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operator K from the space L., of essentially bounded functions to the space C' of functions
continuous on a compact set is extended to the case of functions taking values in Banach spaces.
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JIuHeliHble MHTErpaJibHbIE OIEPATOPHI B ITPOCTPAHCTBAX
HEeITPEPBIBHBIX U CYMIECTBEHHO OrPaHUYEHHBIX BEKTOP-PYHKIINI
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nearpaiapnbiii C, Mynununansasiiit paiton KaMuodymy

Awnnoramus. V3BecTHblil KpuTepuil AeiiCTBUsT U OTPAHUYEHHOCTH JIUHEITHOIO MHTErPAJIBHOTO
onepatopa K wu3 mpocTpaHcTBa Lo, CYIIECTBEHHO OTPAHUYEHHBIX (PYHKIUI B IIPOCTPAHCTBO
C' HenpepbIBHBIX Ha KOMIAKTe (DYHKIWH 0000ImaeTcst Ha cIydail (DYHKIUN cO 3HAYCHUSIMU B
6aHAXOBBIX IPOCTPAHCTBAX.

B pabote Tak:ke m0Ka3aHO, UYTO U3 JEHCTBUSA U OTPAHUYEHHOCTH ornepaTtopa K B IMpocTpaH-
crBe C' BBITEKAET €ro JIHCTBIE U OIPAHNIEHHOCTD B IPOCTPAHCTBE Loy, TPUIEM HOPMBI OTlepa-
topa K, paccmarpuBaemoro B C' u Lo, coBnagaior. [IpuBogurcs TouHoe BhIparkeHue o0IIero
3HaYEHUsI HOPMBI orieparopa K B 9TUX MPOCTPAHCTBAX B TEPMUHAX sJIpa ornepaTropa. B joros-
HEHMe K 9TOMY, IIPUBOJAUTCS IPUMED UHTErPAJBHOIO oleparopa (Jyisl CKaJsSpHBIX (DYHKIWIT),
KOTODBIIl IeCTBYyeT W OrpaHnveH B KaxkaoMm u3 npoctpanctB C u L., HO He jelicTByeT u3

Ly B C.

Takrke 06CyK1ar0TCst y100HBIE JIJIsi IIPOBEPKU YCJIOBUs OrpanndeHHocTu oneparopa K B C
u L. B ciaygae konegnomeprnocTn OanaxoBa mpocTpancTBa Y 3HadeHuil MyHKIWMI 0Opas3a
oneparopa K 5Tu yCJIOBUS SBJISIFOTCSI OJJHOBPEMEHHO HEOOXOIMMBIMU U JOCTATOYHBIMU. B ciry-
Jae 6eCKOHe“IH01VIepHOCTI/I Y OHU YABJIAIOTCA JOCTATOYHBIMH, HO HE ABJIAIOTCA HeO6XO,JII/H\H)H\/H/I
(aT0 mOKAa3BIBaETCH).

B ciyuae dimY < oo mpuBOmsTCS HeyJydIlaeMble OIEHKHU JJisi HOpMbI omeparopa K B
TepMuHax 1-abCcosroTHO cymMupylonieit koucranTel 71(Y), oupejessieMoil reoMeTpuIecKuMI
cBOficTBaMU HOPMBI B Y, 00jiee TOYHO, KAK CYIIPEMYM I10 KOHEYHBIM HAOOpaM HEHYJIEBBIX dJIe-
MeHTOB Y OTHOIIEHHsI CYMMbBI HOPM 3THX 3JIEMEHTOB U cynpemyMa (110 dbyHKIMOHAIAM C e/d-
HUYIHON HOPMOIi) CyMM abCOIOTHBIX 3HAYeHnH (DYHKIMOHAIA HA STUX JTEMEHTAX.

KitroueBbie ciioBa: 0aHAXOBO IIPOCTPAHCTBO, JIMHEHHBII HHTErPAJIBHBII OIIepaTop, HOPMa JIi-
HEWHOTO omeparopa, 1-abCoJIFOTHO CyMMUPYIOIIasi KOHCTaAHTA

Baaromapuoctu: Pabora Beinosinena mpu nojiep:kke SIDA B pamkax mommporpammbl «Hapa-
[IMBaHUe HOTEHIIMAJIA B 00JaCTH MATEMATUKY, CTATUCTUKY 1 ee npuioxkenuii» (Iloxuporpamma
1.4.2).
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Introduction

The criteria governing the action, continuity, and compactness of the Fredholm linear
integral operator K within function spaces underwent comprehensive and thorough examina-
tion during the 20th century. These considerations are extensively documented in classical
monographs on functional analysis, as exemplified by references such as [1,2]. The monograph
[3, p. 100] formulates necessary and sufficient conditions for the action and boundedness of
K from the space of essentially bounded functions to the space of continuous functions on a
compact set. This work also provides expressions for the norm of the operator K in terms of
its kernel.

