Seismic velocity changes beneath Ebeko Volcano (Kuril Islands) based on observations in July-August 2021

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Here we present seismic velocity changes in the northern part of Paramushir Island, where presently active Ebeko Volcano is located. We use the data of a seismic network that operated in this area in 2021–2022 during a continuous eruption activity of Ebeko. We selected the data from July 1 to August 15, when most stations of the network provided prompt recording of seismic signals. The velocity changes were derived from the ambient noise cross-correlation functions. To identify common features in the obtained velocity variation curves, we have performed the cluster analysis and separated all the curves in two groups having similar shapes within each group, but strongly different between the groups. Velocity changes in Cluster 1 corresponding to the station pairs covering the entire Northern Paramushir have some delayed correlation with the precipitation intensity, implying that these changes might be caused by meteoric fluid migration. In Cluster 2, which is more concentrated in the area of Ebeko Volcano, the velocity changes are apparently connected with both external factors (precipitation and atmospheric pressure) and internal indicators of volcano activity (phreatic explosions, seismicity, thermal anomalies and gas emission).

全文:

受限制的访问

作者简介

Ya. Berezhnev

Trofimuk Institute of Petroleum-Gas Geology and Geophysics of the Siberian Branch of the Russian Academy of Sciences; Skolkovo Institute of Science and Technology (Skoltech)

编辑信件的主要联系方式.
Email: BerezhnevYM@ipgg.sbras.ru
俄罗斯联邦, Novosibirsk; Moscow

N. Belovezhets

Trofimuk Institute of Petroleum-Gas Geology and Geophysics of the Siberian Branch of the Russian Academy of Sciences; Skolkovo Institute of Science and Technology (Skoltech)

Email: BerezhnevYM@ipgg.sbras.ru
俄罗斯联邦, Novosibirsk; Moscow

I. Koulakov

Trofimuk Institute of Petroleum-Gas Geology and Geophysics of the Siberian Branch of the Russian Academy of Sciences; Skolkovo Institute of Science and Technology (Skoltech); Institute of the Earth’s Crust Siberian Branch of the Russian Academy of Sciences

Email: BerezhnevYM@ipgg.sbras.ru

Corresponding Member of the RAS

俄罗斯联邦, Novosibirsk; Moscow; Irkutsk

A. Jakovlev

Alfred-Wegener-Institut

Email: BerezhnevYM@ipgg.sbras.ru
德国, Bremerhaven

M. S. Alajmi

KingAbdulaziz City of Science and Technology

Email: BerezhnevYM@ipgg.sbras.ru
沙特阿拉伯, Riyadh

E. Gordeev

Institute of Volcanology and Seismology Far Eastern Branch of the Russian Academy of Science

