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Abstract. The well-established criterion for the action and boundedness of a linear integral
operator K from the space L∞ of essentially bounded functions to the space C of functions
continuous on a compact set is extended to the case of functions taking values in Banach spaces.

The study further shows that if the operator K is active and bounded in the space C,

it is also active and bounded in the space L∞, with the norms of K in C and L∞ being
identical. A precise expression for the general value of the norm of the operator K in these
spaces, expressed in terms of its operator kernel, is provided. Addicionally, an example of an
integral operator (for scalar functions) is given, active and bounded in each of the spaces C

and L∞, but not acting from L∞ into C.

Convenient conditions for checking the boundedness of the operator K in C and L∞
are discussed. In the case of the Banach space Y of the image function values of K being
finite-dimensional, these conditions are both necessary and sufficient. In the case of infinite-
dimensionality of Y, they are sufficient but not necessary (as proven).

For dimY < ∞, unimprovable estimates for the norm of the operator K are provided in
terms of a 1 -absolutely summing constant π1(Y ), determined by the geometric properties of
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Аннотация. Известный критерий действия и ограниченности линейного интегрального
оператора K из пространства L∞ существенно ограниченных функций в пространство
C непрерывных на компакте функций обобщается на случай функций со значениями в
банаховых пространствах.

В работе также доказано, что из действия и ограниченности оператора K в простран-
стве C вытекает его действие и ограниченность в пространстве L∞, причем нормы опера-
тора K, рассматриваемого в C и L∞, совпадают. Приводится точное выражение общего
значения нормы оператора K в этих пространствах в терминах ядра оператора. В допол-
нение к этому, приводится пример интегрального оператора (для скалярных функций),
который действует и ограничен в каждом из пространств C и L∞, но не действует из
L∞ в C.

Также обсуждаются удобные для проверки условия ограниченности оператора K в C

и L∞. В случае конечномерности банахова пространства Y значений функций образа
оператора K эти условия являются одновременно необходимыми и достаточными. В слу-
чае бесконечномерности Y они являются достаточными, но не являются необходимыми
(это доказывается).

В случае dimY < ∞ приводятся неулучшаемые оценки для нормы оператора K в
терминах 1 -абсолютно суммирующей константы π1(Y ), определяемой геометрическими
свойствами нормы в Y, более точно, как супремум по конечным наборам ненулевых эле-
ментов Y отношения суммы норм этих элементов и супремума (по функционалам с еди-
ничной нормой) сумм абсолютных значений функционала на этих элементах.

Ключевые слова: банахово пространство, линейный интегральный оператор, норма ли-
нейного оператора, 1 -абсолютно суммирующая константа
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Introduction

The criteria governing the action, continuity, and compactness of the Fredholm linear
integral operator K within function spaces underwent comprehensive and thorough examina-
tion during the 20th century. These considerations are extensively documented in classical
monographs on functional analysis, as exemplified by references such as [1, 2]. The monograph
[3, p. 100] formulates necessary and sufficient conditions for the action and boundedness of
K from the space of essentially bounded functions to the space of continuous functions on a
compact set. This work also provides expressions for the norm of the operator K in terms of
its kernel.

In this paper, we extend and partially generalize these findings, building upon the characte-
ristics of the integral functional derived in the study [4]. We outline the principal directions of
advancement in our work concerning the well-established classical aspects of the operator K

within the space of continuous functions.

• We establish necessary and sufficient conditions for the action and boundedness of the
operator K from spaces of continuous functions, as well as from the space of essentially
bounded functions to the space of bounded functions, when the functions from these
spaces take values in Banach spaces.

• We demonstrate that the action and boundedness of the operator K in the space of
continuous functions imply the action and boundedness in the space of essentially bounded
functions, with the norms of both operators being equal.

• We provide an expression for the norm of the operator K in terms of its kernel.

• In the scenario of finite-dimensionality of the function value space, we establish an optimal
estimate for the norm of the operator K in terms of a convenient expression through the
kernel of the operator using 1 -absolutely summing constant.

1. Key notations and concepts

We will use the following notations:
Ω is closed bounded set in Rn with the classical Lebesgue measure µ in σ -algebra Σ

Lebesgue measurable subsets of Ω.

χE is characteristic function of a set E ⊂ Ω (χE(s) = 1 if s ∈ E and χE(s) = 0 if
s 6∈ E ).

X and Y are real separable Banach spaces with norms ‖ · ‖X and ‖ · ‖Y , accordingly,
moreover Y contains no copy of c0 (Y 6⊃ c0 ), in particular, Y reflexively.

X∗ is the dual space of X with a norm ‖ · ‖X∗ ; value of a functional f ∈ X∗ in the point
x ∈ X we will denote by f [x] or 〈x, f〉.

B(X, Y )— the space of linear bounded operators from X to Y with the natural norm.
By B1(Z), we denote the closed unit ball centered at zero in the Banach space Z, that is

B1(Z) = {x ∈ Z : ‖x‖Z ≤ 1}.
T (X) is Banach space consisting of bounded functions u : Ω→ X, with the sup-norm

‖u‖∞ = sup
t∈Ω
‖u(t)‖X .
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A function u : Ω → X is called measurable if the preimage of any Borel set in X is
Lebesgue measurable. The set of all measurable functions u : Ω→ X is denoted by L0(X).