In this paper, we extend and partially generalize these findings, building upon the characte-
ristics of the integral functional derived in the study [4]. We outline the principal directions of
advancement in our work concerning the well-established classical aspects of the operator K
within the space of continuous functions.

e We establish necessary and sufficient conditions for the action and boundedness of the
operator K from spaces of continuous functions, as well as from the space of essentially
bounded functions to the space of bounded functions, when the functions from these
spaces take values in Banach spaces.

e We demonstrate that the action and boundedness of the operator K in the space of
continuous functions imply the action and boundedness in the space of essentially bounded
functions, with the norms of both operators being equal.

e We provide an expression for the norm of the operator K in terms of its kernel.

e In the scenario of finite-dimensionality of the function value space, we establish an optimal
estimate for the norm of the operator K in terms of a convenient expression through the
kernel of the operator using 1-absolutely summing constant.

1. Key notations and concepts

We will use the following notations:

Q) is closed bounded set in R™ with the classical Lebesgue measure p in o-algebra X
Lebesgue measurable subsets of ).

XE is characteristic function of a set £ C Q (xg(s) =1 if s € E and xg(s) = 0 if
s FE).

X and Y are real separable Banach spaces with norms || - |x and | - ||y, accordingly,
moreover Y contains no copy of ¢y (Y 5 co), in particular, Y reflexively.

X* is the dual space of X with a norm || - ||x+; value of a functional f € X* in the point
x € X we will denote by f[z] or (z, f).

B(X,Y)— the space of linear bounded operators from X to Y with the natural norm.

By Bi(Z), we denote the closed unit ball centered at zero in the Banach space Z, that is
B(Z)={z € Z:||z|z < 1}.

T(X) is Banach space consisting of bounded functions u :  — X, with the sup-norm

[ullo = sup [lu(?)|[x-
teQ
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A function u : © — X is called measurable if the preimage of any Borel set in X is
Lebesgue measurable. The set of all measurable functions u :  — X is denoted by Lg(X).

By Loo(X), L5 (X), C(X) and P(X) we will denote the linear subspaces of the space
T(X), consisting of measurable bounded functions, measurable compact-valued functions, con-
tinuous functions, and measurable finite-valued functions, respectively, equipped with the sup-
norm. It is clear that the first three of these linear subspaces are closed, hence they are Banach
spaces. Let’s note that P(X)U C(X) C LS (X) C Loo(X) € T(X) and in the case of finite-
dimensionality of X we have LS (X) = Lo(X). In particular X = R in the notations
of the introduced functional spaces, we will omit the notation of the function value space:
Ly = L(R), C =C(R) and etc.

By Lo(X) we will denote the factor space of space Ls(X), consisting of classes -
equivalent to essentially bounded functions with the essential supremum norm

[ulloo = ess sup [lu(t)[|x-
teQ

The closed subspace LS (X) of the Banach space L. (X) is defined similarly.

If the function v : Q@ — Y is such, that Vg € Y* (which is equivalent to, Vg € By (Y*)) the
real function (v(),g) is Lebesgue integrable on €2, then there exists a unique element I € Y
such that

(1,g) = / (v(s).g)ds (Vg€ V) (11)

(see, for example, [5, p. 54]). In this case, the function v is called Pettis integrable on €, and
I is called the Pettis integral of the function v on €2, denoted by

[ =(P) /Q v(s) ds.

From the separability of Y it follows that any Pettis integrable function is measurable (see
[5, p. 42, 53|).

Note that in the case when Y contains a subspace isomorphic to ¢y, from Lebesgue
integrability on 2 the functions (v(:),g) for each Vg € Y* in general, it does not follow
that there exists I € Y satisfying (1.1). For an arbitrary Banach space Y, the concept of the
Danford integral (which is an element of the second dual space Y**) is known, which generalizes
the concept of the Pettis integral [5, p. 52]. To avoid complicating the results in the direction
related to different definitions of integrals, we assume in the paper that Y 2 c¢.

If the function v : 2 — Y is measurable and the real-valued function |[v(-)||y is Lebesgue
integrable on (2, then the function v is called Bochner integrable on (2. The definition of the
Bochner integral is analogous to the definition of the Lebesgue integral for real-valued functions
(see [5, p. 44]). For the Bochner integral we will use the notation (B) [, v(s) ds.

