УДК 511.36

БЕСКОНЕЧНАЯ АЛГЕБРАИЧЕСКАЯ НЕЗАВИСИМОСТЬ ПОЛИАДИЧЕСКИХ РЯДОВ С ПЕРИОДИЧЕСКИМИ КОЭФФИЦИЕНТАМИ

© 2024 г. В. Г. Чирский 1*

Представлена академиком РАН А. Л. Семёновым

Получено 12.09.2024 г. После доработки 02.10.2024 г. Принято к публикации 02.10.2024 г.

Рассмотрим последовательности целых чисел $a_n^{(k,j)}$, $k=1,\ldots,T_j$, $j=1,\ldots,m$, удовлетворяющие условиям $a_n^{(k,j)}=a_{n+T_j}^{(k,j)}$, $j=1,\ldots,m$, $k=1,\ldots,T_j$, $n=0,1,\ldots$, и рассмотрим ряды $F_{j,k}(z)=\sum_{n=0}^{\infty}a_n^{(k,j)}n!z^n$, $k=1,\ldots,T_j$, $j=1,\ldots,m$. Устанавливаются условия, при которых совокупность рядов $F_{j,k}(z)$, $k=2,\ldots,T_j$, $j=1,\ldots,m$ и ряд Эйлера $\Phi(z)=\sum_{n=0}^{\infty}n!z^n$ алгебраически независимы над $\mathbb{C}(z)$ и для любого целого алгебраического числа $\gamma\neq 0$ их значения в точке γ бесконечно алгебраически независимы.

Ключевые слова: полиадические числа, бесконечная алгебраическая независимость.

DOI: 10.31857/S2686954324050032, EDN: XESVLP

Работа продолжает исследования, начатые в статье [1]. Используется модификация метода Зигеля—Шидловского [2], [3] для полиадических чисел [4] и подход, предложенный в работе В.Х Салихова [5]. Пусть T_1, \ldots, T_m — попарно взаимно простые натуральные числа. Рассмотрим последовательности целых чисел $a_n^{(k,j)}$, $k=1,\ldots,T_j,\ j=1,\ldots,m,$ удовлетворяющие условиям $a_n^{(k,j)}=a_{n+T_j}^{(k,j)},\ j=1,\ldots,m,\ k=1,\ldots,T_j,\ n=0,1,\ldots$ Потребуем выполнения следующих условий:

- 1. Для каждого $j=1,\ldots,m$ пусть $a_n^{(1,j)}=1$ для всех n.
- 2. Для каждого $j=1,\ldots,m$ пусть векторы $\left(a_0^{(k,j)},\ldots,a_{T_{j-1}}^{(k,j)}\right),\ k=2,\ldots,T_j$ линейно независимы с вектором $\left(a_0^{(1,j)},\ldots,a_{T_{j-1}}^{(1,j)}\right)=(1,\ldots,1).$ Обозначим

$$F_{j,k}(z) = \sum_{n=0}^{\infty} a_n^{(k,j)} n! z^n, k = 1, \dots, T_j, j = 1, \dots, m. \quad (1)$$

Отметим, что для любого $j=1,\ldots,m$ выполнено равенство

$$F_{j,1}(z) = \Phi(z) = \sum_{n=0}^{\infty} n! z^n.$$

Ряд $\Phi(z) = \sum_{n=0}^{\infty} n! z^n$ принято называть *рядом* Эйлера.

Теорема 1. Пусть целые числа $a_n^{(k,j)}$, $k=1,\ldots,T_j$, $j=1,\ldots,m$ удовлетворяют сформулированным выше условиям. Тогда ряды $F_{j,k}(z)$, $k=2,\ldots,T_j$, $j=1,\ldots,m$ алгебраически независимы над $\mathbb{C}(z)$ с рядом Эйлера $\Phi(z)=\sum_{n=0}^{\infty}n!z^n$ и для любого целого алгебраического числа $\gamma\neq 0$ ряды $F_{j,k}(\gamma)$, $k=2,\ldots,T_j$, $j=1,\ldots,m$ бесконечно алгебраически независимы с $\Phi(\gamma)$.

