Three-phase and gel models of soils in the analysis of experimental results

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

It is common to consider the results of experiments in soil physics from the position of a three-phase soil model. Along with the three-phase, there is a gel model of soils. The models are based on different principles: in the three–phase model – the constancy of the solid phase and the mobility of the liquid, in the gel model – the ability of soil gels to swell, harden and reduce the mobility of water. The purpose of the work is to assess the applicability of using three–phase and gel soil models to analyze the results of studying some physical properties of soils. The studies were carried out on the soils of the zonal series: sod-podzolic, gray forest, chernozem, chestnut soil. The following methods were used in the work: vibration viscometry, laser diffractometry, electrical resistance of soils. When studying the physical properties of soils, unexpected results were obtained. Firstly, the curve of the influence of the samples moisture content on the viscosity of the pastes prepared from them reached a maximum in the area of the moisture content of the point of limited availability of water (PLAW). Secondly, with increased mechanical action on soil pastes, the particle size in them did not decrease, but increased. Thirdly, the dependence of the electrical resistance of soils on their humidity maintains a uniform course in the area of PLAW. Although at this humidity, the continuous framework of the liquid phase in soils disappears, providing moisture and electrical conductivity. Fourth, moist soils dry out in a desiccator over water. It is not possible to explain these results from the standpoint of the three-phase soil model generally accepted in soil science. Therefore, a gel model of soils was used to analyze the results, which made it possible to explain all the results obtained.

全文:

受限制的访问

作者简介

G. Fedotov

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: gennadiy.fedotov@gmail.com
俄罗斯联邦, Moscow

S. Shoba

Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com

Corresponding Member of the RAS

俄罗斯联邦, Moscow

D. Ushkova

Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
俄罗斯联邦, Moscow

I. Gorepekin

Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
俄罗斯联邦, Moscow

A. Sukharev

Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
俄罗斯联邦, Moscow

D. Potapov

Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
俄罗斯联邦, Moscow

参考

  1. Шеин Е. В. Курс физики почв. М.: Изд-во МГУ, 2005. 432 с.
  2. Тюлин А. Ф. Органно-минеральные коллоиды в почве, их генезис и значение для корневого питания высших растений. М.: АН СССР, 1958. 52 с.
  3. Оsterberg R., Mortensen K. Fractal dimension of humic acids. A small angle neutron scattering study // European Biophysics J. 1992. V. 21(3). P. 163–167.
  4. Милановский Е. Ю. Гумусовые вещества почв как природные гидрофобно-гидрофильные соединения. М.: ГЕОС, 2009. 186 с.
  5. Senesi N., Rizzi F. R., Dellino P., Acquafredda P. Fractal humic acids in aqueous suspensions at various concentrations, ionic strengths, and pH values. Colloids and Surfaces A. // Physicochemical and Engineering Aspects. 1997. V. 127. Iss. 1–3. P. 57–68.
  6. Senesi N., Rizzi F. R., Dellino P., Acquafredda P. Fractal dimension of humic acids in aqueous suspension as a function of pH and time // Soil Science Society of Am. J. 1996. V. 60. № 6. P. 1613–1678.
  7. Федотов Г. Н., Добровольский Г. В. Возможные пути формирования нано- и микроструктур в гумусовых веществах почвенных гелей // Почвоведение. 2012. № 8. С. 908–920.
  8. Хайдапова Д. Д., Мищенко А. В., Карпова Д. В. Реологические свойства почв как одна из характеристик физической среды обитания растений // Агрофизика. 2022. № 1. С. 17–21.
  9. Федотов Г. Н., Шоба С. А., Ушкова Д. А., Горепекин И. В., Салимгареева О. А., Потапов Д. И. Гуминовые вещества и вязкость почвенных паст // ДАН. Науки о Земле. 2023. Т. 511. С. 119–123.
  10. Фролов Ю. Г. Курс коллоидной химии. Химия. 1982. 463 с.
  11. Воронин А. Д. Структурно-функциональная гидрофизика почв. М.: Изд-во МГУЮ 1984. 204 с.
  12. Роде А. А. Основы учения о почвенной влаге. Л.: Гидрометеоиздат. 1965. Т. 1. 664 с.
  13. Обручева Н. В., Антипова О. В. Физиология и инициация прорастания семян // Физиология растений. 1997. Т. 44. № 2. С. 287–302.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The effect of moisture content of sod-podzolic soil samples on the viscosity of pastes prepared from them. The figures in Fig. the speeds of mixing pastes are indicated: 1 – 1200 rpm; 2 – 200 rpm.

下载 (95KB)
3. Fig. 2. Particle size distribution in soil pastes from chernozem samples with stirring: 1 – 1200 rpm; 2 – 200 rpm.

下载 (79KB)
4. Fig. 3. The effect of humidity of chernozem on its electrical resistance.

下载 (76KB)
5. Fig. 4. The effect of the duration of storage of sod-podzolic soil (1) and chernozem (2) in a desiccator above water on the determined soil moisture.

下载 (78KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##