If the function v : € — Y 1is Bochner integrable, then it is Pettis integrable and the
values of the integrals coincide. The reciprocal statement holds true if and only if Y is finite-
dimensional [5]. For the Lebesgue integral of real functions, instead of (P) [ and (B) [, we
will write f .
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2. Some auxiliary results
Lemma 2.1. The set P(X) is dense in LS (X).

Proof. Let’s now fix arbitrary u € L (X) and € > 0. Let’s choose for the relatively
compact set u(€2) a finite e-net 21, 29,..., 2, C u(Q) and let’s define

Ai={seQ: |lu(s) —zllx <e} (=12,...,m),
k—1
E1:A1, EZ:AZ\UIAJ (222,3,,771)
j:

Then u. =Y ", xg 2z € P(X) and [ju — u.||o <e. O
The next two lemmas follow directly from [4, Lemma 2.1 and Assertion 2.1]|.

Lemma 2.2. Let D C X be a convex and closed set, and let u : Q2 — Y be some measurable
function with values in D. Then there exists a sequence of functions wu, € C(X) with values
D that converges in measure to u.

Lemma 2.3. Let the function f:Q x X — R satisfy the Carathéodory conditions, which
means that the function f(-,x) is measurable for each x € X, and the function f(s,-) is
continuous for each s € Q. Then the function ¢ : Q — [0, 00] defined by ¢(s) = sup |f(s,z)]

)

. zeB (X
is measurable, and 1

sup / |f(s,u(s))]ds = / sup |f(s,z)|ds.
uEB1 (Lo (X)) J Q2 Q z€B; (X)

To prove the main results about the linear integral operator, we will need the criterion for
the action and boundedness of the linear integral functional, as well as one of its properties
established in the work [4], which we will present here without proofs.

Let a:Q — X*. The functional H will be formally defined by the equation

Hiu] = /Q a(s)[u(s)] ds. (2.1)

If the finite integral (2.1) exists for all functions u : Q@ — X from a certain linear subspace V'
of the space Lo(X), then expression (2.1) defines a linear functional H : V' — R.

Function a(:) : © — X* is said weak *-measurable (see [5, p. 41]), if Vo € X the real
function a(-)[x] is measurable.

Assertion 2.1. (see [4, Theorem 4.1|) The following conditions a), b), and c) are equivalent
to each other:

a) H e (C(X))*, in other words, the functional H acts from C(X) to R and is bounded;

b) H € (Lu(X))"

c) Function a(-) weak™ -measurable and ||a||, =3 Jo lla(s) || x+ ds < oo.

When any of these conditions is satisfied

[ Hl(ccxy = 1H (L)) = llall1-

Assertion 2.2. (see [4, Corollary 4.2|) If H € (C(X))*, then for any bounded sequence
Up C Loo(X) converging in measure to some u € Loo(X), it holds that H[u,) — Hlu].
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3. Definition of an integral operator and conditions on its kernel

Let k:Q? — B(X,Y). Let’s consider the linear Fredholm integral operator K with the
kernel k, defined by equality

(Ku)(t) = (P) / k(t,s)u(s)ds, teQ.
Q
Under certain conditions on the kernel k, the operator K transforms functions w : 2 — X
into functions Ku:Q — Y.

For fixed (t,s) € Q2, let k.(t,s) denote the adjoint operator of k(t,s), so that k, : Q% —
B(Y*, X*) (the asterisk notation as a subscript is used to avoid confusion with the adjoint
kernel k*(t,s) = k(s,t)).

Let’s introduce certain constants expressed in terms of the kernel k of the operator K and
consider certain conditions on the kernel £ that will be used in the following sections.

Let’s define, for now formally, the quantities ||k, and ||k, by:

def. def.
bl L sup [k mcryds. b s [ sl ds
teQ JQ ) JQ

teQ; geB1(Y'*

and the conditions:

ag) Forall t € Q2 and = € X function k(t,-)x is measurable;

a.) Forall AeX¥ and = € X holds / k(-,s)xds € C(Y);
A

b,) Exists and is finite the quantity | k||.;
by) Exists and is finite the quantity ||k||.-

(

(

(

(

Let’s emphasize that we have introduced notations for a series of conditions but do not
assume them to be a priori satisfied.

Assertion 3.1. Under the condition (ag), the following properties hold:

1) For any t € Q and u € Lo(X), the function k(t,)u(-) : Q =Y is measurable;

2) For any t € Q, the function ||k(t,-)||px,y) : 2 = [0, +00] is measurable;

3) For any t € Q, u € Lo(X), and g € Y*, the function (k(t,-)u(:),g) : Q@ — R is
measurable;

4) For any t € Q and g € Y*, the function ||k.(t,-)g|

x+ : Q0 — [0, +00] is measurable.