By L∞(X), Lc∞(X), C(X) and P (X) we will denote the linear subspaces of the space
T (X), consisting of measurable bounded functions, measurable compact-valued functions, con-
tinuous functions, and measurable finite-valued functions, respectively, equipped with the sup -
norm. It is clear that the first three of these linear subspaces are closed, hence they are Banach
spaces. Let’s note that P (X) ∪ C(X) ⊂ Lc∞(X) ⊂ L∞(X) ⊂ T (X) and in the case of finite-
dimensionality of X we have Lc∞(X) = L∞(X). In particular X = R in the notations
of the introduced functional spaces, we will omit the notation of the function value space:
L∞ = L∞(R), C = C(R) and etc.

By L∞(X) we will denote the factor space of space L∞(X), consisting of classes µ -
equivalent to essentially bounded functions with the essential supremum norm

‖u‖∞ = ess sup
t∈Ω

‖u(t)‖X .

The closed subspace Lc∞(X) of the Banach space L∞(X) is defined similarly.
If the function v : Ω→ Y is such, that ∀g ∈ Y ∗ (which is equivalent to, ∀g ∈ B1(Y ∗) ) the

real function 〈v(·), g〉 is Lebesgue integrable on Ω, then there exists a unique element I ∈ Y
such that

〈I, g〉 =

∫
Ω

〈v(s), g〉 ds (∀g ∈ Y ∗) (1.1)

(see, for example, [5, p. 54]). In this case, the function v is called Pettis integrable on Ω, and
I is called the Pettis integral of the function v on Ω, denoted by

I = (P )

∫
Ω

v(s) ds.

From the separability of Y it follows that any Pettis integrable function is measurable (see
[5, p. 42, 53]).

Note that in the case when Y contains a subspace isomorphic to c0, from Lebesgue
integrability on Ω the functions 〈v(·), g〉 for each ∀g ∈ Y ∗, in general, it does not follow
that there exists I ∈ Y satisfying (1.1). For an arbitrary Banach space Y, the concept of the
Danford integral (which is an element of the second dual space Y ∗∗ ) is known, which generalizes
the concept of the Pettis integral [5, p. 52]. To avoid complicating the results in the direction
related to different definitions of integrals, we assume in the paper that Y 6⊃ c0.

If the function v : Ω→ Y is measurable and the real-valued function ‖v(·)‖Y is Lebesgue
integrable on Ω, then the function v is called Bochner integrable on Ω. The definition of the
Bochner integral is analogous to the definition of the Lebesgue integral for real-valued functions
(see [5, p. 44]). For the Bochner integral we will use the notation (B)

∫
Ω
v(s) ds.

If the function v : Ω → Y is Bochner integrable, then it is Pettis integrable and the
values of the integrals coincide. The reciprocal statement holds true if and only if Y is finite-
dimensional [5]. For the Lebesgue integral of real functions, instead of (P )

∫
and (B)

∫
, we

will write
∫
.
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2. Some auxiliary results

Lemma 2.1. The set P (X) is dense in Lc∞(X).

P r o o f. Let’s now fix arbitrary u ∈ Lc∞(X) and ε > 0. Let’s choose for the relatively
compact set u(Ω) a finite ε -net z1, z2, . . . , zm ⊂ u(Ω) and let’s define

Ai = {s ∈ Ω: ‖u(s)− zi‖X ≤ ε} (i = 1, 2, . . . ,m),

E1 = A1, Ei = Ai \
k−1
∪
j=1

Aj (i = 2, 3, . . . ,m).

Then uε =
∑m

i=1 χEi
zi ∈ P (X) and ‖u− uε‖∞ ≤ ε.

The next two lemmas follow directly from [4, Lemma 2.1 and Assertion 2.1].

Lemma 2.2. Let D ⊂ X be a convex and closed set, and let u : Ω→ Y be some measurable
function with values in D. Then there exists a sequence of functions un ∈ C(X) with values
in D that converges in measure to u.

Lemma 2.3. Let the function f : Ω×X → R satisfy the Carathéodory conditions, which
means that the function f(·, x) is measurable for each x ∈ X, and the function f(s, ·) is
continuous for each s ∈ Ω. Then the function ψ : Ω→ [0,∞] defined by ψ(s) = sup

x∈B1(X)

|f(s, x)|
is measurable, and

sup
u∈B1(L∞(X))

∫
Ω

|f(s, u(s))| ds =

∫
Ω

sup
x∈B1(X)

|f(s, x)| ds.

To prove the main results about the linear integral operator, we will need the criterion for
the action and boundedness of the linear integral functional, as well as one of its properties
established in the work [4], which we will present here without proofs.

Let a : Ω→ X∗. The functional H will be formally defined by the equation

H[u] =

∫
Ω

a(s)[u(s)] ds. (2.1)

If the finite integral (2.1) exists for all functions u : Ω→ X from a certain linear subspace V

of the space L0(X), then expression (2.1) defines a linear functional H : V → R.
Function a(·) : Ω → X∗ is said weak ∗ -measurable (see [5, p. 41]), if ∀x ∈ X the real

function a(·)[x] is measurable.

