STATE DIAGRAM OF THE ZrO2–SiO2–Al2O3 SYSTEM WITH VISUALIZATION BY COMPUTER 3D-MODEL AND CALCULATION USING THE NUCLEA DATABASE

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The three-dimensional (3D) computer model of the isobaric phase diagram of the ZrO2–SiO2–Al2O3 system with formation of the ZrSiO4 and Al6Si2O13 compounds is presented. The development of its geometric structure was carried out through the sequential construction of the phase reaction scheme, including all polymorphic transitions in the sub-solidus and the rearrangement of the interaction of binary compounds as well as zirconium and aluminum oxides, its transformation into the scheme of uni- and invariant states in the tabular and graphical (3D) forms, the construction of the prototype, and its transformation into a spatial model of the phase diagram of the real ZrO2–SiO2–Al2O3 system. Features of the isothermal sections and isopleths of the phase diagram of the considered system calculated using the thermodynamic NUCLEA database are discussed in the comparison with the 3D model sections.

Авторлар туралы

V. Vorob’eva

Institute of Physical Materials Science of the Siberian Branch of the Russian Academy of Sciences

Email: v.stolyarova@spbu.ru
Russian, 670047, Ulan-Ude

А. Zelenaya

Institute of Physical Materials Science of the Siberian Branch of the Russian Academy of Sciences

Email: v.stolyarova@spbu.ru
Russian, 670047, Ulan-Ude

V. Lutsyk

Institute of Physical Materials Science of the Siberian Branch of the Russian Academy of Sciences

Email: v.stolyarova@spbu.ru
Russian, 670047, Ulan-Ude

V. Vorozhtcov

Institute of Silicate Chemistry of the Russian Academy of Sciences; Saint Petersburg State University

Email: v.stolyarova@spbu.ru
Russian, 199034, Saint; Russian, 199034, Saint

V. Almjashev

Institute of Silicate Chemistry of the Russian Academy of Sciences; Alexandrov Research Institute of Technology; Ulyanov (Lenin) Saint Petersburg Electrotechnical University “LETI”

Email: v.stolyarova@spbu.ru
Russian, 199034, Saint; Russian, 188540, Sosnovy; Russian, 197376, Saint

V. Stolyarova

Institute of Silicate Chemistry of the Russian Academy of Sciences; Saint Petersburg State University

Хат алмасуға жауапты Автор.
Email: v.stolyarova@spbu.ru
Russian, 199034, Saint; Russian, 199034, Saint