P r o o f. Properties 3) and 4) follow from Lemma 2.3, applied at fixed ¢ € € to the function
f:Qx X — R defined as f(s,z) = (k(t, )z, g). In particular, for 4), we use the equality

1K+ (t, 5)g]

X* = sup |<$,]€*(t,8>g>| = Ssup ‘<k(t7 S)I’,g>| = Sup |f(8,l’)| (31>
z€B1(X) z€B1(X) x€B1(X)

Property 1) follows from theorems 2 and 3 of the paper [6]. _
Finally, property 2) follows from Lemma 2.3 applied at fixed ¢ € € to the function f :

QOxX — R defined by f(s,x) = ||k(t, s)x|]y, taking into account the equality ||k(t, s)| px,y) =

SUPgzeB, (X) | f(s,2)]. [

From Assertion 3.1, in particular, it follows that under condition (ag), the quantities ||k||,
and ||k|l, are well-defined, which can take finite non-negative values or the value +oc.
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4. The criterion for the action and boundedness of the operator K from C(X)
and from L. (X) to T(Y)

Theorem 4.1. The following conditions A) to D) are equivalent to each other:

A) K e B(C(X), T(Y)) (the operator K acts from C(X) to T(Y) and is bounded);
B) K € B(LL(X),T(Y));
C) K€ B(Lo(X),T(Y));

D) The conditions (ag) and (by,) are satisfied.
Moreover, if K € B(C(X),T(Y)), then

1K looo 7oy = 1K e co-mor) = Koy = [[Elw- (4.1)
Proof. 1%step. Let it be fair D). We will prove that K € B(L.(X),T(Y)) and
K e ) s10r) < (K- (4.2)

Let’s fix arbitrary u € Lo(X) and t € €. Due to condition (by), taking into account
Assertion 3.1, for any ¢ € Y* with a norm ||g|

y+ < 1, we have

e sjuts) gl ds = [ fats) k900l ds < sl <0, (43)

therefore, there exists an integral (P) [, k( s)ds €Y.
Furthermore, for any u € L. (X) and t E Q we have, due to (by,), taking into account
(4.3):

[Ku(t)[y=sup [(Ku(t),g)|= sup
geB1(Y*) geB1(Y™)

LW@ww@mwsmmmm.

Therefore, the operator K acts from Lo (X) to T'(Y), is bounded and holds (4.2).
20step. Let K € B(C(X),T(Y)). We will prove that property D) holds and the equality

Kl cco-rry = 1kllw- (4.4)

From the condition K : C'(X) — T'(Y) and the fact that constant functions are continuous,
condition (ag) follows.
Let us fix arbitrary t € Q and g € Y*. We define the function a : 2 — X* as follows by

a(s)x] = (k(t, s)z, g), seQ, reX (4.5)

and let us consider the functional H, defined by equation (2.1). From the condition K €
B(C(X),T(Y)), it follows that H € (C(X))*. According to Assertion 3.1, taking into account
equation (3.1), we have, using the notation Cy = B;(C(X)),

[kt 9leds = [ o)l ds = [Pl = sup (46)
Q Q ueCy

[ ) as|

< /Q k(t, s)u(s) ds, g>‘ (4.7)

By the definition of the Pettis integral

/Qa(s)u(s) ds

sup
ueCh

= sup
ueCq

= sup
ueCh

/Q(k:(t, s)u(s), g)ds
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From equations (4.6) and (4.7), it follows that

</Qk(t,s) ) ds, g>‘ /||/<; (t, )g

Taking the supremum over all ¢t €  and ¢g € B;(Y*) in this equality, we obtain equation
(4.4). From this equation and the inequality ||K||c(x)—r) < 0o, condition (by) follows.

From the properties established in steps 1° and 2°, the statement of the theorem follows.

O

X*dS

sup
ueCh

5. Integral operator with values in the space of continuous functions

The following theorem provides necessary and sufficient conditions for the action and boun-
dedness of the operator K from LS (X) to C(Y) in terms of the norm expression of K
using the kernel k. It also establishes the equality of norms of the operator considered from
Le(X) to C(Y) and from C(X) to C(Y). This theorem partially generalizes Theorem 1.1
in [3, p. 100], for the case of p = oo.