Assertion 2.1. (see [4, Theorem 4.1]) The following conditions a), b), and c) are equivalent
to each other:

a) H ∈ (C(X))∗, in other words, the functional H acts from C(X) to R and is bounded;
b) H ∈ (L∞(X))∗;

c) Function a(·) weak ∗ -measurable and ‖a‖1
def.
=
∫

Ω
‖a(s)‖X∗ ds <∞.

When any of these conditions is satisfied

‖H‖(C(X))∗ = ‖H‖(L∞(X))∗ = ‖a‖1.

Assertion 2.2. (see [4, Corollary 4.2]) If H ∈ (C(X))∗, then for any bounded sequence
un ⊂ L∞(X) converging in measure to some u ∈ L∞(X), it holds that H[un]→ H[u].
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3. Definition of an integral operator and conditions on its kernel

Let k : Ω2 → B(X, Y ). Let’s consider the linear Fredholm integral operator K with the
kernel k, defined by equality

(Ku)(t) = (P )

∫
Ω

k(t, s)u(s) ds, t ∈ Ω.

Under certain conditions on the kernel k, the operator K transforms functions u : Ω → X

into functions Ku : Ω→ Y.

For fixed (t, s) ∈ Ω2, let k∗(t, s) denote the adjoint operator of k(t, s), so that k∗ : Ω2 →
B(Y ∗, X∗) (the asterisk notation as a subscript is used to avoid confusion with the adjoint
kernel k∗(t, s) = k(s, t) ).

Let’s introduce certain constants expressed in terms of the kernel k of the operator K and
consider certain conditions on the kernel k that will be used in the following sections.

Let’s define, for now formally, the quantities ‖k‖u and ‖k‖w by:

‖k‖u
def.
= sup

t∈Ω

∫
Ω

‖k(t, s)‖B(X,Y ) ds, ‖k‖w
def.
= sup

t∈Ω; g∈B1(Y ∗)

∫
Ω

‖k∗(t, s)g‖X∗ ds.

and the conditions:
(a0) For all t ∈ Ω and x ∈ X function k(t, ·)x is measurable;

(ac) For all A ∈ Σ and x ∈ X holds
∫
A

k(·, s)x ds ∈ C(Y );

(bu) Exists and is finite the quantity ‖k‖u;
(bw) Exists and is finite the quantity ‖k‖w.
Let’s emphasize that we have introduced notations for a series of conditions but do not

assume them to be a priori satisfied.

Assertion 3.1. Under the condition (a0), the following properties hold:
1) For any t ∈ Ω and u ∈ L0(X), the function k(t, ·)u(·) : Ω→ Y is measurable;
2) For any t ∈ Ω, the function ‖k(t, ·)‖B(X,Y ) : Ω→ [0,+∞] is measurable;
3) For any t ∈ Ω, u ∈ L0(X), and g ∈ Y ∗, the function 〈k(t, ·)u(·), g〉 : Ω → R is

measurable;
4) For any t ∈ Ω and g ∈ Y ∗, the function ‖k∗(t, ·)g‖X∗ : Ω→ [0,+∞] is measurable.

P r o o f. Properties 3) and 4) follow from Lemma 2.3, applied at fixed t ∈ Ω to the function
f : Ω×X → R defined as f(s, x) = 〈k(t, s)x, g〉. In particular, for 4), we use the equality

‖k∗(t, s)g‖X∗ = sup
x∈B1(X)

|〈x, k∗(t, s)g〉| = sup
x∈B1(X)

|〈k(t, s)x, g〉| = sup
x∈B1(X)

|f(s, x)|. (3.1)

Property 1) follows from theorems 2 and 3 of the paper [6].
Finally, property 2) follows from Lemma 2.3 applied at fixed t ∈ Ω to the function f̃ :

Ω×X → R defined by f̃(s, x) = ‖k(t, s)x‖Y , taking into account the equality ‖k(t, s)‖B(X,Y ) =

supx∈B1(X) |f̃(s, x)|.

From Assertion 3.1, in particular, it follows that under condition (a0), the quantities ‖k‖u
and ‖k‖w are well-defined, which can take finite non-negative values or the value +∞.
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4. The criterion for the action and boundedness of the operator K from C(X)

and from L∞(X) to T (Y )

Theorem 4.1. The following conditions A) to D) are equivalent to each other:
A) K ∈ B(C(X), T (Y )) (the operator K acts from C(X) to T (Y ) and is bounded);
B) K ∈ B(Lc∞(X), T (Y )) ;
C) K ∈ B(L∞(X), T (Y )) ;
D) The conditions (a0) and (bw) are satisfied.
Moreover, if K ∈ B(C(X), T (Y )), then

‖K‖C(X)→T (Y ) = ‖K‖Lc
∞(X)→T (Y ) = ‖K‖L∞(X)→T (Y ) = ‖k‖w. (4.1)

P r o o f. 10 step. Let it be fair D). We will prove that K ∈ B(L∞(X), T (Y )) and

‖K‖L∞(X)→T (Y ) ≤ ‖k‖w. (4.2)

Let’s fix arbitrary u ∈ L∞(X) and t ∈ Ω. Due to condition (bw), taking into account
Assertion 3.1, for any g ∈ Y ∗ with a norm ‖g‖Y ∗ ≤ 1, we have∫

Ω

|〈k(t, s)u(s), g〉| ds =

∫
Ω

|〈u(s), k∗(t, s)g〉| ds ≤ ‖u‖∞‖k‖w <∞, (4.3)

therefore, there exists an integral (P )
∫

Ω
k(t, s)u(s) ds ∈ Y.

