2.0-2.2 Ga old ruined magmatic arc in the Lapland-Kola ocean: U-Th-Pb data for zircon from metased-imentary rocks of Tersk terrane, Eastern Fennoscandia
- 作者: Zhitnikova I.1, Erofeeva K.2, Samsonov A.V.3, Stepanova A.V.4, Maksimov O.5
-
隶属关系:
- Karpinsky Russian Geological Research Institute
- Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences
- Institute of Ore Geology, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
- Institute of Geology Karelian Research Centre RAS
- Institute of Geology, Karelian Research Center, Russian Academy of Sciences
- 期: 卷 526, 编号 2 (2026)
- 栏目: GEOLOGY
- ##submission.dateSubmitted##: 14.10.2025
- ##submission.dateAccepted##: 20.10.2025
- ##submission.datePublished##: 18.11.2025
- URL: https://journals.rcsi.science/2686-7397/article/view/328098
- ID: 328098
如何引用文章
全文:
详细
A study was conducted on the shales and gneisses of the Pikamskaya Suite, which are part of the Tersk Terrane of the Lapland-Kola Orogen, Eastern Fennoscandia. These metamorphosed under amphibolite facies conditions rocks had a sedimentary protolith corresponding in composition to graywackes and lithites. Their accumulation occurred in an active tectonic setting during the erosion of predominantly felsic complexes with suprasubduction geochemical characteristics and Paleoproterozoic model ages tNd(DM) from 2.2 to 2.5 Ga. U-Th-Pb isotopic studies on detrital zircon revealed a multimodal age distribution with peaks ranging from 3.6 to 1.97 Ga. The predominant zircon grains are magmatic in origin with ages ranging from 1.97 to 2.2 Ga. Such zircons contain cores with older ages from 2.4 to 3.6 Ga. All the obtained data indicate that the sedimentary rocks of the Pikamskaya Suite formed through the erosion of Paleoproterozoic magmatic complexes, which contained an Archean crustal component, and were likely formed in a continental arc setting. Igneous rocks, which could have been the source for the predominant zircon age group of 2.02–2.20 Ga, are not known either within the Lapland-Kola Orogen or beyond its borders. The complete disappearance of igneous rocks of this age may be related to subduction and/or tectonic erosion. All the obtained data indicate that subduction processes in the Lapland-Kola ocean began at least 2.2 Ga ago, which sets a constraint on models of the early stages of the tectonic evolution of the Lapland-Kola Orogen.
全文:
作者简介
Irina Zhitnikova
Karpinsky Russian Geological Research Institute
Email: iriina_s@mail.ru
Deputy head of the Regional Geology and Mineral Resources Department of the Western Regions of the Russian Federation.
199106, St. Petersburg, 74, Sredny pr.Kseniya Erofeeva
Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: xenin.erofeeva@ya.ru
A. Samsonov
Institute of Ore Geology, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
Email: samsonovigem@mail.ru
Moscow, Russia
A. Stepanova
Institute of Geology Karelian Research Centre RAS
Email: stepanov@krc.karelia.ru
俄罗斯联邦, Petrozavodsk
O. Maksimov
Institute of Geology, Karelian Research Center, Russian Academy of Sciences
Email: olemaximov@mail.ru
научный сотрудник
185910 Pushkinskaya St., 11, Petrozavodsk参考
- Draut A.E., Clift P.D. Differential preservation in the geologic record of intraoceanic arc sedimentary and tectonic processes // Earth-Sci. Rev. 2013. V. 116. P. 57–84. http://dx.doi.org/10.1016/j.earscirev.2012.11.003
- Safonova I., Perfilova A. Survived and disappeared intra-oceanic arcs of the Paleo-Asian Ocean: evidence from Kazakhstan // Nat. Sci. Rev. 2023. 10: nwac215.https://doi.org/10.1093/nsr/nwac215
- Isozaki Y., Aoki K., Nakama T. et al. New insight into a subduction-related orogeny: re-appraisal on geotectonic framework and evolution of the Japanese Islands // Gondwana Res. 2010. V. 18. P. 82–105.
- Stern R.J., Scholl D.W. Yin and Yang of continental crust creation and destruction by plate tectonic processes // Int. Geol. Rev. 2010.V. 52. P. 1–31.
