= МАТЕМАТИКА ==

УДК 512.5, 510.6

ОБ ЭЛЕМЕНТАРНОЙ ТЕОРИИ ПОПОЛНЕНИЯ РАЗРЕШИМОЙ ГРУППЫ БАУМСЛАГА—СОЛИТЕРА

© 2024 г. Н. С. Романовский^{1, *}

Представлено академиком РАН С.С. Гончаровым Поступило 26.04.2024 г. После доработки 06.06.2024 г. Принято к публикации 06.06.2024 г.

Определяется делимое пополнение разрешимой группы Баумслага—Солитера BS(1,n) и доказывается, что при некоторых ограничениях на n элементарная теория этого пополнения алгоритмически разрешима.

Ключевые слова: группа Баумслага—Солитера, разрешимая, элементарная теория

DOI: 10.31857/S2686954324030159, EDN: YAAFLA

1. ВВЕДЕНИЕ И ФОРМУЛИРОВКА РЕЗУЛЬТАТОВ

В работах автора и А.Г. Мясникова была развита алгебраическая геометрия над так называемыми жёсткими группами, а затем и теория моделей этих групп (см. обзор автора – глава 5 монографии [1]). Примерами жёстких групп являются свободные разрешимые группы, а также итерированные сплетения нескольких абелевых групп без кручения. Всякая *т* -жёсткая (ступени разрешимости m) группа вкладывается в делимую m -жёсткую группу. Оказалось, что теория делимых m -жёстких групп похожа на классическую теорию алгебраически замкнутых полей, она полна, разрешима, ω -стабильна и обладает другими хорошими свойствами. Имеется также обобщение понятия жёсткой группы: в [2] были определены обобщённо жёсткие или r -группы. Для них, однако, многие вопросы алгебраической геометрии и теории моделей оказались более сложными, чем для жёстких групп.

B[3]—[4]изучались 2-ступенноразрешимые r группы. Поскольку и в настоящей работе речь пойдёт в основном о 2-ступенно разрешимых группах, то удобно будет рассмотреть подкласс класса 2-ступенно разрешимых обобщённо жёстких групп, который в [4] обозначался через

 \mathcal{R}_2 . Прежде, чем его определить, напомним, что если в группе G есть абелева нормальная подгруппа C, то на C можно смотреть как на правый модуль над групповым кольцом $\mathbb{Z}[G/C]$, действие элемента

$$u = \alpha_1(g_1C) + \ldots + \alpha_n(g_nC) \in \mathbb{Z}[G \ / \ C](\alpha_i \in \mathbb{Z})$$

на
$$c \in C$$
 определяется формулой $c^u = (c^{g_1})^{\alpha_1} \cdot \ldots \cdot (c^{g_n})^{\alpha_n}$, здесь $c^{g_i} = g_i^{-1} c g_i$.

Говорят, что 2-ступенно разрешимая группа G является жёсткой (2-жёсткой), если в ней есть нормальный ряд

$$G = \rho_1(G) > \rho_2(G) > \rho_3(G) = 1,$$
 (1)

с абелевыми факторами $A = G / \rho_2(G), \rho_2(G),$ причём группа A не имеет \mathbb{Z} -кручения, а модуль $\rho_2(G)$ не имеет $\mathbb{Z}A$ -кручения.

Откажемся теперь от последнего ограничения и предполагаем, что модуль $\rho_2(G)$ может иметь $\mathbb{Z}A$ -кручение. Возьмём тогда аннулятор $\mathrm{An}(\rho_2(G))$ модуля $\rho_2(G)$ в $\mathbb{Z}A$ и рассмотрим фактор-кольцо $R=\mathbb{Z}A$ / $\mathrm{An}(\rho_2(G))$. Понятно, что $\rho_2(G)$ можно рассматривать как R -модуль. Если в определении 2-жёсткой группы заменить условие " $\rho_2(G)$ не имеет $\mathbb{Z}A$ -кручения" на " $\rho_2(G)$ не имеет $\mathbb{Z}A$ -кручения" на " $\rho_2(G)$ не имеет $\mathbb{Z}A$ -кручения" на " $\rho_2(G)$ не имеет $\mathbb{Z}A$ -кручения и группа $\mathcal{Z}A$ канонически вкладывается в мультипликативную группу обратимых элементов $\mathcal{Z}A$ кольца $\mathcal{Z}A$ в такой группе ряд (1), если вообще существует, определяет-