Furthermore, for any u ∈ L∞(X) and t ∈ Ω, we have, due to (bw), taking into account
(4.3):

‖Ku(t)‖Y = sup
g∈B1(Y ∗)

|〈Ku(t), g〉|= sup
g∈B1(Y ∗)

∣∣∣∣∫
Ω

〈u(s), k∗(t, s)g〉 ds
∣∣∣∣≤‖k‖w ‖u‖∞.

Therefore, the operator K acts from L∞(X) to T (Y ), is bounded and holds (4.2).
20step. Let K ∈ B(C(X), T (Y )). We will prove that property D) holds and the equality

‖K‖C(X)→T (Y ) = ‖k‖w. (4.4)

From the condition K : C(X)→ T (Y ) and the fact that constant functions are continuous,
condition (a0) follows.

Let us fix arbitrary t ∈ Ω and g ∈ Y ∗. We define the function a : Ω→ X∗ as follows by

a(s)[x] = 〈k(t, s)x, g〉, s ∈ Ω, x ∈ X (4.5)

and let us consider the functional H, defined by equation (2.1). From the condition K ∈
B(C(X), T (Y )), it follows that H ∈ (C(X))∗. According to Assertion 3.1, taking into account
equation (3.1), we have, using the notation C1 = B1(C(X)),∫

Ω

‖k∗(t, s)g‖X∗ds =

∫
Ω

‖a(s)‖X∗ ds = ‖F‖(C(X))∗ = sup
u∈C1

∣∣∣∣∫
Ω

a(s)[u(s)] ds

∣∣∣∣ . (4.6)

By the definition of the Pettis integral

sup
u∈C1

∣∣∣∣∫
Ω

a(s)u(s) ds

∣∣∣∣ = sup
u∈C1

∣∣∣∣∫
Ω

〈k(t, s)u(s), g〉 ds
∣∣∣∣ = sup

u∈C1

∣∣∣∣〈∫
Ω

k(t, s)u(s) ds, g

〉∣∣∣∣ . (4.7)
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From equations (4.6) and (4.7), it follows that

sup
u∈C1

∣∣∣∣〈∫
Ω

k(t, s)u(s) ds, g

〉∣∣∣∣ =

∫
Ω

‖k∗(t, s)g‖X∗ds.

Taking the supremum over all t ∈ Ω and g ∈ B1(Y ∗) in this equality, we obtain equation
(4.4). From this equation and the inequality ‖K‖C(X)→T (Y ) <∞, condition (bw) follows.

From the properties established in steps 10 and 20, the statement of the theorem follows.

5. Integral operator with values in the space of continuous functions

The following theorem provides necessary and sufficient conditions for the action and boun-
dedness of the operator K from Lc∞(X) to C(Y ) in terms of the norm expression of K

using the kernel k. It also establishes the equality of norms of the operator considered from
Lc∞(X) to C(Y ) and from C(X) to C(Y ). This theorem partially generalizes Theorem 1.1
in [3, p. 100], for the case of p =∞.

Theorem 5.1. K ∈ B(Lc∞(X), C(Y )) if and only if the conditions (ac) and (bw) hold.
Moreover, if K ∈ B(Lc∞(X), C(Y )), then

‖K‖C(X)→C(Y ) = ‖K‖Lc
∞(X)→C(Y ) = ‖k‖w. (5.1)

P r o o f. 1) Let the conditions (ac) and (bw) be satisfied.
Its clear that condition (a0) is fair, and by virtue of Theorem 4.1 K ∈ B(Lc∞(X), T (Y )).

Each function v ∈ P (X) has a representation v(s) =
∑n

i=1 χAi
(s)xk for some positive

integer n, some xi ∈ X, and pairwise disjoint sets Ai ∈ Σ. The linearity and additivity
properties of the Pettis integral [5] and the condition (ac) imply

(P )

∫
Ω

k(t, s)u(s) ds =
n∑
i=1

(P )

∫
Ai

k(t, s)xi ds

moreover, each of the integrals in the right-hand side exists and is a continuous function of t.
Therefore, the integral on the left-hand side and the equality itself will be valid. Thus, it is
proven that K(P (X)) ⊂ C(Y ).

From the continuity of the operator K : Lc∞(X)→ T (Y ), the inclusion K(P (X)) ⊂ C(Y ),

and Lemma 2.1, it follows straightforwardly that K ∈ B(Lc∞(X), C(Y )).

2) Let K ∈ B(Lc∞(X), C(Y )). For any A ∈ Σ and x ∈ X, we have v = χAx ∈ Lc∞(X),

thus (Kv)(·) = (P )
∫
A
k(·, s)x, ds ∈ C(Y ). Thus, condition (ac) is satisfied. Condition (bw)

and equality (5.1) follow from Theorem 4.1.