Email: BerezhnevYM@ipgg.sbras.ru

Academician of the RAS

俄罗斯联邦, Petropavlovsk-Kamchatsky

参考

  1. Ratdomopurbo A., Poupinet G. Monitoring a Temporal Change of Seismic Velocity in a Volcano: Application to the 1992 Eruption of Mt. Merapi (Indonesia) // Geophysical Research Letter. 1995. V. 22. P. 775–778.
  2. Poupinet G., Ellsworth W. L., Frechet J. Monitoring Velocity Variations in the Crust Using Earthquake Doublets: An Application to the Calaveras Fault, California // Journal Geophysical Research. 1984. V. 89. P. 5719–5731.
  3. Vargas C. A., Koulakov I., Jaupart C., Gladkov V., Gomez E., El Khrepy S., Al-Arifi N. Breathing of the Nevado Del Ruiz Volcano Reservoir, Colombia, Inferred from Repeated Seismic Tomography // Scientific Reports. 2017. V. 7. P. 46094.
  4. Shapiro N. M., Campillo M. Emergence of Broadband Rayleigh Waves from Correlations of the Ambient Seismic Noise // Geophysical Research Letter. 2004. V. 31. P. 2004GL019491.
  5. Sens‐Schönfelder C., Wegler U. Passive Image Interferometry and Seasonal Variations of Seismic Velocities at Merapi Volcano, Indonesia // Geophysical Research Letters. 2006. V. 33. P. 2006GL027797.
  6. Belousov A., Belousova M., Auer A., Walter T. R., Kotenko T. Mechanism of the Historical and the Ongoing Vulcanian Eruptions of Ebeko Volcano, Northern Kuriles // Bulletin of Volcanology. 2021. V. 83. P. 4.
  7. Kotenko T. A., Smirnov S. Z., Timina T.Yu. The 2022 Activity of Ebeko Volcano: The Mechanism and Ejecta // Journal of Volcanology and Seismology. 2023. V. 17. P. 259–277.
  8. Котенко Т. А., Котенко Л. В. Гидротермальные проявления и тепловой поток вулканов Эбеко и Крашенинникова (о. Парамушир, Курильские о-ва) // Вестник КРАУНЦ. Сер. НаукиоЗемле. 2006. № 1. Вып. 7. С. 129–137.
  9. Belovezhets N., Berezhnev Y., Koulakov I., Jakovlev A., Abramenkov S., Smirnov S. Z., Abkadyrov I. Magma and Hydrothermal Sources below the Northern Part of Paramushir Island (Kuril Arc) Inferred from Ambient Noise Tomography // Journal of Volcanology and Geothermal Research. 2023. V. 443. P. 107931.
  10. Bensen G. D., Ritzwoller M. H., Barmin M. P., Levshin A. L., Lin F., Moschetti M. P., Shapiro N. M., Yang Y. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements // Geophysical Journal International. 2007. V. 169. P. 1239–1260.
  11. Brenguier F., Campillo M., Takeda T., Aoki Y., Shapiro N. M., Briand X., Emoto K., Miyake H. Mapping Pressurized Volcanic Fluids from Induced Crustal Seismic Velocity Drops // Science. 2014. V. 345. P. 80–82.
  12. Brentan B., Meirelles G., Luvizotto E., Izquierdo J. Hybrid SOM+k-Means Clustering to Improve Planning, Operation and Management in Water Distribution Systems // Environmental Modelling & Software. 2018. V. 106. P. 77–88.
  13. Li K., Sward K., Deng H., Morrison J., Habre R., Franklin M., Chiang Y. Y., Ambite J. L., Wilson J. P., Eckel S. P. Using Dynamic Time Warping Self-Organizing Maps to Characterize Diurnal Patterns in Environmental Exposures // Scientific Reports. 2021. V. 11. P. 24052.
  14. Obermann A., Planès T., Hadziioannou C., Campillo M. Lapse-Time-Dependent Coda-Wave Depth Sensitivity to Local Velocity Perturbations in 3-D Heterogeneous Elastic Media // Geophysical Journal International. 2016. V. 207. P. 59–66.
  15. Van Dinther C., Margerin L., Campillo M. Implications of Laterally Varying Scattering Properties for Subsurface Moni-toringWith Coda Wave Sensitivity Kernels: Application to Volcanic and Fault Zone Setting // Journal Geophysical Research. Solid Earth. 2021. V. 126. P. e2021JB022554.
  16. Gradon C., Brenguier F., Stammeijer J., Mordret A., Hindriks K., Campman X., Lynch R., Boué P., Chmiel M. Seismic Velocity Response to Atmospheric Pressure Using Time-Lapse Passive Seismic Interferometry // Bulletin of the Seismological Society of America. 2021. V. 111. P. 3451–3458.
  17. KBGS. Daily Activity Level Color Codes for Kamchatka Volcanoes (in Russian). Available online: http://www.emsd.ru/~ssl/monitoring/main.htm.
  18. KVERT. Institute of Volcanology and Seismology FEB RAS. Available online: http://www.kscnet.ru/ivs/kvert/.
  19. McMillan T.C., Rau G. C., Timms W. A., Andersen M. S. Utilizing the Impact of Earth and Atmospheric Tides on Ground-water Systems: A Review Reveals the Future Potential // Reviews of Geophysics. 2019. P. 57. P. 281–315.
  20. Berezhnev Y., Belovezhets N., Shapiro N., Koulakov I. Temporal Changes of Seismic Velocities below Bezymianny Volcano Prior to Its Explosive Eruption on 20.12.2017 // Journal of Volcanology and Geothermal Research. 2023. V. 433. P. 107735.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Research area and data distribution. (a) A map of the northern Kuril Islands and southern Kamchatka with an indication of the research area (blue rectangle). The red dots represent Holocene volcanoes. (b) A research area with marked temporary and permanent seismic stations (black and purple triangles, respectively). A relief with an interval of 200 m is depicted on the background. The red areas depict Holocene lava flows. White stars represent cones. Large volcanic centers are marked in brown and yellow: VER – Vernadsky; BIL – Bilibin; KRA – Krasheninnikov; BOG – Bogdanovich; NEO – Unexpected; EBE – Ebeko. (c) Time schedules for registration of seismic stations.

下载 (580KB)
3. Fig. 2. The upper part is an example of daily cross-correlations across pairs of SKR-VER13 stations in the frequency band 0.125–0.25 Hz after averaging over a sliding window. The gray parts indicate correlation times that were not used to estimate velocity changes. The resulting velocity changes for this correlogram are shown in the bottom panel.

下载 (395KB)
4. Fig. 3. Average velocity curves and their standard deviations for the frequency ranges 0.125–0.25 Hz and 2-4 Hz for the 1st and 2nd groups, indicated in pink and blue colors, respectively.

下载 (223KB)
5. Fig. 4. Clustering results. (a), (b) Pairs of stations (black dots) corresponding to groups 1 and 2 (red and blue lines, respectively). (c) Average velocity curves for the frequency ranges 0.125–0.25 Hz and 2-4 Hz (purple and green lines, respectively) for groups 1 and 2, indicated by pink and blue backgrounds, respectively.

下载 (611KB)
6. Fig. 5. Normalized average curves of velocity changes in comparison with meteorological data and the activity of the Ebeko volcano. The daily activity of Ebeko was determined according to the data of the CF GS RAS [17] and KVERT [19].

下载 (428KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##