Институт математики имени С.Л. Соболева Сибирского отделения Российской академии наук, Новосибирск, Россия

^{*}E-mail: rmnvski@math.nsc.ru

ся однозначно и называется жёстким. Поэтому для его членов используется обозначение $\rho_i(G)$. Легко видеть, что кольцо R является областью целостности, а централизатор любого нетривиального элемента из $\rho_2(G)$ совпадает с $\rho_2(G)$. В частности, подгруппа $\rho_2(G)$ равняется централизатору любого неединичного коммутатора двух элементов и поэтому может быть определена в сигнатуре теории групп как \exists -формулой, так и \forall -формулой. В рассматриваемой ситуации будем говорить, что пара (A,R) ассоциируется с группой G. В ней по построению R — коммутативная область целостности, A — подгруппа без кручения из R^* , порождающая всё R как кольцо.

Разрешимая группа Баумслага—Солитера

$$BS(1,n) = \langle a,b | a^{-1}ba = b^n \rangle (n > 1)$$

не будет жёсткой, но принадлежит классу \mathcal{R}_2 . Для неё $R=\mathbb{Q}_n$ — кольцо рациональных чисел, знаменатели которых являются степенями n, $A=n^{\mathbb{Z}}$ — бесконечная циклическая группа с порождающим n, сама группа отождествляется с группой матриц

$$\begin{pmatrix} n^{\mathbb{Z}} & 0 \\ \mathbb{Q}_n & 1 \end{pmatrix}, a = \begin{pmatrix} n & 0 \\ 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$

Группа $G \in \mathcal{R}_2$ называется делимой, если A — делимая абелева группа (она тогда представляется в виде прямой суммы копий \mathbb{Q}), и модуль $\rho_2(G)$ является делимым R-модулем, тогда на $\rho_2(G)$ можно смотреть как на векторное пространство над полем частных кольца R. Пусть \mathcal{D}_2 обозначает класс делимых групп из \mathcal{R}_2 . Из [2] и [3] можно извлечь следующие факты.

Предложение 1. Всякая группа из класса \mathcal{R}_2 вкладывается в делимую.

Предложение 2. Всякая группа $G \in \mathcal{D}_2$ расщепляется в полупрямое произведение $A \cdot \rho_2(G)$.

Предложение 3. Существуют рекурсивные системы аксиом в сигнатуре теории групп, определяющие каждый из классов \mathcal{R}_2 и \mathcal{D}_2 .

Непосредственно проверяется полезное для реализации каких-то условий в виде формул

Предложение 4. Пусть $G \in \mathcal{R}_2$ и (A,R)-ac-социированная c G пара. По определению всякий элемент из R может быть выражен через какие-то элементы $x_1,...,x_s$ из A, то есть представлен B виде линейной комбинации $\alpha_1u_1+...+\alpha_qu_q$ мономов $u_1,...,u_q$ от $x_1^{\pm 1},...,x_s^{\pm 1}$ c целыми коэффи-

циентами $\alpha_1,...,\alpha_q$. Тогда формула от переменных $x_1,...,x_s$

$$\bigwedge_{i}(x_{i} \in A) \wedge (\alpha_{1}u_{1} + \ldots + \alpha_{q}u_{q} = 0)$$

интерпретируется над G в сигнатуре теории групп как \forall -формула

$$\forall z_1 \forall z_2 \Big(([z_1, z_2]^{u_1})^{\alpha_1} ... ([z_1, z_2]^{u_q})^{\alpha_q} = 1 \Big),$$

или как ∃-формула

$$\exists z_1 \exists z_2 \left(\left([z_1, z_2] \neq 1 \right) \wedge \left(\left([z_1, z_2]^{u_1} \right)^{\alpha_1} \dots \right. \right.$$
$$\left. \left([z_1, z_2]^{u_q} \right)^{\alpha_q} = 1 \right) \right).$$

Имеется ввиду, что первоначальная формула выполняется на наборе $(a_1,...,a_s)$ элементов из Aтогда и только тогда, когда интерпретация выполняется на любом наборе $(g_1,...,g_s)$, состоящем из прообразов элементов a_i в G.