The following theorem provides necessary and sufficient conditions for the boundedness of
the operator K when it operates from C(X) to C(Y ), expressing its norm in terms of the
kernel k. This theorem generalizes the equality for the norm when p = ∞ in Theorem 1.2
from [3, p. 100].

Theorem 5.2. Let the operator K acts from C(X) to C(Y ). In order for K to be
bounded, it is necessary and sufficient to satisfy condition (bw).

Moreover, if K ∈ B(C(X), C(Y )), then we have ‖K‖C(X)→C(Y ) = ‖k‖w.
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P r o o f. From the condition K : C(X) → C(Y ), condition (a0) of Theorem 4.1 follows.
Taking this into account, the statement of the theorem straightforwardly follows from Theo-
rem 4.1.

As noted in [3, p. 101], a linear integral operator acting from C to C can also be considered
as acting from L∞ to L∞. The following theorem asserts this fact in the case of function spaces
with values in Banach spaces.

Theorem 5.3. If K ∈ B(C(X), C(Y )), then K ∈ B(L∞(X), L∞(Y )) and

‖K‖C(X)→C(Y ) = ‖K‖L∞(X)→L∞(Y ) = ‖k‖w.

P r o o f. According to Theorem 4.1, from the condition K ∈ B(C(X), C(Y )), it follows
that K ∈ B(L∞(X), T (Y )) and equality (4.1) holds. Thus, it sufficient to prove that for every
u ∈ L∞(X), the function Ku is measurable.

Let u ∈ L∞(X). We choose a closed ball D ⊃ u(Ω), and according to Lemma 2.2, we find
a sequence of functions un ∈ C(X) with values in D that converges to u in measure. Fix
arbitrary t ∈ Ω and g ∈ Y ∗, and define the function a : Ω → X∗ by (4.5). We consider the
functional H defined by equality (2.1). From the condition K ∈ B(C(X), C(Y )), it follows that
H ∈ (C(X))∗. By Assertion 2.2, H[un]→ H[u], which means that 〈Kun(t), g〉 → 〈Ku(t), g〉.

Since K : C(X) → C(Y ) and C(Y ) ⊂ L0(Y ), the real-valued functions 〈Kun(·), g〉
are measurable. Then, the function 〈Ku(·), g〉 is also measurable as the pointwise limit of
measurable functions. Thus, we have shown that for any g ∈ Y ∗, the function 〈Ku(·), g〉 is
measurable (this property is commonly referred to as weak µ -measurability of the function Ku,

see, for example, [5, p. 41]). Then, by Theorem 2 in [5, p. 42], combined with the separability
of Y, it follows that the function Ku is measurable.

R e m a r k 5.1. Among the theorems in this section, there are no simultaneously necessary
and sufficient conditions in terms of the kernel for the action and continuity of the operator K
from C(X) to C(Y ) (Theorem 5.1 provides a close result by replacing C(X) with Lc∞(X),

and Theorem 5.2 gives a close result about the boundedness of K under the prior assumption of
its action). Currently, we are unaware of a corresponding result even for the case X = Y = R.

As for Theorem 5.3, it can be accurately stated that the condition K ∈ B(C(X), C(Y ))

implies K ∈ B(L∞(X), L∞(Y )) (with equality of norms). However, it does not generally imply
either the action of the operator K from Lc∞(X) to C(Y ) or the validity of condition (ac)

from Theorem 5.1, even in the case of X = Y = R. We provide a corresponding counterexample
obtained in the works [7, 8].

E x a m p l e 5.1. Let X = Y = R and Ω = [0; 1]. We define the sets

E(t) =
∞
∪
n=1

[
1− (1− t)n−1 − t2(1− t)n−1; 1− (1− t)n−1

]
(0 < t < 1)

and let’s consider a linear integral operator K with a kernel k : [0; 1]2 → R defined by

k(t, s) =

{
t−1χE(t)(s) if 0 < t < 1

1 if t ∈ {0; 1}.

Then, we have K ∈ B(C,C) and K ∈ B(L∞,L∞). Furthermore, for any u ∈ L∞, the function
Ku is continuous on the interval (0; 1]. However, the operator K does not act from L∞ to
C, and there exists a Lebesgue measurable set A ⊂ [0; 1] such that

∫
A
k(·, s) ds 6∈ C.
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6. A convenient sufficient condition for the boundedness of an integral operator

The main results of the work (Theorems 4.1 and 5.1–5.3) utilize a constant ‖k‖w expressed
in terms of the kernel k and represents the exact value of the norm of the operator K in a series
of pairs of functional spaces. However, the constant ‖k‖w the constant uses the supremum over
all functionals in the unit sphere of the space Y ∗, which is not very convenient for application. In
this regard, it makes sense to analyze the possibility of replacing the constant in the main results
‖k‖w with a more convenient constant ‖k‖u, whose expression is a direct formal generalization
of a well-known expression supt∈Ω

∫
Ω
|k(t, s)| ds for the norm of a linear integral operator in

the space C (see, for example, [2, p. 183] and [3, p. 100]).