- Elming S.-Å., Salminen J., Pesonen L.J. Chapter 16: Paleo-Mesoproterozoic Nuna supercycle. In: Pesonen, L.J., Salminen, J., Evans, D.A.D., Elming, S.-Å., Veikkolainen, T. (Eds.), Ancient Supercontinents and the Paleogeography of the Earth. Elsevier, 2021. P. 499–548. https://doi.org/10.1016/B978-0-12-818533-9.00001-1.
- Daly J.S., Balagansky V.V., Timmerman M.J., Whitehouse M.J. The Lapland–Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere. In: Gee D.G., Stephenson R.A. (Eds.), European Lithosphere Dynamics. Geol. Soc. London. Mem. 2006. V. 32. P. 579–598. https://doi.org/10.1144/GSL.MEM.2006.032.01.35
- Daly, J.S., Balagansky, V.V., Timmerman, M.J., et al. Ion microprobe U–Pb zircon geochronology and isotopic evidence supporting a trans-crustal suture in the Lapland Kola Orogen, northern Fennoscandian Shield // Precam. Res. 2001. V. 105. P. 289–314.
- Tuisku P., Huhma H. Evolution of migmatitic granulite complexes: implications from Lapland Granulite Belt, part II: Isotopic dating // Bull. Geol. Soc. Finland. 2006. V. 78. P. 143–175.
- Lahtinen R., Huhma H. A revised geodynamic model for the Lapland-Kola Orogen // Precam. Res. 2019. V. 330. P. 1–19. https://doi.org/10.1016/j.precamres.2019.04.022
- Bridgwater D., Scott D.J., Balagansky V.V. et al. Age and provenance of Early Precambrian metasedimentary rocks in the Lapland-Kola Belt, Russia: evidence from Pb and Nd isotopic data // Terra Nova. 2001. V. 13. P. 32–37. https://doi.org/10.1046/j.1365-3121.2001.00307.x
- Слабунов А.И., Балаганский В.В., ЩипанскийА.А. Мезоархей-палеопротерозойская эволюция земной коры Беломорской привинции Фенноскандинавского щита и тектоническая позиция эклогитов // Геология и геофизика. 2021. Т. 62. № 5. С. 650—677.
- Балаганский В.В., Тиммерман М.Я., Кислицын Р.В. и др. Изотопный возраст пород Колвицкого пояса и Умбинского блока (юго-восточная ветвь Лапландского гранулитового пояса), Кольский полуостров // Вестник МГТУ. 1998. Т. 1. № 3. С. 19–32.
- Житникова И.А., Колянова И.Б. и др. Государственная геологическая карта Российской Федерации масштаба 1 : 200 000 (второе поколение). Серия Кольская. Листы Q-37-VII, VIII (оз. Сергозеро). – СПб.: Картографическая фабрика ВСЕГЕИ, 2023. 321 c.
- Wedepohl K.H., Hartmann G. The composition of the primitive upper Earth’s mantle, kimberlites, related rocks and mantle xenoliths. In: Meyer, H.O.A., Leonardos, O.H. (Eds.), Companhia de Pesquisa de Recursos Minerais. 1994. V. 1. P. 486–495.
- Pettijohn F.J., Potter P.E., Siever R. Sand and sandstone. Springer-Verlag, New York, 1987. 553 p.
- Fedo C.M., Nesbitt H.W., Young G.M. Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implication for paleoweathering conditions and provenance // Geology. 1995. V. 23. P. 921–924. https://doi.org/10.1130/0091-7613(1995) 023<0921:UTEOPM>2.3.CO;2
- Roser B.P., Korsch R.J. Provenance signatures of sandstone mudstone suites determined using discriminant function–analysis of major-element data // Chem. Geol. 1985. V. 67 (1–2). P. 119–139.
- Hansen J., Skjerlie K.P., Pedersen R.B., De La Rosa J. Crustal melting in the lower parts of island arcs: an example from the Bremanger Granitoid Complex, west Norwegian Caledonides // Contrib. Mineral. Petrol. 2002. V. 143. P. 316–335.
- McDonough W.F., Sun S.S. The composition of the Earth // Chem. Geol. 1995. V. 120. № 3–4. P. 223–253.
- Verma S.P., Armstrong-Altrin J.S. New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins // Chem. Geol. 2013. V. 355. P. 117–133. https://doi.org/10.1016/j.chemgeo.2013.07.014
补充文件
