Nd-isotope effects through factional crystallisation-assimilation (AFC) processes in the continental crust, heterogeneous in age: the example of ferrobasalts from the Ladoga Graben (Karelia, Russia)

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Petrography, geochemistry and isotope geochemistry of the Mesoproterozoic volcanic rocks occurred as lava flows and the Valaam sill in the Ladoga rift, have been studied. The Ladoga rift is located in the area of thrusting of the Palaeoproterozoic Svekofennian orogenic complexes onto the Archean Karelian craton. Ferrobasites of close composition and geological position in lava flows and sill have different Nd isotopic composition, differing by 5 units εNd(t): –4…-5 in ferrobasalts of lava flows and a very low-radiogenic Nd isotopic composition in mafic rocks of the sill (εNd(t) to –11 for ferrogabbro), and identical to the isotopic composition of its acidic rocks (εNd(t) to –11 for granophyres). It is shown that in the crust, heterogeneous in age, the process of fractional crystallisation along the tholeiitic trend combined with assimilation of melt from wall rocks can be an effective mechanism for forming such “paradoxical” features of the Nd isotopic composition. The isotopic composition of sill rocks indicates the probable presence of Mesoarchean blocks in the lower crust of the Ladoga graben region.

全文:

受限制的访问

作者简介

А. Nosova

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry Russian Academy of Sciences

编辑信件的主要联系方式.
Email: nosova@igem.ru
俄罗斯联邦, Moscow

N. Lebedeva

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry Russian Academy of Sciences

Email: nosova@igem.ru
俄罗斯联邦, Moscow

А. Vozniak

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry Russian Academy of Sciences

Email: nosova@igem.ru
俄罗斯联邦, Moscow

L. Sazonova

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry Russian Academy of Sciences; Lomonosov Moscow State University

Email: nosova@igem.ru
俄罗斯联邦, Moscow; Moscow

Yu. Larionova

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry Russian Academy of Sciences

Email: nosova@igem.ru
俄罗斯联邦, Moscow

I. Kondrashev

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry Russian Academy of Sciences