Theorem 5.1. K € B(LS (X),C(Y)) if and only if the conditions (a.) and (by) hold.
Moreover, if K € B(LS(X),C(Y)), then

K leeo-co) = 1Kl co-cr) = [1F]lw- (5.1)

Proof. 1) Let the conditions (a.) and (by,) be satisfied.

Its clear that condition (ag) is fair, and by virtue of Theorem 4.1 K € B(LS (X),T(Y)).

Each function v € P(X) has a representation v(s) = Y1 xa,(s)zy for some positive
integer n, some x; € X, and pairwise disjoint sets A; € X. The linearity and additivity
properties of the Pettis integral [5] and the condition (a.) imply

n

(P) /Q Kt s)u(s) ds = 3 (P) /A () ds

i=1

moreover, each of the integrals in the right-hand side exists and is a continuous function of t.
Therefore, the integral on the left-hand side and the equality itself will be valid. Thus, it is
proven that K(P(X)) C C(Y).

From the continuity of the operator K : LS (X) — T(Y), the inclusion K(P(X)) C C(Y),
and Lemma 2.1, it follows straightforwardly that K € B(L¢ (X),C(Y)).

2) Let K € B(LC (X) C(Y)) For any A € ¥ and z € X, we have v = yaz € L (X),
thus (Kv)(-) = (P) [, k(-,s)x,ds € C(Y). Thus, condition (a.) is satisfied. Condition (by)
and equahty (5. 1) follow from Theorem 4.1. O

The following theorem provides necessary and sufficient conditions for the boundedness of
the operator K when it operates from C(X) to C(Y), expressing its norm in terms of the
kernel k. This theorem generalizes the equality for the norm when p = oo in Theorem 1.2
from (3, p. 100].

Theorem 5.2. Let the operator K acts from C(X) to C(Y). In order for K to be
bounded, it is necessary and sufficient to satisfy condition (by).
Moreover, if K € B(C(X),C(Y)), then we have ||K|cx)=or) = ||K| w-
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P roof. From the condition K : C(X) — C(Y), condition (ag) of Theorem 4.1 follows.
Taking this into account, the statement of the theorem straightforwardly follows from Theo-
rem 4.1. [

As noted in [3, p. 101], a linear integral operator acting from C' to C' can also be considered
as acting from L., to L.. The following theorem asserts this fact in the case of function spaces
with values in Banach spaces.

Theorem 5.3. If K € B(C(X),C(Y)), then K € B(Loo(X), Lo(Y)) and

I Kllcco—cr) = 1K |Lw)—La) = 1Flw-

P roof. According to Theorem 4.1, from the condition K € B(C(X),C(Y)), it follows
that K € B(Lo(X),T(Y)) and equality (4.1) holds. Thus, it sufficient to prove that for every
u € Loo(X), the function Ku is measurable.

Let u € Loo(X). We choose a closed ball D D u(f2), and according to Lemma 2.2, we find
a sequence of functions u, € C(X) with values in D that converges to u in measure. Fix
arbitrary ¢ € Q and ¢g € Y*, and define the function a : Q@ — X* by (4.5). We consider the
functional H defined by equality (2.1). From the condition K € B(C(X),C(Y)), it follows that
H e (C(X))*. By Assertion 2.2, H[u,| — H[u], which means that (Ku,(t),g) — (Ku(t),g).

Since K : C(X) — C(Y) and C(Y) C Lo(Y), the real-valued functions (Ku,(-),g)
are measurable. Then, the function (Kwu(-),g) is also measurable as the pointwise limit of
measurable functions. Thus, we have shown that for any ¢g € Y*, the function (Ku(-),g) is
measurable (this property is commonly referred to as weak p-measurability of the function Ku,
see, for example, [5, p. 41]). Then, by Theorem 2 in |5, p. 42|, combined with the separability
of Y, it follows that the function Kwu is measurable. m

Remark 5.1. Among the theorems in this section, there are no simultaneously necessary
and sufficient conditions in terms of the kernel for the action and continuity of the operator K
from C(X) to C(Y) (Theorem 5.1 provides a close result by replacing C(X) with L (X),
and Theorem 5.2 gives a close result about the boundedness of K under the prior assumption of
its action). Currently, we are unaware of a corresponding result even for the case X =Y =R.

As for Theorem 5.3, it can be accurately stated that the condition K € B(C(X),C(Y))
implies K € B(Loo(X), Loo(Y)) (with equality of norms). However, it does not generally imply
either the action of the operator K from LS (X) to C(Y) or the validity of condition (a.)
from Theorem 5.1, even in the case of X =Y = R. We provide a corresponding counterexample
obtained in the works [7,8|.