Поясним термин: бесконечно алгебраически независимы. Пусть $\gamma \neq 0$ принадлежит алгебраическому полю $\mathbb K$ конечной степени над полем $\mathbb Q$. При условиях теоремы для любого простого числа p рассматриваемые ряды $F_{j,k}(\gamma)$ сходятся в любом пополнении $\mathbb K_v$ поля $\mathbb K$ по нормированию v, продолжающему p-адическое нормирование поля $\mathbb Q$.

Суммы этих рядов в поле \mathbb{K}_v обозначаем $(F_{j,k}(\gamma))^{(v)}$. Это означает, что можно рассмотреть прямое произведение всех таких полей \mathbb{K}_v . Бесконечная алгебраическая независимость означает, что для любого отличного от нуля многочлена с целыми коэффициентами

$$P(x_{1,T_1},...x_{T_1,T_1},x_{2,T_2},...,x_{T_2,T_2},...,x_{2,T_m},...,x_{T_m,T_m})$$

существует бесконечное множество простых чисел p и нормирований v поля \mathbb{K} , продолжающих p—адическое нормирование поля \mathbb{Q} таких, что в поле \mathbb{K}_v выполняется неравенство

¹ Московский государственный университет им. М. В. Ломоносова, Москва, Россия

^{*}E-mail: vgchirskii@yandex.ru

$$P\Big((F_{1,T_{1}}(\gamma))^{(v)}, \dots, (F_{T_{1},T_{1}}(\gamma))^{(v)}, (F_{2,T_{2}}(\gamma))^{(v)}, \dots, (F_{T_{2},T_{2}}(\gamma))^{(v)}, \dots, (F_{2,T_{m}}(\gamma))^{(v)}, \dots, (F_{T_{m},T_{m}}(\gamma))^{(v)}\Big) \neq 0.$$

Доказательство теоремы существенно использует результаты статьи [1]. Основой являются тождества, аналогичные доказанным в [1]. Пусть $a_n^{(k,j)}$ — целые числа с условием $a_{n+T_j}^{(k,j)} = a_n^{(k,j)}$. Ряды $F_{j,k}(z)$, определенные равенствами (1) можно представить в виле

$$F_{j,k}(z) = \sum_{n=0}^{\infty} a_n^{(k,j)} n! z^n = \sum_{l=0}^{T_j-1} a_l^{(k,j)} \sum_{s=0}^{\infty} (l + sT_j)! z^{l+sT_j}.$$
 (2)

Как и в статье [1], обозначим

$$f_{j,0}(z) = \sum_{s=0}^{\infty} (zT_j)^{T_j s} \cdot (1)_s \cdot \left(\frac{1}{T_j}\right)_s \cdot \dots \cdot \left(\frac{T_j - 1}{T_j}\right)_s, \quad (3)$$

при $l = 0, 1, \dots, T_i - 2,$

$$f_{j,l}(z) = \sum_{s=0}^{\infty} (sT_j)^{T_j s} \cdot (1)_s \cdot \left(\frac{1}{T_j} + 1\right)_s \cdot \dots \times \left(\frac{l}{T_j} + 1\right)_s \left(\frac{l+1}{T_j}\right)_s \cdot \dots \cdot \left(\frac{T_j - 1}{T_j}\right)_s,$$
(4)

$$f_{j,T_{j}-l}(z) = \sum_{s=0}^{\infty} (sT_{j})^{T_{j}s} \cdot (1)_{s} \cdot \left(\frac{1}{T_{j}} + 1\right)_{s} \cdot \dots \times \left(\frac{T_{j}-1}{T_{j}} + 1\right)_{s},$$

$$(5)$$

где символ Похгаммера $(\gamma)_n$ определяется равенствами $(\gamma)_0 = 1, (\gamma)_n = \gamma(\gamma+1) \dots (\gamma+n-1)$ при $n \ge 1$. В статье [1] установлены тождества: при $l = 1, \dots, T-1$

$$l!(T)^{Ts} \cdot (1)_s \cdot \left(\frac{1}{T} + 1\right)_s \cdot \dots \cdot \left(\frac{1}{T} + 1\right)_s \times \left(\frac{l+1}{T}\right)_s \cdot \dots \cdot \left(\frac{T-1}{T}\right)_s = (l+sT)!.$$
(6)