Theorem 6.1. The following statements are true:
1) If the conditions are satisfied (a0) and (bu), then K ∈ B(L∞(X), T (Y )).

2) If the conditions are satisfied (ac) and (bu), then K ∈ B(Lc∞(X), C(Y )).

3) If K : C(X) → C(Y ) and if the condition (bu) is satisfied, then K ∈ B(C(X), C(Y ))

and K ∈ B(L∞(X), L∞(Y )).

4) The norms of the operator K in all pairs of spaces considered in statements 1)–3) are
equal ‖k‖w, and the estimation is valid

‖K‖ = ‖k‖w ≤ ‖k‖u.

P r o o f. In the conditions of any of statements 1)–3), for any t ∈ Ω and g ∈ Y ∗, we
obtain, taking into account Assertion 3.1, the estimation∫

Ω

‖k∗(t, s)g‖X∗ ds ≤
∫

Ω

‖k∗(t, s)‖B(Y ∗,X∗) ‖g‖Y ∗ds = ‖g‖Y ∗
∫

Ω

‖k(t, s)‖B(X,Y ) ds.

From this, it follows that
‖k‖w ≤ ‖k‖u. (6.1)

From this inequality and Theorems 4.1, 5.1–5.3, all statements of the proven theorem follow in
an obvious manner.

R e m a r k 6.1. For any infinite-dimensional space Y, the reciprocal propositions of 1)–3)
in Theorem 6.1 do not hold. Specifically, the condition (bu), unlike (bw), is not necessary for
the action and boundedness of the operator K in pairs of functional spaces as stated in the
theorem. Let’s demonstrate this.

It is known (see, for example, [9, p. 91]) that in every infinite-dimensional Banach space Y
there exists a weakly summable sequence that is not strongly summable. In other words, there
exists a sequence (yn)n of elements in Y such that for every g ∈ Y ∗, the series

∑∞
n=1 |〈yn, g〉|

converges, while simultaneously
∑∞

n=1 ‖yn‖Y =∞.
Assuming dimY = ∞, let us fix some sequence (yn)n satisfying the aforementioned

property. Take an arbitrary countable measurable partition {En : n = 1, 2, . . .} of the set
Ω into sets En of positive measure, and define v(s) =

∑∞
n=1

1
µEn

χEn(s)yn. The constructed
function v : Ω→ Y is clearly measurable. Moreover, it satisfies the following conditions:∫

Ω

|〈v(s), g〉| ds =
∞∑
n=1

|〈yn, g〉| <∞ (∀g ∈ Y ∗),
∫

Ω

‖v(s)‖Y ds =
∞∑
n=1

‖yn‖Y =∞.
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Thus, the function v is integrable in the sense of Pettis, but not integrable in the sense of
Bochner. Moreover, this follows from [5, p. 224],

M
def.
= sup

g∈B1(Y ∗)

∫
Ω

|〈v(s), g〉| ds <∞.

Let’s now consider X = R and define a function k : Ω2 → B(R, Y ) by the equation
k(t, s)[x] = xv(s) (x ∈ R). We then examine the linear operator K with this kernel k. It is
evident that condition (a0) is satisfied, and

‖k‖w = sup
g∈B1(Y ∗)

∫
Ω

|〈k(t, s), g〉| ds = M <∞.

So, condition (bw) holds. According to Theorem 4.1, we have K ∈ B(L∞, T (Y )). Moreover,
it is evident that for any u ∈ L∞, the function Ku(·) is constant. Hence, K ∈ B(L∞, C(Y )).

By Theorem 4.1, we obtain ‖K‖L∞→C(Y ) = ‖K‖C→C(Y ) = ‖k‖w = M. On the other hand,

‖k‖u =

∫
Ω

‖v(s)‖Y ds =
∞∑
n=1

‖yn‖Y =∞.

Therefore, condition (bu) is not satisfied.

R e m a r k 6.2. In contrast to the property established in Remark 6.1 for any infinite-
dimensional Y, we note that in the case of dimY <∞, on the contrary, conditions (bu) and
(bw) are equivalent. Therefore, all the necessary and sufficient conditions from Theorems 4.1
and 5.1–5.3 will remain valid if we replace the condition (bw) with the condition (bu) (but
without replacing the constant ‖k‖u in these theorems!).

In the case of dimY < ∞, not only does the estimate (6.1) hold, but there is also a two-
sided estimate that can be expressed using a special constant of the finite-dimensional space
Y, which depends on the choice of norm in Y.

Dedicating the following section of the work to establishing these properties of the operator
K in the case of finite dimension Y.

7. Action and boundedness criteria of the integral operator and norm estimation
in the case of dimY <∞

D e f i n i t i o n 7.1. (see [10–12]) The quantity

π1(Y )
def.
= sup

{ n∑
k=1

‖yk‖Y
/

sup
g∈B1(Y ∗)

n∑
k=1

|〈yk, g〉| : n ∈ {1, 2, . . .}, y1, . . . , yn ∈ Y \ {0}
}

(7.1)

is called the 1 -absolutely summing constant of the norm space Y of nonzero dimension.