Әдебиет тізімі

  1. Claussen N., Jahn J. // J. Am. Ceram. Soc. 1980. V. 63. № 3–4. P. 228–229. https://doi.org/10.1111/j.1151-2916.1980.tb10700.x
  2. Garvie R.C., Goss M.F., Marshall S., Urbani C. // Mater. Sci. Forum. 1988. V. 34–36. P. 681–688. https://doi.org/10.4028/www.scientific.net/msf.34-36.681
  3. Frank M., Schweiger M., Rheinberger V., Höland W. // Glas. Ber. Glass Sci. Technol. 1998. V. 71. P. 345–348.
  4. Höland W., Schweiger M., Frank M., Rheinberger V. // J. Biomed. Mater. Res. 2000. V. 53. № 4. P. 297–303. https://doi.org/10.1002/1097-4636(2000)53:4<297::AID-JBM3>3.0.CO;2-G
  5. Gregory A.G., Veasey T.J. // J. Mater. Sci. 1971. V. 6. № 10. P. 1312–1321. https://doi.org/10.1007/BF00552045
  6. Sales M., Alarcon J. // J. Mater. Sci. 1995. V. 30. № 9. P. 2341–2347. https://doi.org/10.1007/BF01184584
  7. McCoy M.A., Heuer A.H. // J. Am. Ceram. Soc. 1988. V. 71. № 8. P. 673–677. https://doi.org/10.1111/j.1151-2916.1988.tb06387.x
  8. Awano M., Takagi H., Kuwahara Y. // J. Am. Ceram. Soc. 1992. V. 75. № 9. P. 2535–2540. https://doi.org/10.1111/j.1151-2916.1992.tb05608.x
  9. Белов Г.В., Аристова Н.М. // Математическое моделирование. 2017. Т. 29. № 6. С. 135‒142. http://mi.mathnet.ru/rus/mm/v29/i6/p135
  10. Ohnuma I., Ishida K. // Tecnol. Metal. Mater. Min. 2016. V. 13. № 1. P. 46‒63. https://doi.org/10.4322/2176-1523.1085
  11. Bakardjieva S., Barrachin M., Bechta S., Bezdicka P., Bottomley D., Brissonneau L., Cheynet B., Dugne O., Fischer E., Fischer M., Gusarov V., Journeau C., Khabensky V., Kiselova M., Manara D., Piluso P., Sheindlin M., Tyrpekl V., Wiss T. // Ann. Nucl. Energ. 2014. V. 74. P. 110‒124. https://doi.org/10.1016/j.anucene.2014.06.023
  12. Kitagaki T., Yano K., Ogino H., Washiya T. // J. Nucl. Mater. 2017. V. 486. P. 206‒215. https://doi.org/10.1016/j.jnucmat.2017.01.032
  13. Björkvall J., Stolyarova V.L. // Rapid Commun. Mass Spectrom. 2001. V. 15. № 10. P. 836‒842. https://doi.org/10.1002/rcm.251
  14. Bakardjieva S., Barrachin M., Bechta S., Bottomley D., Brissoneau L., Cheynet B., Fischer E., Journeau C., Kiselova M., Mezentseva L., Piluso P., Wiss T. // Progr. Nucl. Energ. 2010. V. 52. № 1. P. 84‒96. https://doi.org/10.1016/j.pnucene.2009.09.014
  15. Kwon S.Y. Thermodynamic optimization of ZrO2-containing systems in the CaO–MgO–SiO2–Al2O3–ZrO2 system. Dissertation for the degree of Master of Engineering. Montreal, 2015. 113 p.
  16. Lutsyk V.I., Vorob’eva V.P. // J. Therm. Anal. Calorim. 2010. V. 101. № 1. P. 25‒31. https://doi.org/10.1007/s10973-010-0855-0
  17. Lutsyk V.I., Vorob’eva V.P. // Russ. J. Inorg. Chem. 2016. V. 61. № 2. P. 188‒207. https://doi.org/10.1134/S0036023616020121
  18. Vorob'eva V.P., Zelenaya A.E., Lutsyk V.I., Sineva S.I., Starykh R.V., Novozhilova O.S. // J. Phase Equil. Diffus. 2021. V. 42. № 2. P. 175‒193. https://doi.org/10.1007/s11669-021-00863-3
  19. Lutsyk I.V., Zelenaya A.E., Zyryanov A.M. // Materials, Methods & Technologies. International Scientific Publications. 2008. V. 2. № 1. P. 176‒184.
  20. Lutsyk V.I., Vorob’eva V.P. // Russ. J. Phys. Chem. 2015. V. 89. № 10. P. 1715‒1722. https://doi.org/10.1134/S0036024415100192
  21. Lutsyk V.I., Vorob’eva V.P., Shodorova S.Ya. // Russ. J. Inorg. Chem. 2016. V. 61. № 7. P. 858‒866. https://doi.org/10.1134/S0036023616070123
  22. Vorob'eva V.P., Zelenaya A.E., Lutsyk V.I. // Russ. J. Inorg. Chem. 2021. V. 66. № 6. P. 894‒901. https://doi.org/10.1134/S003602362106022X