Email: nosova@igem.ru
俄罗斯联邦, Moscow

参考

  1. Andersson U. B., Neymark L. A., Billström K. Petrogenesis of Mesoproterozoic (sub-Jotnian) rapakivi complexes of central Sweden: Implications from U-Pb zircon ages, Nd, Sr and Pb isotopes // Transactions of the Royal Society of Edinburgh, Earth Sciences. 2002. V. 92. P. 201–228.
  2. Rämö O. T. Petrogenesis of the Proterozoic rapakivi granites and related rocks of southeastern Fennoscandia: Nd and Pb isotopic and general geochemical constraints // Geol. Surv. of Finl. 1991. Bull. 335. Р. 161.
  3. Neymark L. A., Amelin V. Yu., Larin A. M. Pb-Nd-Sr isotopic and geochemical constraints on the origin of the 1.54–1.56 Ga Salmi rapakivi granite-Anorthosite batholith (Karelia, Russia) // Mineral. Petrol. 1994. Т. 50. № 1–3. С. 173–193.
  4. Ларин А. М. Граниты рапакиви и ассоциирующие породы. СПб.: Наука. 2011. 402 с.
  5. Свириденко Л. П., Светов А. П. Валаамский силл габбро-долеритов и геодинамика котловины Ладожского озера. Петрозаводск: Карельский научный центр РАН. 2008. 123 с.
  6. Ripa M., Stephens M. B. Chapter 10 Magmatism (1.6– 1.4 Ga) and Mesoproterozoic sedimentation related to intracratonic rifting coeval with distal accretionary orogenesis // Geological Society, London, Memoirs. 2020. V. 50. № . 1. P. 269–288.
  7. Brander L., Soderlund U. Mesoproterozoic (1.47– 1.44 Ga) orogenic magmatism in Fennoscandia; Baddeleyite U–Pb dating of a suite of massif-type anorthosite // International Journal of Earth Sciences. 2009. 98. P. 499–516 doi: 10.1007/s00531-007-0281-0.
  8. Ларионова Ю. О., Самсонов А. В., Шатагин К. Н. Источники архейских санукитоидов (высоко-Mg субщелочных гранитоидов) Карельского кратона: Sm-Nd и Rb-Sr изотопно-геохимические данные. // Петрология. 2007. Т. 15. № 6. С. 571–593.
  9. Lauri L. S., Andersen T., Hölttä P., Huhma H., Graham S. Evolution of the Archaean Karelian Province in the Fennoscandian Shield in the light of U–Pb zircon ages and Sm–Nd and Lu–Hf isotope systematics. London // Journal of the Geological Society. 2011. 167. 1–18.
  10. Балтыбаев Ш. К., Вивдич Э. С., Галанкина О. Л., Борисова Е. Б. Флюидный режим формирования гнейсов в Мейерской надвиговой зоне Северного Приладожья (юго-восток Фенноскандинавского щита) // Петрология. 2022. T. 30. № 2. С. 166–193 doi: 10.31857/S08695903220200295.
  11. Kotova L. N., Kotov A. B., Glebovitskii V. A., Podkovyrov V. N., Savatenkov V. M. SourceRocks and Provenances of the Ladoga Group Siliciclastic Metasediments (Svecofennian Foldbelt, Baltic Shield): Results of Geochemical and Sm–Nd Isotopic Study // Stratigraphy and Geological Correlation. 2009. V. 17. No. 1. P. 1–19.
  12. Konopelko D., Savatenkov V., Glebovitsky V., et al. Nd isotope variation across the archaean-proterozoic boundary in the North Ladoga Area, Russian Karelia // Gff. 2005. Т. 127. № 2. С. 115–122.
  13. Bohrson W. A.,·Spera F.J.,·Heinonen J.S., Brown G. A., Scruggs M. A., Adams J. V., Takach M. K., Zeff G., Suikkanen E. Diagnosing open-system magmatic processes using the Magma Chamber Simulator (MCS): part I – major elements and phase equilibria // Contributions to Mineralogy and Petrology. 2020. P. 175. P. 1–29 https://doi.org/10.1007/s00410-020-01722-z.
  14. Heinonen J. S., Bohrson W. A., Spera F. J., Brown G. A., Scruggs M., Adams J. Diagnosing open-system magmatic processes using the Magma Chamber Simulator (MCS): part II – trace elements and isotopes // Contributions to Mineralogy and Petrology. 2020. V. 175. P. 1–21. https://doi.org/10.1007/s0041 0-020-01718-9.
  15. Rämö O. T., Mänttäri I., Vaasjoki M., Upton B. G.J., Sviridenko L. P. Age and significance of Mesoproterozoic CFB magmatism, Lake Ladoga region, NW Russia // Geol. Soc. of Amer. Abstract with Programs. 2001. V. 33. P. 6.
  16. Богданов Ю. Б., Саватенков В. В., Иванников В. В., Франк-Каменецкий Д. А. Изотопный возраст вулканитов салминской свиты рифея // Изотопная геохронология в решении проблем геодинамики и рудогенеза. Мат. II Росс.конф. по изотоп. Геохронол. 25–27 ноября 2003 г., СПб, СПб: Центр информ. Культуры. 2003. С. 71–72.
  17. Sun S., McDonough W. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // Geological Society, London, Special Publications. 1989. V. 42. C. 313–345. doi: 10.1144/GSL.SP.1989.042.01.19.
  18. Heinonen A. P., Rämö O.T, Mänttäri I., Johanson B., Alviola R. Formation and Fractionation of High-Al Tholeiitic Magmas in the Ahvenisto Rapakivi Granite – Massif-Type Anorthosite Complex, Southeastern Finland // The Canadian Mineralogist. 2010. V. 48, P. 969–990 doi: 10.3749/canmin.48.4.969.
  19. Nehring F., Foley S. F., Holtta P., Van Den Kerkhof A. M. Internal Differentiation of the Archean Continental Crust: Fluid-Controlled Partial Melting of Granulites and TTG-Amphibolite Associations in Central Finland // Journal of Petrology. 2009. 50(1). 3–35. doi: 10.1093/petrology/egn070.
  20. Korja A., Heikkinen P. The accretionary Svecofennian orogen – insight from the BABEL profiles // Precambrian Research. 2005. 136(3–4), 241–268. doi: 10.1016/j.precamres.2004.10.007.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The area of distribution of AMCG magmatism in Fennoscandia, northwest of the CENTURY, according to [7] with additions. The circles show the values of the eNd(1457) for AR rocks of the Western domain of the Karelian craton, PR1 meta-sediments of the Raakhe-Ladoga zone, PR1 granite massifs and granite domes with Archean material, MR granites of the Salma massif, sources of isotope data see in the text.

下载 (398KB)
3. Fig. 2. Compositions of plagioclases (a), Mg# olivines (b) and Mg# clinopyroxenes (c) from ferrobasalts of lava beds (green fields) and ferrogabbro, ferromontzonites of Valaam sill (pink fields) Ladoga graben.

下载 (151KB)
4. Fig. 3. Multielement diagram of rocks of the Valaam sill, Salmi ferrobasalts from the Ladoga graben and mafic rocks of the Salma massif [4]. The concentrations of elements in rocks are normalized for the primitive mantle according to [17].

下载 (253KB)
5. Fig. 4. Results of modeling changes in the isotopic composition of Nd during the AFC process for ferrobasalts and ferrogabbro Ladoga graben using the MCS software package [13, 14]. Dolerite (diabase) from the north flank of the Akhvenisto massif was used as the initial composition (the most “primitive” among the mafites associated with AMCG complexes, MgO = 10 wt. %), having 20 µg/g Nd and eNd(t) = +1 [18], is shown by a green asterisk. The composition of granodiorite from the sanukitoid Taloveis massif [9] was used as a neo–Archean contaminant source, the composition of TTG gneiss of the Iisalmi domain [9, 19] was used as a Mesoarchean source, and the composition of granite from the Salmin massif [3] was used as a contaminant originating from the Archean crust processed in the Proterozoic. Model curves AFC for quartz diorite Taloveis – M1 and smelting from it M1m, for TTG gneiss Iisalmi – M2 and M2 m, for granite Salminsky massif – M3 and M3 m, respectively. The conditions Fe2O3 are accepted for oxygen: FeO = 0.2, minimum ph

下载 (131KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##