R e m a r k 7.1. 1) Equality (7.1) correctly defines the constant π1(Y ) (taking a finite
positive value or the value +∞ ) for any norm space Y of nonzero dimension. Moreover,
π1(Y ) < ∞ if and only dimY < ∞. Note that π1(Y ) = ∞ in every infinite-dimensional
Banach space Y, a consequence of the existence of a weakly summable sequence that is not
strongly summable (see Remark 6.1).

2) In finite-dimensional spaces of the same dimension equipped with different norms (which,
as known, are equivalent), the values of 1 -absolutely summing constants, in general, are
different and are related to the “geometric properties” of the space that depend on the norm.

3) In [10–12], the p -absolutely summing constant πp(Y ) was introduced any p ∈ [1;∞),

but in our work, it will be needed only for the case p = 1.
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Throughout this section we assume that the 0 < dimY <∞.

We will denote the linear space Rn equipped with the norm ‖ · ‖p defined by

‖x‖p =
( n∑
i=1

|xi|p
)1/p

(1 ≤ p <∞), ‖x‖∞ = max
i=1,2,...,n

|xi|

as Rn
p (for any p ∈ [1;∞] ).

We will present, without proof, some properties of the constant π1(Y ) established in [11],
[12]. Additionally, we will provide values of π1(Y ) for certain specific spaces in the table.

Assertion 7.1. [properties of the constant π1(Y ) ]
1. [ dimY = n ] ⇒ [

√
n ≤ π(Y ) ≤ n ] ;

2. π(Rn
1 ) =

2nn∑n
k=0C

n
k |n− 2k|

, π(Rn
2 ) =

√
π Γ

(
n+1

2

)
Γ
(
n
2

) , π(Rn
∞) = n, in particular,

π(R2n−1
1 ) = π(R2n−1

2 ) (n = 1, 2, . . .) and

n 1 2 3 4 5 6 7 8 9 10

π1(Rn
1 ) 1 2 2 8

3
8
3

16
5

16
5

128
35

128
35

256
63

π1(Rn
2 ) 1 π

2
2 3π

4
8
3

15π
16

16
5

35π
32

128
35

315π
256

For any measurable function v : Ω→ Y, let us define

‖v‖1 =

∫
Ω

‖v(s)‖Y ds, ‖v‖∗ = sup
g∈B1(Y ∗)

∫
Ω

|〈v(s), g〉| ds.

In this case, if the function v is non-integrable (recall that integrability in terms of Bochner
and Pettis are equivalent due to the finite-dimensionality of Y ), then ‖v‖1 = ‖v‖∗ =∞, and
if it is integrable, both quantities are finite. Moreover (see, for example, [5, p. 50, 224]), on
the linear space L1(Y ) consisting of integrable functions u : Ω → Y (or more precisely, their
classes of µ -equivalence), the quantities ‖ · ‖1 and ‖ · ‖∗ are norms.

Assertion 7.2. The following inequality fulfilled:

‖v‖∗ ≤ ‖v‖1 ≤ π1(Y )‖v‖∗, v ∈ L1(Y ), (7.2)

in particular, in L1(Y ) the norms ‖ · ‖1 and ‖ · ‖∗ are equivalent.
Moreover, the inequality (7.2) is unimprovable, that is

inf
v∈L1(Y ), ‖v‖∗ 6=0

‖v‖1

‖v‖∗
= 1, sup

v∈L1(Y ), ‖v‖∗ 6=0

‖v‖1

‖v‖∗
= π1(Y ).

P r o o f. Clearly, ‖v‖∗ ≤ ‖v‖1, and this bound is unimprovable, as for any constant
function v we have ‖v‖∗ = ‖v‖1.

Let v ∈ L1(Y ) and ε > 0 be arbitrary. Let us find, by definition of the Bochner integral
[5, p. 44], a function vε(·) =

∑m
k=1 χk

(·)yk ∈ P (Y ) (where sets Ek ∈ Σ are pairwise disjoint
and yk ∈ Y ), such that ‖v− vε‖1 ≤ ε. Then, by the definition of the constant π1(Y ), we have

‖v‖1 ≤ ‖vε‖1 + ε =
m∑
k=1

‖yk‖Y · µ(Ek) + ε ≤ π1(Y ) sup
g∈B1(Y ∗)

m∑
k=1

|〈yk, g〉|µ(Ek) + ε

= π1(Y )‖vε‖∗ + ε ≤ π1(Y )(‖v‖∗ + ε) + ε.
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Due to the arbitrariness of ε > 0 and v ∈ L1(Y ), this inequality implies the estimation

‖v‖1 ≤ π1(Y )‖v‖∗, v ∈ L1(Y ). (7.3)

Let’s prove the unimprovability of the estimation (7.3). Fix an arbitrary δ > 0 and find,
according to the definition of π1(Y ), such n ∈ N and elements z1, z2, . . . , zn ∈ Y, that

n∑
k=1

‖zk‖Y
/

sup
g∈B1(Y ∗)

n∑
k=1

|〈zk, g〉| > π1(Y )− δ.