  23. Vorob’eva V.P., Zelenaya A.E., Lutsyk V.I., Almjashev V.I., Vorozhtcov V.A., Stolyarova V.L. // Glass Phys. Chem. 2021. V. 47. № 6. P. 616‒621. https://doi.org/10.1134/S1087659621060328
  24. Butterman W.C., Foster W.R. // Am. Mineral. 1967. V. 52. № 5–6. P. 880‒885. https://pubs.geoscienceworld.org/msa/ammin/article-abstract/52/5-6/880/542223/Zircon-Stability-and-the-Zr02-Si02-Phase-Diagram
  25. Lakiza S.M., Lopato L.M. // J. Amer. Ceram. Soc. 1997. V. 80. № 4. P. 893‒902. https://doi.org/10.1111/j.1151-2916.1997.tb02919.x
  26. Lakiza S., Fabrichnaya O., Wang Ch., Zinkevich M., Aldinger F. // J. Eur. Ceram. Soc. 2006. V. 26. № 3. P. 233‒246. https://doi.org/10.1016/j.jeurceramsoc.2004.11.011
  27. Toropov N.A., Galakhov F.Ya. // Bull. Acad. Sci. USSR, Div. Chem. Sci. 1958. V. 7. № 1. P. 5‒9. https://doi.org/10.1007/BF01170853
  28. Aramaki S., Roy R. // J. Am. Ceram. Soc. 1962. V. 45. № 5. P. 229‒242. https://doi.org/10.1111/j.1151-2916.1962.tb11133.x
  29. de Noirfontaine M.-N., Tusseau-Nenez S., Girod-Labianca C., Pontikis V. // J. Mater. Sci. 2012. V. 47. № 3. P. 1471‒1479. https://doi.org/10.1007/s10853-011-5932-7
  30. Яроцкая Е.Г., Федоров П.П. // Конденсированные среды и межфазные границы. 2018. Т. 20. № 4. С. 537–544. https://doi.org/10.17308/kcmf.2018.20/626
  31. Lambotte G., Chartrand P. // J. Amer. Ceram. Soc. 2011. V. 94. № 11. P. 4000–4008. https://doi.org/10.1111/j.1551-2916.2011.04656.x
  32. Igami Y., Ohi S., Miyake A. // J. Amer. Ceram. Soc. 2017. V. 100. № 10. P. 4928–4937. https://doi.org/10.1111/jace.15020
  33. McMurdie H.F., Hall F.P. // J. Am. Ceram. Soc. 1949. V. 32. № s1. P. 154‒164. https://doi.org/10.1111/j.1151-2916.1949.tb19765.x
  34. Toropov N.A., Galakhov F.Ya. // Bull. Acad. Sci. USSR, Div. Chem. Sci. 1956. V. 5. № 2. P. 153‒156. https://doi.org/10.1007/BF01177636
  35. Kwon S.Y., Jung I.-H. // J. Eur. Ceram. Soc. 2017. V. 37. № 3. P. 1105‒1116. https://doi.org/10.1016/j.jeurceramsoc.2016.10.008
  36. Будников П.П., Литваковский А.А. // ДАН СССР. 1956. Т. 106. № 2. С. 267‒270.
  37. Greca M.C., Emiliano J.V., Segadães A.M. // J. Eur. Ceram. Soc. 1992. V. 9. № 4. P. 271‒283. https://doi.org/10.1016/0955-2219(92)90062-I
  38. Quereshi M.H., Brett N.H. // Trans. Brit. Ceram. Soc. 1968. V. 67. № 11. P. 569‒578.
  39. Pena P., De Aza S. // J. Mater. Sci. 1984. V. 19. № 1. P. 135‒142. https://doi.org/10.1007/BF02403119
  40. Pena P. // Bol. Soc. Esp. Ceram. Vidr. 1989. V. 28. № 2. P. 89‒96.
  41. Connell R.G. // J. Phase Equilib. 1994. V. 15. № 1. P. 6‒19. https://doi.org/10.1007/BF02667677
  42. Khaldoyanidi K.A. // J. Struct. Chem. 2003. V. 44. № 1. P. 116‒129. https://doi.org/10.1023/A:1024941216224
  43. Халдояниди К.А. Фазовые диаграммы гетерогенных систем с трансформациями. Новосибирск: ИНХ СО РАН, 2004. 382 с.
  44. Воробьева В.П. Фазовые диаграммы состояния трех- и четырехкомпонентных систем: от топологии к компьютерным моделям. Дис. … докт. ф.-м.н. Тюмень, 2012. 354 с.
  45. Vorozhtcov V.A., Yurchenko D.A., Almjashev V.I., Sto-lyarova V.L. // Glass Phys. Chem. 2021. V. 47. № 5. P. 417‒426. https://doi.org/10.1134/S1087659621050175
  46. NUCLEA: Thermodynamic database for nuclear applications [Электронный ресурс] // Доступно по: http://thermodata.online.fr/nuclea.html. Ссылка активна на 25.12.2022 г.
  47. Mao H., Selleby M., Sundman B. // J. Am. Ceram. Soc. 2005. V. 88. № 9. P. 2544‒2551. https://doi.org/10.1111/j.1551-2916.2005.00440.x

Қосымша файлдар


© В.П. Воробьева, А.Э. Зеленая, В.И. Луцык, В.А. Ворожцов, В.И. Альмяшев, В.Л. Столярова, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>