Example 5.1 Let X=Y =R and = [0;1]. We define the sets

B(t) = ‘Ejl - -t =21 —t)" 5 1-1-0""] (0<t<1)
and let’s consider a linear integral operator K with a kernel k : [0;1]> — R defined by

- tile(t)(S> if 0<t<l1
k(t. ) _{ 1 if te{0;1}.

Then, we have K € B(C,C) and K € B(Ly, Ls). Furthermore, for any u € Lo, the function
Ku is continuous on the interval (0;1]. However, the operator K does not act from L., to
C, and there exists a Lebesgue measurable set A C [0;1] such that [, k(-,s)ds & C.
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6. A convenient sufficient condition for the boundedness of an integral operator

The main results of the work (Theorems 4.1 and 5.1-5.3) utilize a constant ||k||,, expressed
in terms of the kernel k and represents the exact value of the norm of the operator K in a series
of pairs of functional spaces. However, the constant | k||, the constant uses the supremum over
all functionals in the unit sphere of the space Y*, which is not very convenient for application. In
this regard, it makes sense to analyze the possibility of replacing the constant in the main results
Ik]|., with a more convenient constant ||k||,, whose expression is a direct formal generalization
of a well-known expression sup,cq [, [k(t,s)| ds for the norm of a linear integral operator in
the space C' (see, for example, |2, p. 183] and [3, p. 100]).

Theorem 6.1. The following statements are true:

1) If the conditions are satisfied (ag) and (by), then K € B(Lo(X),T(Y)).

2) If the conditions are satisfied (a.) and (by), then K € B(LS (X),C(Y)).

3) If K:C(X)— C(Y) and if the condition (by,) is satisfied, then K € B(C(X),C(Y))
and K € B(Loo(X), Loo(Y)).

4) The norms of the operator K in all pairs of spaces considered in statements 1)-3) are
equal ||k||lw, and the estimation is valid

KN = (1Kl < 1Kl

P roof. In the conditions of any of statements 1)-3), for any ¢t € Q and g € Y*, we
obtain, taking into account Assertion 3.1, the estimation

J Wt s)alle-ds < [ 1k 9araco lol-ds = gl | (e s)laces ds.
Q Q Q

From this, it follows that
1]l < (& ]lu- (6.1)

From this inequality and Theorems 4.1, 5.1-5.3, all statements of the proven theorem follow in
an obvious manner. O

Remark 6.1. Forany infinite-dimensional space Y, the reciprocal propositions of 1)-3)
in Theorem 6.1 do not hold. Specifically, the condition (b,), unlike (by,), is not necessary for
the action and boundedness of the operator K in pairs of functional spaces as stated in the
theorem. Let’s demonstrate this.

It is known (see, for example, |9, p. 91]) that in every infinite-dimensional Banach space Y
there exists a weakly summable sequence that is not strongly summable. In other words, there
exists a sequence (y,), of elements in Y such that for every g € Y*, the series > 7 [(Yn, 9)|
converges, while simultaneously >~ |lyn|ly = oc.

Assuming dimY = oo, let us fix some sequence (y,), satisfying the aforementioned
property. Take an arbitrary countable measurable partition {F, : n = 1,2,...} of the set
o ﬁx g, (8)yn. The constructed
function v : 2 — Y is clearly measurable. Moreover, it satisfies the following conditions:

Q into sets E, of positive measure, and define v(s) = >

Ll alds =3 o)l <o0 ge v [ olds =3 ol =
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Thus, the function v is integrable in the sense of Pettis, but not integrable in the sense of
Bochner. Moreover, this follows from [5, p. 224],

M sup /] g)|ds < oo.

gGBl Y*

Let’s now consider X = R and define a function k : Q> — B(R,Y) by the equation
k(t,s)[z] = zv(s) (x € R). We then examine the linear operator K with this kernel k. It is
evident that condition (ag) is satisfied, and

Il = sup [ |(k(t.5).)] ds = M < .
g€B1(Y*) JQ
So, condition (by) holds. According to Theorem 4.1, we have K € B(L.,,T(Y)). Moreover,
it is evident that for any u € Lo, the function Ku(-) is constant. Hence, K € B(L.,C(Y)).
By Theorem 4.1, we obtain || K| o) = | K|lc—cw) = [|k]lw = M. On the other hand,

Ik = / L)y ds = 3 lgnlly = o0
n=1

Therefore, condition (b,) is not satisfied.

Remark 6.2, In contrast to the property established in Remark 6.1 for any infinite-
dimensional Y, we note that in the case of dimY < oo, on the contrary, conditions (b,) and
(by) are equivalent. Therefore, all the necessary and sufficient conditions from Theorems 4.1
and 5.1-5.3 will remain valid if we replace the condition (by) with the condition (b,) (but
without replacing the constant ||k||, in these theorems!).