Группа Баумслага—Солитера BS(1,n) (n > 1) вкладывается в делимую группу

$$BSd(1,n) = \begin{pmatrix} n^{\mathbb{Q}} & 0 \\ \mathbb{Q}(n^{\mathbb{Q}}) & 1 \end{pmatrix},$$

представленную матрицами над полем $\mathbb{Q}(n^{\mathbb{Q}})$.

Легко доказывается

Предложение 5. Если группа $G \in \mathcal{D}_2$ содержит в качестве подгруппы BS(1,n) (n > 1), то она содержит группу BSd(1,n), которая будет наименьшей делимой подгруппой в G, содержащей BS(1,n).

Поэтому мы можем назвать BSd(1,n) делимым пополнением группы Баумслага—Солитера BS(1,n). Отметим, что эта группа будет полной в терминологии теории групп, то есть в ней из любого элемента (однозначно) извлекается корень любой натуральной степени.

Известная теорема Носкова [5] утверждает, что элементарная теория конечно порождённой разрешимой группы алгоритмически разрешима тогда и только тогда, когда группа почти абелева (является расширением абелевой группы с помощью конечной). В частности, теория группы BS(1,n) неразрешима. Иная картина для делимого пополнения BSd(1,n). Сформулируем полученные нами результаты, которые, правда, доказаны не для любого n > 1, а при условии \circledast :

найдётся простое число p такое, что p делит n и p^2 не делит n. Это условие позволяет использовать признак Эйзенштейна неприводимости над \mathbb{O} для любого многочлена $x^m - n (m \in \mathbb{N})$.

Сначала обозначим через \mathcal{B}_n класс групп $G \in \mathcal{D}_2$, содержащих в качестве подгруппы $\mathrm{BSd}(1,n)$ и удовлетворяющих требованию: если (A,R) — ассоциированная с G пара и множество $\{n\} \cup Y$ составляет базу A как \mathbb{Q} -группы, тогда элементы из Y алгебраически независимы (над \mathbb{Z} в R). В этой ситуации R можно отождествить с групповой алгеброй над кольцом \mathbb{Q}_n свободной абелевой \mathbb{Q} -группы с базой Y. Группа G

отождествляется с группой матриц $\begin{pmatrix} A & 0 \\ V & 1 \end{pmatrix}$, где V — некоторое векторное пространство над полем частных кольца R .

Теорема 1. При ограничении \circledast , если группа G элементарно эквивалентна группе BSd(1,n), то $G \in \mathcal{B}_n$.

Из доказательства извлекается рекурсивная система аксиом Σ , которая определяет класс групп \mathcal{B}_n .

Теорема 2 При ограничении \circledast теория класса \mathcal{B}_n , то есть определённая аксиомами Σ , является полной и разрешимой, она совпадает с теорией группы BSd(1,n).

Мы планируем в дальнейшем показать, что изучаемая теория будет ω -стабильной, а также исследовать другие аспекты этой теории.

2. О ДОКАЗАТЕЛЬСТВАХ ТЕОРЕМ 1 И 2

В доказательстве теоремы 1 существенно используются идеи из работы [6], а в доказательстве теоремы 2 идеи из работы [7].

Допустим противное, найдётся набор $(y_1,...,y_s)$ различных элементов из Y и нетривиальный многочлен $f(x_1,...,x_s)$ с целыми коэф-

фициентами, для которого $f(y_1,...,y_s) = 0$. По многочлену f мы строим некоторую \exists -формулу σ_f без свободных переменных, это построение является наиболее принципиальным моментом в доказательстве теоремы 1. Затем доказывается, что формула σ_f истинна на группе G, но ложна на $\mathrm{BSd}(1,n)$, в результате получается противоречие с элементарной эквивалентностью групп G и $\mathrm{BSd}(1,n)$.

