Turbulent fluxes of aerosol and heat in a desertified area during intermittent emission of dust aerosol

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Based on fluctuations measurement results in the components of wind speed, air temperature and concentration of aerosol particles on a desertified area in the Astrakhan region under conditions of intermittent emission of dust aerosol, vertical turbulent fluxes of dust aerosol and heat were determined. Using spectral analysis, the temporal variability of the horizontal and vertical components of wind speed, air temperature and concentration of dust aerosol particles was characterized. It is shown that the intermittent emission of the dust aerosol is determined by low-frequency convective-induced variations in the horizontal component of wind speed when the threshold saltation speed is exceeded. Significant differences in the spatiotemporal variability of vertical heat transfer and dust aerosol were revealed. The 30-minute average values of heat fluxes (90–158 W/m2) and dust aerosol (7.2–27.5 cm2cm1), as well as the rate of heat removal (14–21 cm/s) and dust aerosol (10–16 cm/s).

全文:

受限制的访问

作者简介

G. Gorchakov

A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: gengor@ifaran.ru
俄罗斯联邦, Moscow

O. Chkhetiani

A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences

Email: gengor@ifaran.ru
俄罗斯联邦, Moscow

A. Karpov

A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences

Email: gengor@ifaran.ru
俄罗斯联邦, Moscow

R. Gushchin

A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences

Email: gengor@ifaran.ru
俄罗斯联邦, Moscow

O. Datsenko

A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences

Email: gengor@ifaran.ru
俄罗斯联邦, Moscow

参考

  1. Mahowald N., Albani S., Kok J. F., Engelstaeder S., Scanza R., Ward D. S., Flanner M. G. The size distribution of desert dust aerosols and its impact on the Earth system // Aeolian Research. 2014. V. 15. P. 53–71.
  2. Miller R., Tegen I., Perlwitz J. Surface radiative forcing by soil dust aerosol and the hydrologic cycle // J. Geophys. Res. 2004. V. 109. DO4203.
  3. Krishnamurthy A., Moore J. K., Mahowald N., Luo C., Zender C. S. Impacts of atmospheric nutrient inputs on marine biogeochemistry // J. Geophys. Res. 2010. V. 115. G01006.
  4. Brunekreef B., Holgate S. T. Air Pollution and Health // Lancet. 2002. V. 360. P. 1233–1242.
  5. Shao Y. Physics and Modeling of Wind Erosion. N. Y.: Springer, 2000. 393 р.
  6. Alfaro S. C., Gaudichet A., Gomes L., Maille M. Modeling the size distribution of a soil aerosol produced by sandblasting // J. Geophys. Res. 1997. V. 102. P. 11239–11249.
  7. Горчаков Г. И., Копейкин В. М. Карпов А. В., Гущин Р. А., Даценко О. И., Бунтов Д. В. Электризация ветропесчанного потока на опустыненных территориях // Доклады РАН. Науки о Земле. 2022. Т. 505. № 1. С. 88–93.
  8. Горчаков Г. И., Копейкин В. М., Карпов А. В., Гущин Р. А., Даценко О. И., Бунтов Д. В. Пылевая плазма ветропесчанного потока на опустыненных территориях // Изв. РАН. Физика атмосферы и океаны. 2022. T. 58. № 5. С. 543–553.
  9. Берлянд М. Е. Современные проблемы атмосферной диффузии и загрязнения атмосферы. Ленинград: Гидрометеоиздат, 1975. 448 с.
  10. Seinfeld J. H., Pandis S. N. Atmospheric chemistry and physics. NY: Wiley Intersci. Publ., 1998. 1326 p.
  11. Sow M., Alfaro S. C., Rajot J. Z. Comparison of the size resolved dust emission fluxes measured over a Sahelian source with the Dust Production Model (DPM) predictions // Atmos. Chem. Phys. Discuss. 2011. V. 11. P. 11077–11107.
  12. Bagnold R. A. The physics of blown sand and desert dunes, London: Methuen. 265. 1941.
  13. Горчаков Г. И., Карпов А. В., Гущин Р. А. Турбулентные потоки пылевого аэрозоля на опустыненной территории. Доклады РАН. Науки о Земле. 2020. Т. 494. С. 53–57.
  14. Карпов А. В., Горчаков Г. И., Гущин Р. А., Даценко О. И. Вертикальные турбулентные потоки пылевого аэрозоля // Известия РАН. Физика атмосферы и океана. 2021. Т. 57, № 5. С. 565–574.
  15. Горчаков Г. И., Шукуров К. А. Флуктуации концентрации субмикронного аэрозоля в конвективных условиях // Изв. РАН. Физика атмосферы и океана. 2003. Т. 39. № 1. С. 85–97.
  16. Gorchakov G. I., Koprov V. M., Shukurov K. A. Vertical turbulent aerosol fluxes over desertized areas // Izv. Atm. and Oceanic Physics. 2002. V. 38. Suppl 1. P. S138–S147.
  17. Caughey S. J., Kaimal J. C. Vertical heat flux in the convective boundary layer. Q. J. R. // Meteorol. Soc. 1977. V. 103. P. 811–815.
  18. Горчаков Г. И., Чхетиани О. Г., Карпов А. В. и др. Квазипериодическая эмиссия пылевого аэрозоля на опустыненной территории // Метеорология и гидрология. 2023. № 8. С. 62–72.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Time variability 09.09.2021 in the period from 10:00 to 15:00 according to measurements at a height of 3 m of the horizontal component of wind speed (1), turbulent pulsations (2) of the vertical component of wind speed (smoothed at an interval of 50 seconds), air temperature pulsations (5) – smoothed at an interval of 50 c and the total concentration of dust aerosol particles (6). Designations: 3 – threshold saltation rate, 4 – the starting point for the vertical component of wind speed, 7 and 8 – intervals of piecewise linear approximation of the air temperature trend, 9 - concentration of background aerosol, 10 – the moment of fracture of piecewise linear temperature interpolation, I –X – 30-minute intervals.

下载 (311KB)
3. Figure 2. Spectral power density of turbulent pulsations of the horizontal component of wind speed (a), the vertical component of wind speed (b) fluctuations in air temperature (c) and fluctuations in the total concentration of dust aerosol particles (d). Designation: 1 – calculated spectra, piecewise linear approximations in the region of “high” frequencies (2), “low” frequencies (3) and in the “intermediate frequencies” range 1-5 MHz (5), near 100 MHz (6) and in the range from 100 to 10 MHz (7, 8 and 9).

下载 (273KB)
4. Fig. 3. Temporal variability of the density of vertical turbulent fluxes of dust aerosol (1) and heat fluxes (2).

下载 (221KB)
5. Fig. 4. Spectra of turbulent fluxes of dust aerosol (a) and heat (b). See the designations in Fig. 2.

下载 (198KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##