In the case of dimY < oo, not only does the estimate (6.1) hold, but there is also a two-
sided estimate that can be expressed using a special constant of the finite-dimensional space
Y, which depends on the choice of norm in Y.

Dedicating the following section of the work to establishing these properties of the operator
K in the case of finite dimension Y.

7. Action and boundedness criteria of the integral operator and norm estimation
in the case of dimY < oo

Definition T7.1. (see [10—12]) The quantity

m (Y déf sup{ZHka / sup Z| Uk, )|+ me{1,2,...}, yl,...,yneY\{O}} (7.1)

9631 Y*

is called the 1 -absolutely summing constant of the norm space Y of nonzero dimension.

Remark 7.1.1) Equality (7.1) correctly defines the constant m(Y) (taking a finite
positive value or the value +o0o0) for any norm space Y of nonzero dimension. Moreover,
m(Y) < oo if and only dimY < oco. Note that m(Y) = oo in every infinite-dimensional
Banach space Y, a consequence of the existence of a weakly summable sequence that is not
strongly summable (see Remark 6.1).

2) In finite-dimensional spaces of the same dimension equipped with different norms (which,
as known, are equivalent), the values of 1-absolutely summing constants, in general, are
different and are related to the “geometric properties” of the space that depend on the norm.

3) In [10-12], the p-absolutely summing constant m,(Y") was introduced any p € [1;00),
but in our work, it will be needed only for the case p = 1.
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Throughout this section we assume that the 0 < dimY < oo.

We will denote the linear space R" equipped with the norm || - ||, defined by

n

1/p
ol = (Y Jzil”) " (1 <p<o0), el = max |a]

1=1,2,....n
=1

as R} (for any p € [1;00]).
We will present, without proof, some properties of the constant 7 (Y") established in [11],
[12]. Additionally, we will provide values of 71(Y") for certain specific spaces in the table.

Assertion 7.1. [properties of the constant m(Y) ]
1. [dmY =n] = [vVn<n(Y)<n];
2"n VT (2
2. mRY) = < , m(R}) = ———=2=%, ©(RY) = n, in particular,
' 2 k=0 Citln — 2K ’ r(3)
(R = 7R3 (n=1,2,...) and

n 112131415 6 7 8 9 10
n 8 | 8] 16 | 16 | 128 | 128 | 256
mRY) 1121205 35| 3 5 | 35 | 35 63
n x 3n | 8 | 157 | 16 | 85¢ | 128 | 315¢
MR N3 121F 15|56 |5 | 5 | 5 | 256

For any measurable function v : 2 — Y, let us define

ol = [ elvds, o= sup [ (sl ds
Q geB1(Y*) Ja
In this case, if the function v is non-integrable (recall that integrability in terms of Bochner
and Pettis are equivalent due to the finite-dimensionality of Y), then ||v||; = ||v||s = oo, and
if it is integrable, both quantities are finite. Moreover (see, for example, |5, p. 50, 224]), on
the linear space L;(Y") consisting of integrable functions u : @ — Y (or more precisely, their
classes of p-equivalence), the quantities || - [|; and |- ||« are norms.

Assertion 7.2. The following inequality fulfilled:
[ol[« < lvlly < m)vlle,  ve Li(Y), (7.2)

in particular, in Li(Y') the norms || - |1 and |- ||, are equivalent.
Moreover, the inequality (7.2) is unimprovable, that is

||U||1 . ||U||1 _7T1<Y).

veL1(Y), ||lv|l#£0 ||U||* - veL1(Y), |lv]«#£0 ||U||* B

Proof Clearly, ||v]. < |jv|1, and this bound is unimprovable, as for any constant
function v we have ||v||.« = ||v]]1.

Let v € Li(Y) and & > 0 be arbitrary. Let us find, by definition of the Bochner integral
[5, p. 44], a function v.(-) = >}, x,()yx € P(Y) (where sets Ej, € ¥ are pairwise disjoint
and y, € V), such that ||[v —v.||; <e. Then, by the definition of the constant m(Y"), we have

ol < loell+ e =D lgelly - u(Ex) +e <m(Y) sup > [(yr 9)|u(Ex) + e
k=1 9€B1(Y") oy

=mY)|vells + e <mY)([[v]l« +¢) +e.
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Due to the arbitrariness of € > 0 and v € Ly(Y), this inequality implies the estimation
[olly <mY)llvll,  ve Li(Y). (7.3)

