Лабовский, "О положительных решениях двухточечной краевой задачи для линейного сингулярного функционально-дифференциального уравнения", Дифференциальные уравнения, 24:10 (1988), 1695–1704; англ. пер.:S. M. Labovskiĭ, "Positive solutions of a two-point boundary value problem for a linear singular functional-differential equation", Differential Equations, 24:10 (1988), 1116–1123.

Информация об авторе

Лабовский Сергей Михайлович, кандидат физико-математических наук, доцент кафедры высшей математики. Российский экономический университет им. Г.В. Плеханова, Москва, Российская федерация. E-mail: labovski@gmail.com

ORCID: https://orcid.org/0000-0001-7305-4630

Поступила в редакцию 15.06.2021 г. Поступила после рецензирования 21.08.2021 г. Принята к публикации 27.11.2021 г.

Information about the author

Sergey M. Labovskiy, Candidate of Physics and Mathematics, Associate Professor of the Higher Mathematics Department. Plekhanov Russian University of Economics, Moscow, Russian Federation. E-mail: labovski@gmail.com

ORCID: https://orcid.org/0000-0001-7305-4630

Received 15.06.2021 Reviewed 21.08.2021 Accepted for press 27.11.2021