Из доказательства теоремы 1 вытекает, что если группа $G \in \mathcal{D}_2$ содержит BSd(1,n) и не принадлежит классу \mathcal{B}_n , то на ней истинна одна из формул вида σ_f , в то время как все такие формулы ложны на BSd(1,n). По предложению 3 существует рекурсивная система аксиом Σ_1 в сигнатуре теории групп, которая определяет класс групп \mathcal{D}_2 . Несложно определить систему аксиом Σ_2 , которая для группы $G \in \mathcal{D}_2$ реализует условие: G содержит в качестве подгруппы BS(1,n)(тогда она содержит и BSd(1,n)). Обозначим также через Σ_3 — множество аксиом $\neg \sigma_f$ по всем нетривиальным целочисленным многочленам f от любого конечного числа переменных. Система аксиом $\Sigma_1 \cup \Sigma_2 \cup \Sigma_3$ эквивалентна некоторой рекурсивной системе аксиом, которую обозначим через Σ . По построению группа ВSd(1,n) удовлетворяет аксиомам Σ . Доказывается, что система аксиом Σ в точности определяет класс \mathcal{B}_n .

Назовём размерностью группы $G \in \mathcal{B}_n$ с соответствующей парой (A,R) набор $d(G)=(d_1,d_2)$, где d_1 — размерность A над \mathbb{Q} , d_2 — размерность векторного пространства $\rho_2(G)$ над полем частных кольца R. Несложно доказывается

Предложение 6. Две группы из класса \mathcal{B}_n изоморфны тогда и только тогда, когда их размерности совпадают.

Теорема 2 выводится из следующего утверждения.

Предложение 7. Пусть U- неглавный ультрафильтр на множестве натуральных чисел \mathbb{N} , H- счётная группа из класса \mathcal{B}_n , $G=H^{\mathbb{N}/U}-$ соответствующая ультрастепень, число n удовлетворяет условию \circledast . Тогда $d(G)=(2^{\omega},2^{\omega})$.

Из предложений 6 и 7 вытекает, что ультрастепени по неглавному ультрафильтру на счётном множестве любых двух счётных моделей теории класса \mathcal{B}_n изоморфны, а тогда по теореме Кейслера—Шелаха эта теория полна и совпадает с теорией группы BSd(1,n). Так как теория имеет рекурсивную аксиоматику, то она разрешима.

2024

ИСТОЧНИК ФИНАНСИРОВАНИЯ

Работа выполнена при поддержке Программы фундаментальных исследований СО РАН I.1.1, проект 0314-2019-0001

СПИСОК ЛИТЕРАТУРЫ

- 1. Groups and model theory: GAGTA Book 2. De Gruyter, 2021.
- Романовский Н.С. Обобщённо жёсткие группы: определение, базисные факты, проблемы // Сибирский математический журнал. 2018. Т. 59. № 4. С. 891–896.
- 3. *Романовский Н.С.* Обобщённо жёсткие метабелевы группы // Сибирский математический журнал. 2019. Т. 60. № 1. С. 194—200.
- 4. *Романовский Н.С.* Об универсальных теориях метабелевых обобщённо жёстких групп // Сибир-

- ский математический журнал. 2020. Т. 61. № 5. С. 1101—1107.
- 5. *Носков Г.А*. Об элементарной теории конечно порожденной почти разрешимой группы // Изв. АН СССР. Сер. матем. 1983. Т. 47. № 3. С. 498—517.
- 6. *Романовский Н.С.* Группы, универсально эквивалентные разрешимой группе Баумслага—Солитера // Сибирский математический журнал. 2022. Т. 63. № 1. С. 197—201.
- 7. *Романовский Н.С.* Делимые жёсткие группы. Алгебраическая замкнутость и элементарная теория // Алгебра и логика. 2017. Т. 56. № 5. С. 593—612.
- 8. *Marker D*. Model Theory: an Introduction. New York: Springer-Verlag, 2002.
- 9. *Hodges W.* Model Theory. Cambridge: Cambridge Univ. Press, 1993.

ON ELEMENTARY THEORY OF COMPLETION OF SOLVABLE BAUMSLAG-SOLITAR GROUP

N. S. Romanovskiy^a

^aSobolev Institute of Mathematics, Novosibirsk, Russia Presented by Academician of the RAS S.S. Goncharov

We define a divisible completion of the solvable Baumslag—Solitar group BS(1,n) and prove that under certain restrictions on n the elementary theory of this completion is decidable.

Keywords: Baumslag-Solitar group, solvable, elementary theory