 Π ри l=0

$$(T)^{Ts} \cdot (1)_s \cdot \left(\frac{1}{T}\right)_s \cdot \dots \cdot \left(\frac{T-1}{T}\right)_s = (Ts)!. \tag{7}$$

Таким образом, при $k = 1, ..., T_j$ из равенств (2)—(7) получаем:

$$F_{j,k}(z) = \sum_{l=0}^{T_j-1} a_l^{(k,j)} l! f_{j,l}(z)$$
 (8)

Линейную эквивалентность над полем $\mathbb{C}(z)$ конечных наборов рядов $S_1,\ S_2$ обозначаем символом $S_1\sim S_2.$

Лемма 1 (Лемма 1 из [1]). Для любого j = 1, ..., m

$$\left\{f_{j,0}(z),\ldots,f_{j,T_{j-1}}(z)\right\}\sim\left\{f_{j,0}(z),\ldots,f_{j,0}^{(T_{j-1})}(z)\right\}.$$

Обозначим $\Phi(z) = \sum_{n=0}^{\infty} n! z^n -$ ряд Эйлера.

Лемма 2 (Лемма 2 из [1]). Для любого j = 1, ..., m

$$f_{j,0}(z) = \frac{1}{T_j} \sum_{r=0}^{T_{j-1}} \Phi\left(\zeta_j^r z\right), r\partial e \zeta_j = \exp\left(\frac{2\pi i}{T_j}\right).$$

Обозначим $\Psi(z) = z\Phi(z)$.

Лемма 3 (Лемма 3 из [1]). Для любого j = 1, ..., m

$$\{f_{j,0}(z),\ldots,f_{j,T_{j-1}}(z)\}\sim \{\Psi(\zeta_j^r z),r=0,1,\ldots,T_j-1\}.$$

Доказательства этих лемм совпадают с доказательствами лемм из [1] с точностью до обозначений.

Рассмотрим при каждом $j=1,\ldots,m$ эквивалентные системы векторов $\left\{f_{j,0}(z),\ldots,f_{j,T_{j-1}}(z)\right\}\sim \left\{\Psi\left(\zeta_{j}^{\ r}z\right),r=0,1,\ldots,T_{j}-1\right\}$ и, соответственно, $\left\{f_{j,1}(z),\ldots,f_{j,T_{j}}(z)\right\}\sim \left\{\Psi\left(\zeta_{j}^{\ r}z\right),r=0,1,\ldots,T_{j}-1\right\}$, так как набор $\left\{F_{j,1}(z),\ldots,F_{j,T_{j}}(z)\right\}$ ввиду (8) линейно эквивалентен набору $\left\{F_{i,0}(z),\ldots,F_{i,T_{i}}(z)\right\}$.

Заметим, что $F_{j,1}(z) = \Phi(z)$, $\Psi(\zeta_j^0 z) = \Psi(z) = z\Phi(z)$. Поэтому

$${F_{j,2}(z),...,F_{j,T_i}(z)} \sim {\Psi(\zeta_j^r z), r = 0,1,...,T_j - 1}.$$

Следовательно.

$$\{F_{1,1}(z), F_{1,2}(z), \dots, F_{1,T_{1}}(z), F_{2,2}(z), \dots, F_{2,T_{2}}(z), \dots, F_{m,T_{m}}(z)\} \sim \{\Psi(z), \Psi(\zeta_{1}^{1}z), \dots, \Psi(\zeta_{1}^{T_{1}-1}z), \dots, \Psi(\zeta_{m}^{1}z), \dots, \Psi(\zeta_{m}^{T_{m}-1}z)\}.$$

$$(9)$$

В статье [1] была доказана следующая теорема: Пусть $\alpha_1, \ldots, \alpha_N$ — различные числа, отличные от 0. Тогда формальные степенные ряды $\Psi(\alpha_1 z), \ldots, \Psi(\alpha_N z)$ алгебраически независимы над полем $\mathbb{C}(z)$.