Let’s prove the unimprovability of the estimation (7.3). Fix an arbitrary ¢ > 0 and find,
according to the definition of m(Y’), such n € N and elements 21, z3,...,2, € Y, that

> ladly / sup Z|zkg|>m< )4
k=1

gEB (Y™
Let’s take arbitrary measurable sets Aj, A, .. A E Y. with positive measure that are pairwise
disjoint, and consider the function w(s) = Zk 1 A XA (s )zx. By construction,

n

lwli =" llzlly > (m(Y) =6) sup > [z g)| = (m(Y) = 8)||w]..
k=1

gEB, (Y*) k—1

The unimprovability of the estimation (7.3) is proven. O

Note that inequality (7.2) is known and follows, for example, from Proposition 2.4 in
[9, p. 96|, formulated in terms of a random element and the p-absolutely summing operator
induced by it. However, we preferred a direct proof.

Assertion 7.3. If condition (ag) is satisfied, then
(V) "kl < (Kl < [[F]lu, (7.4)
in particular, conditions (b,) and (by) are equivalent.

The inequality (7.4) is unimprovable (in both directions) for X = R in the class of all
functions k: Q* — B(R,Y) satisfying condition (ag).

P roof The inequality |k, < ||k|l, follows from Theorem 6.1. To prove its unimprova-
bility, it is sufficient to consider the case X = R and take an arbitrary nonzero element gy, € Y
and define the kernel & : Q* — B(R,Y) by the equation k(t,s)[z] = zyo. In this case, it is
obvious that ||k|lw = [|k]l. = ||yo]| €2

Proof of the inequality

(V)7 Ikl < Kl (7.5)

we proceed separately for two cases.

19 step. Let HkHu < oo. Fix arbitrary ¢t € Q, ¢ > 0, and according to Lemma 2.3, let’s find
a function u € Ly (X) with values in B;(X) such that

/||kts \|B(Xy)ds</\|kt syu(s)|ly ds +e = ol + & (7.6)

where v:Q — Y defined by v(s) = k(t, s)u(s). According to Assertion 7.2,

a(YV) vl < Jlolle = sup / [(k(t, s)u(s), g)| ds
9em ) (7.7)
< sup / sup [(k(t,s)z,g)|ds = sup / ki (t, $)glly=ds < ||k]|w-
Q

geB1(Y™) z€B1(X) geB1(Y*) JQ

From (7.6) and (7.7) follows

M) [ Wt o)l ds < [l -+ m(¥)
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By taking the supremum over ¢ € 2 and the infimum over € > 0 in this inequality, we obtain
the estimate (7.5).

20 step. Let ||k||, = co. Fix arbitrary R > 0 and according to Lemma 2.3, let’s find ¢ € Q
and a function u € Lo (X) with values in By(X) such that [, ||k(¢, s)u(s)|lyds > R. By
Assertion 7.2, we obtain similarly (7.7):

R</||k:t s)u(s)|ly ds < m(Y) sup /| (t,s)u(s), g)| ds < w1 (Y)||k||w-

g€B1 Y*

By taking the supremum over all ¢ € Q and R > 0 in this inequality, we obtain |[|k|, = 0.
Thus, inequality (7.5) is proven.

To prove the unimprovability of the estimate (7.5), it sufficient to consider the case when
llk||. < oo. Fix an arbitrary 6 > 0 and according to Assertion 7.2, let’s find a function
v € L1(Y) such that |[v|; > (m(Y) — d)||v|l.. We define the kernel k: Q* — B(R,Y) by the
equation k(t, s)[x] = zv(s). In this case, it is obvious that

[Ellu = [lolls > (m(Y) = O)[oll« = (m(Y) = O)[|E]l-

Thus, the assertion is proven. O]

The main result concerning a linear integral operator in the case of a finite-dimensional Y
follows directly from Theorems 4.1, 5.1-5.3 and Assertion 7.3.

Theorem 7.1. Let 0 < dimY < oo. The following statements are true:
1) (ag) A(by) & (ag) A (by) & K € B(C(X), T(Y)) & K € B(Loo(X), T(Y)).
2) (ac) A (by) & (ac) A(bw) & K € B(LE(X),C(Y)).
3) If K acts from C(X) to C(Y), then
(by) & (by) & K e B(C(X),C(Y)) = K € B(Loo(X), Loo(Y)).

4) The norms of the operator K in all the pairs of spaces considered in statements 1)-3)
are equal to ||k, and additionally, the following estimate holds

m (V) el < 1K1 = [[Ello < (5],

which is unimprovable in the class of bounded operators acting from C(X) to T(Y).
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