Let’s take arbitrary measurable sets A1, A2, . . . , An ∈ Σ with positive measure that are pairwise
disjoint, and consider the function w(s) =

∑n
k=1

1
µ(Ak)

χAk
(s)zk. By construction,

‖w‖1 =
n∑
k=1

‖zk‖Y > (π1(Y )− δ) sup
g∈B1(Y ∗)

n∑
k=1

|〈zk, g〉| = (π1(Y )− δ)‖w‖∗.

The unimprovability of the estimation (7.3) is proven.

Note that inequality (7.2) is known and follows, for example, from Proposition 2.4 in
[9, p. 96], formulated in terms of a random element and the p -absolutely summing operator
induced by it. However, we preferred a direct proof.

Assertion 7.3. If condition (a0) is satisfied, then

π(Y )−1‖k‖u ≤ ‖k‖w ≤ ‖k‖u, (7.4)

in particular, conditions (bu) and (bw) are equivalent.
The inequality (7.4) is unimprovable (in both directions) for X = R in the class of all

functions k : Ω2 → B(R, Y ) satisfying condition (a0).

P r o o f. The inequality ‖k‖w ≤ ‖k‖u follows from Theorem 6.1. To prove its unimprova-
bility, it is sufficient to consider the case X = R and take an arbitrary nonzero element y0 ∈ Y
and define the kernel k : Ω2 → B(R, Y ) by the equation k(t, s)[x] = xy0. In this case, it is
obvious that ‖k‖w = ‖k‖u = ‖y0‖µΩ.

Proof of the inequality
π(Y )−1‖k‖u ≤ ‖k‖w (7.5)

we proceed separately for two cases.
10 step. Let ‖k‖u <∞. Fix arbitrary t ∈ Ω, ε > 0, and according to Lemma 2.3, let’s find

a function u ∈ L∞(X) with values in B1(X) such that∫
Ω

‖k(t, s)‖B(X,Y ) ds ≤
∫

Ω

‖k(t, s)u(s)‖Y ds+ ε = ‖v‖1 + ε (7.6)

where v : Ω→ Y defined by v(s) = k(t, s)u(s). According to Assertion 7.2,

π(Y )−1‖v‖1 ≤ ‖v‖∗ = sup
g∈B1(Y ∗)

∫
Ω

|〈k(t, s)u(s), g〉| ds

≤ sup
g∈B1(Y ∗)

∫
Ω

sup
x∈B1(X)

|〈k(t, s)x, g〉| ds = sup
g∈B1(Y ∗)

∫
Ω

‖k∗(t, s)g‖Y ∗ ds ≤ ‖k‖w.
(7.7)

From (7.6) and (7.7) follows

π1(Y )−1

∫
Ω

‖k(t, s)‖B(X,Y ) ds ≤ ‖k‖w + π1(Y )−1ε.
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By taking the supremum over t ∈ Ω and the infimum over ε > 0 in this inequality, we obtain
the estimate (7.5).

20 step. Let ‖k‖u =∞. Fix arbitrary R > 0 and according to Lemma 2.3, let’s find t ∈ Ω

and a function u ∈ L∞(X) with values in B1(X) such that
∫

Ω
‖k(t, s)u(s)‖Y ds > R. By

Assertion 7.2, we obtain similarly (7.7):

R <

∫
Ω

‖k(t, s)u(s)‖Y ds ≤ π1(Y ) sup
g∈B1(Y ∗)

∫
Ω

|〈k(t, s)u(s), g〉| ds ≤ π1(Y )‖k‖w.

By taking the supremum over all t ∈ Ω and R > 0 in this inequality, we obtain ‖k‖w = ∞.
Thus, inequality (7.5) is proven.

To prove the unimprovability of the estimate (7.5), it sufficient to consider the case when
‖k‖u < ∞. Fix an arbitrary δ > 0 and according to Assertion 7.2, let’s find a function
v ∈ L1(Y ) such that ‖v‖1 > (π1(Y )− δ)‖v‖∗. We define the kernel k : Ω2 → B(R, Y ) by the
equation k(t, s)[x] = xv(s). In this case, it is obvious that

‖k‖u = ‖v‖1 > (π1(Y )− δ)‖v‖∗ = (π1(Y )− δ)‖k‖w.

Thus, the assertion is proven.

The main result concerning a linear integral operator in the case of a finite-dimensional Y
follows directly from Theorems 4.1, 5.1–5.3 and Assertion 7.3.

Theorem 7.1. Let 0 < dimY <∞. The following statements are true:
1) (a0) ∧ (bu) ⇔ (a0) ∧ (bw) ⇔ K ∈ B(C(X), T (Y )) ⇔ K ∈ B(L∞(X), T (Y )).

2) (ac) ∧ (bu) ⇔ (ac) ∧ (bw) ⇔ K ∈ B(Lc∞(X), C(Y )).

3) If K acts from C(X) to C(Y ), then
(bu) ⇔ (bw) ⇔ K ∈ B(C(X), C(Y )) ⇒ K ∈ B(L∞(X), L∞(Y )).

4) The norms of the operator K in all the pairs of spaces considered in statements 1)–3)
are equal to ‖k‖w, and additionally, the following estimate holds

π1(Y )−1‖k‖u ≤ ‖K‖ = ‖k‖w ≤ ‖k‖u,

which is unimprovable in the class of bounded operators acting from C(X) to T (Y ).
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