The nearly-coeval but metallogenically distinct tungsten-bearing intrusive complexes in the southern Tien Shan: first data on the isotope U–Pb dating (LA-ICP-MS method) of zircon from intrusive rocks of the Maikhura and Kabuty tungsten skarn deposits (Tajikistan)

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper presents first isotopic U–Pb data (LA-ICP-MS method) on zircon from the intrusive rocks of the Maikhura and Farkhob massifs, which the Maikhura tungsten-tin and Kabuty tungsten-polymetallic skarn deposits are associated with. These deposits, together with the other W and Au deposits, are part of the largest Au–W metallogenic belt of Tien Shan. The concordant isotopic U–Pb data for zircon “autocrysts” (302.5±2.3 Ma for granodiorite of the Maikhura massif, 305.1±2.3 Ma and 306.6±2.8 Ma for granodiorites of the Farkhob massif) indicate a nearly-coeval emplacement of these rocks in the Late Carboniferous. The younger (Early Permian) concordant isotopic U–Pb data for zircon “autocrysts” (292.2±2.3 Ma) have been obtained for biotite granites of the Maikhura massif. The metallogenic difference of these deposits highlights the difference of the respective intrusive complexes, whereas the coincidence of the age dates of the intrusive rocks can indicate a nearly-coeval timing of formation of magmatic chambers of different composition at various crustal and upper mantle levels and in a different protolith, which is characteristic of the post-collisional magmatism. Despite of the difference in the composition of the ore mineralization, its relationships to the nearly-coeval igneous complexes may indicate a certain genetic proximity of the tin-tungsten and tungsten-polymetallic-gold metallogenic types that is expressed in post-collisional metallogenic belts globally.

作者简介

S. Soloviev

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Email: serguei07@mail.ru
Moscow, Russia

S. Kryazhev

Central Research Institute of Geological Prospecting for Base and Precious Metals

Moscow, Russia

D. Semenova

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences

Novosibirsk, Russia

Y. Kalinin

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences

Novosibirsk, Russia

N. Bortnikov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Moscow, Russia

参考

  1. Блохина Н.А. Условия формирования оловянно-вольфрамового месторождения Майхура. Душанбе: Дониш, 1973. 196 с.
  2. Жариков В.А., Власова Д.К. Контактовые роговики и скарны Майхуры / В кн. Физико-химические проблемы образования пород и руд. М.: Изд-во АН СССР, 1972. С. 326–386.
  3. Soloviev S.G., Kryazhev S.G., Dvurechenskaya S.S. Genesis of the Maikhura tungsten-tin skarn deposit, Tajik Tien Shan: Insights from petrology, mineralogy, and fluid inclusion study // Ore Geology Reviews. 2019. V. 104. P. 561–588.
  4. Kudrin V.S., Soloviev S.G., Stavinsky V.A., Kabardin L.L. The gold-copper-molybdenum-tungsten ore belt of the Tien Shan // Internat. Geol. Rev. 1990. V. 32. P. 930–941.
  5. Yakubchuk A., Cole A., Seltmann R., Shatov V. Tectonic setting, characteristics and regional exploration criteria for gold mineralization in central Eurasia: the southern Tien Shan province as a key example / In: Goldfarb R., Nielsen R. (Eds.). Integrated Methods for Discovery: Global Exploration in Twenty-First Century. Economic Geology Special Publication, 2002. V. 9. P. 77–201.
  6. Soloviev S.G., Kryazhev S.G. Tungsten mineralization in the Tien Shan Gold Belt: Geology, petrology, fluid inclusion, and stable isotope study of the Ingichke reduced tungsten skarn deposit, Western Uzbekistan // Ore Geology Reviews. 2018. V. 101. P. 700–724.
  7. Seltmann R., Konopelko D., Biske G., Divaev F., Sergeev S. Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt // Journal of Asian Earth Sciences. 2011. V. 42. P. 821–838.
  8. Konopelko D., Seltmann R., Mamadjanov Y., Romer R.L., Rojas-Agramonte Y., Jeffries T., Fidaev D., Niyozov A. A geotraverse across two paleo-subduction zones in Tien Shan, Tajikistan // Gondwana Research. 2017. V. 47. P. 110–130.
  9. Соловьев С.Г. Монцонитоидные ассоциации полиметаллически-вольфрамовых месторождений Южного Тянь-Шаня // Отечественная геология. 1994. № 1. С. 8–18.
  10. Soloviev S.G. Rare-earth and other trace elements in rocks from W-bearing magmatic complexes of the Southern Tien Shan // Geochemistry International. 1998. V. 36(12). P. 1133–1146.
  11. Griffin W.L., Powell W.J., Pearson N.J., O’Reilly S.Y. GLITTER: Data reduction software for laser ablation ICP-MS / Sylvester P. (Ed.). Miner. Assoc. of Canada, Short Course Series. 2008. V. 40. P. 307–311.
  12. Hiess J., Condon D.J., McLean N., Noble S.R. 238U/235U systematics in terrestrial uranium-bearing minerals // Science. 2012. V. 335. P. 1610–1614.
  13. Slama J., Kosler J., Condon D.J. et al. Plesovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis // Chemical Geology. 2008. V. 249(1–2). P. 1–35.
  14. Ludwig K. User’s Manual for Isoplot 3.00. Berkeley, CA: Berkeley Geochronology Center, 2003. P. 1–70.
  15. Black L.P., Kamo S.L., Allen C.M. et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards // Chemical Geology. 2004. V. 205. P. 115–140.
  16. Miller J.S., Matzel J.E., Miller C.F., Burgess S.D., Miller R.B. Zircon growth and recycling during the assembly of large, composite arc plutons // J. Volcanol. Geotherm. Res. 2007. V. 167(1/4). P. 282–299.
  17. Соловьев С.Г., Кряжев С.Г., Семенова Д.В., Калинин Ю.А., Бортников Н.С. Два этапа рудообразования в W–Au металлогеническом поясе Южного Тянь-Шаня: данные изотопного U–Pb датирования циркона (метод LA-ICP-MS) из интрузивных пород W-Au месторождения Джилау (Таджикистан) // Доклады РАН. Науки о Земле. 2023. T. 512(2). C. 190–198.
  18. Соловьев С.Г., Кряжев С.Г., Семенова Д.В., Калинин Ю.А., Бортников Н.С. Два этапа формирования золото-полиметально-вольфрамового месторождения Яхтон (Южный Тянь-Шань, Узбекистан): первые данные изотопного U-Pb датирования циркона (метод LA-ICP-MS) из интрузивных пород Яхтонского штока // Доклады РАН. Науки о Земле. 2025. Т. 522(2). С. 43–53.
  19. Мельниченко А.К., Варзиева Т.Б. Редкометальные граниты в Южном Тянь-Шане и связанное с ними оруденение / В сб. Мамаджанов Ю.М. (ред.), Проблемы петрологии и металлогении Средней Азии. Душанбе: Дониш, 2015. C. 48–59.
  20. Соловьев С.Г. Металлогения фанерозойских скарновых месторождений вольфрама. М.: Научный мир, 2008. 368 с.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».