Применим эту теорему к набору рядов $\{\Psi(z), \Psi(\zeta_1^{-1}z), ..., \Psi(\zeta_1^{T_1-1}z), ..., \Psi(\zeta_m^{-1}z), ..., \Psi(\zeta_m^{T_m-1}z)\}$. Если для некоторых $k, j, r < T_j, s < T_k$ выпол-

Если для некоторых k, j, $r < T_j$, $s < T_k$ выполняется равенство $\zeta_j^r = \zeta_k^s$, то $\frac{2\pi i r}{T_j} = \frac{2\pi i s}{T_k}$ и $\frac{r}{s} = \frac{T_j}{T_k}$, что противоречит условию взаимной простоты чисел T_j и T_k . Следовательно, наборы (9) состоят из рядов, алгебраически независимых над $\mathbb{C}(z)$. Первая часть теоремы доказана.

Доказательство второй части начнем с замечания о том, что все рассматриваемые ряды $F_{j,k}(z)$ входят в класс рядов $F(\mathbb{Q},c_1,c_2,c_3,d)$. Для ряда, имеющего вид $\sum_{n=0}^{\infty} a_n n! z^n$ это означает, что выполнены следующие условия:

- 1. Все коэффициенты a_n принадлежат полю \mathbb{Q} и $|a_n| \leq \exp(c_1 n)$ для всех n.
- 2. Существует последовательность натуральных чисел $d_n = d_{0,n}d^n$ такая, что $d_na_k \in \mathbb{Z}$, n = 0, 1, 2, ..., k = 0, 1, ..., n, причем для любого n число $d_{0,n}$ делится только на простые числа $p \leqslant c_2n$ и степень, в которой число p входит в разложение числа $d_{0,n}$ на простые множители, обозначаемая $ord_nd_{0,n}$, удовлетворяет неравенству

$$ord_p d_{0,n} \le c_3 \left(\log_p n + \frac{n}{p^2} \right).$$

Очевидно, что в рассматриваемом случае $c_2=c_3=0,\ d=1,\ a$ в качестве c_1 можно взять $\ln\left(\max\left\{\left|a_i^{(k,j)}\right|,j=1,\ldots,m,k=0,\ldots,T_j-1,l=0,\ldots,T_j-1\right\}\right)$.

Заметим, что ряды $f_{j,k}(z)$, $j=1,\ldots,m$, $k=0,\ldots,T_j-1$ составляют решение системы дифференциальных уравнений

$$\begin{cases} y'_{j,k} = (k+1) \frac{y_{j,k+1} - y_{j,k}}{z} . k = 0, \dots, T_j - 2, \\ y'_{j,T_j-1} = \frac{T_j}{z^{T_j+1} (T_j - 1)!} (y_{j,0} - 1) - \frac{T_j}{z} \cdot y_{j,T_j-1}. \end{cases}$$
(10)

Поскольку для любого j = 1, ..., m совокупность рядов $\{F_{j,1}(z), ..., F_{j,T_i}(z)\}$ линейно эквивалентна совокупности рядов $\left\{f_{j,0}(z),\dots,f_{j,T_{j}-1}(z)\right\}$, причем любой ряд $F_{j,k}(z)$ является линейной комбинацией рядов $f_{j,0}(z), \dots, f_{j,T_{j}-1}(z)$ с коэффициентами — целыми числами, ряды $F_{j,1}(z), \dots, F_{j,T_i}(z)$ для любого j = 1, ..., m составляют решение системы линейных дифференциальных уравнений с коэффициентами из $\mathbb{C}(z)$, имеющими, ввиду (10), полюс только в точке z = 0. При этом для каждого j = 1, ..., m выполняется равенство $F_{i,1}(z) = \Phi(z)$. Поэтому и ряды $F_{j,k}(z)$, $k=2,\ldots,T_j$, $j=1,\ldots,m$ и ряд Эйлера $F_{i,1}(z) = \Phi(z)$ составляют решение системы из $T_1 + \ldots + T_m + 1 - m$ линейных дифференциальных уравнений с коэффициентами из $\mathbb{C}(z)$, имеющими полюс только в точке z = 0. Осталось применить теорему 3 из статьи [6]:

Пусть F-ряды $g_1(z), \ldots, g_r(z)$ составляют решение системы линейных дифференциальных уравнений

с коэффициентами из $\mathbb{C}(z)$ и алгебраически независимы над $\mathbb{C}(z)$. Тогда для любого целого алгебраического числа $\gamma \neq 0$ и отличного от особых точек этой системы ряды $g_1(\gamma), \ldots, g_r(\gamma)$ бесконечно алгебраически независимы.

Теорема полностью доказана.

Сделаем заключительные замечания. Рассмотрение взаимно простых чисел T_1, \ldots, T_m позволяет получить $T_1 + \ldots + T_m + 1 - m$ алгебраически независимых над $\mathbb{C}(z)$ рядов, выбирая $T_1^2 + \ldots + T_m^2 - (T_1 + \ldots + T_m)$ вместо $(T_1 + \ldots + T_m)^2 - (T_1 + \ldots + T_m)$ целых чисел. Это соображение можно использовать при вычислительных экспериментах, упомянутых в [7] и экономном построении наборов независимых псевдослучайных чисел.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Чирский В. Г.* Арифметические свойства полиадических рядов с периодическими коэффициентами // Известия РАН. 2017. Т. 81. № 2. С. 215—232.
 - https://doi.org/10.4213/im8421
- 2. *Шидловский А. Б.* Трансцендентные числа. М.: Наука. 1987. 448 с.
- 3. *Fel'dman N. I., Nesterenko Yu. V.* Number Theory IV. Springer-Verlag Berlin Heidelberg-New York, 1998, 345 p.
- 4. *Постников А. Г.* Введение в аналитическую теорию чисел. М.: Наука. 1971. 416 с.
- Салихов В. Х. Об алгебраической независимости значений Е-функций, удовлетворяющих линейным дифференциальным уравнениям первого порядка //Мат. заметки. 1973. Т. 13. № 1. С. 29–40
- 6. *Chirskii V. G.* Product Formula, Global Relations and Polyadic Integers // Russ. J. Math. Phys. 2019. V. 26. № 3. P. 286-305. https://doi.org/10.1134/S1061920821030031
- 7. *Матвеев В. Ю.* Свойства элементов прямых произведений полей // Чебышевский сборник. 2019. Т. 20. № 2(70). С. 383—390. https://doi.org/10.22405/2226-8383-2019-20-2-383-390

INFINITE ALGEBRAIC INDEPENDENCE OF POLYADIC SERIES WITH PERIODIC COEFFICIENTS

V. G. Chirskii^a

^aLomonosov Moscow State University, Moscow, Russia Presented by Academician of the RAS A. L. Semenov

Consider sequences of integers $a_n^{(k,j)}$, $k=1,\ldots,T_j$, $j=1,\ldots,m$ such that $a_n^{(k,j)}=a_{n+T_i}^{(k,j)}$, $j=1,\ldots,m$, $k=1,\ldots,T_j,\,n=0,1,\ldots$, and consider the series $F_{j,k}(z)=\sum_{n=0}^{\infty}a_n^{(k,j)}n!z^n,\,k=1,\ldots,T_j,\,j=1,\ldots,m$. The conditions are established under which the set of series $F_{j,k}(z),\,k=2,\ldots,T_j,\,j=1,\ldots,m$ and the Euler series $\Phi(z) = \sum_{n=0}^{\infty} n! z^n$ are algebraically independent over $\mathbb{C}(z)$ and for any algebraic integer $\gamma \neq 0$, their values at

Keywords: polyadic numbers, infinite algebraic independence.