ANOMALOUS ABSORPTION OF SMOKE AEROSOL IN THE VISIBLE AND NEAR-INFRARED OF SPECTRUM INTERVALS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In large-scale smoke haze during mass fires in the boreal forests of Alaska in July 2019 in the visible and near infrared of spectrum intervals 440–1020 nm, according to monitoring data on the network of AERONET stations of the spectral dependences of the refractive index imaginary part, anomalous absorption of the fine smoke aerosol was found. Variations in the spectral dependences of the aerosol optical extinction and absorption depths, as well as the size distribution function of aerosol particles, are analyzed. With anomalous absorption, the imaginary part of the refractive index increased by a factor of 1.8–7.2 with increasing wavelength from 440 to 1020 nm, reaching a value of 0.315 for the wavelength of 1020 nm. A power-law approximation of the spectral dependence of the refractive index imaginary part with exponents approximately from 0.7 to 2.3 is proposed.

作者简介

G. Gorchakov

A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: gengor@ifaran.ru
Russian, Moscow

R. Gushchin

A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences

Email: gengor@ifaran.ru
Russian, Moscow

V. Kopeikin

A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences

Email: gengor@ifaran.ru
Russian, Moscow

A. Karpov

A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences

Email: gengor@ifaran.ru
Russian, Moscow

E. Semoutnikova

M.V. Lomonosov Moscow State University, Faculty of Physics

Email: gengor@ifaran.ru
Russian, Moscow

O. Datsenko

Hydrometeorological Research Center of Russia

Email: gengor@ifaran.ru
Russian, Moscow

T. Ponomareva

A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences

Email: gengor@ifaran.ru
Russian, Moscow

参考

  1. Мохов И.И., Горчакова И.А. // ДАН. 2005. Т. 400. № 4. С. 528–531.
  2. Панченко М.В., Журавлева Т.Б., Козлов В.С. и др. Метеорология и гидрология. 2016. № 2. С. 45–54.
  3. Голицын Г.С., Горчаков Г.И., Гречко Е.И. и др. // ДАН. 2011. Т. 441. № 4. С. 532–538.
  4. Holben B.N., Eck T.F., Slutsker I., et al // Remote Sensing of Environ. 1998. V. 66. № 1. P. 1–16.
  5. Dubovik O., King M.D. // J. Geophys. Res. 2000. V. 105. № D16. P. 20673–20696.
  6. Горчаков Г.И., Аникин П.П., Волох А.А. и др. // ДАН. 2003. Т. 390. № 2. С. 251–254.
  7. Горчаков Г.И., Аникин П.П., Волох А.А. и др. // Изв. РАН. Физика атмосферы и океана. 2004. Т. 40. № 3. С. 366–380.
  8. Горчаков Г.И., Свириденков М.А., Семутникова Е.Г. и др. // ДАН. 2011. Т. 437. № 5. С. 686–690.
  9. Горчаков Г.И., Голицын Г.С., Ситнов С.А. и др. // ДАН. 2018. Т. 482. № 2. С. 209–212.
  10. Горчаков Г.И., Ситнов С.А., Карпов А.В. и др. // Изв. РАН. Физика атмосферы и океана. 2019. Т. 55. № 3. С. 41–51.
  11. Eck T.F., Holben B.N., Reid J.S., et al. // J. Geophys. Res.: Atmospheres. 2009. V. 114. D11208.
  12. Dubovik O., Holben B.N., Eck T.F., et al. // J. Atm. Sci. 2002. V. 59. № 3. Part 2. P. 590–608.
  13. Зуев В.Е., Креков Г.М. Оптические модели атмосферы. Л.: Гидрометеоиздат. 1986. 256 с.
  14. Feng Y., Ramanathan V., Kotamarthi V.R. // Atm. Chem. Phys. 2013. V. 13. № 17. P. 8607–8621.
  15. Горчаков Г.И., Васильев А.В., Веричев К.С. и др. // ДАН. 2016. Т. 471. № 1. С. 91–97.
  16. Gorchakov G.I., Karpov A.V., Vasiliev A.V., Gorchako-va I.A. // Atmos. Oceanic Opt. 2017. V. 30. № 3. P. 248–254.
  17. Gorchakov G.I., Sitnov S.A., Sviridenkov M.A., et al. // Int. J. Remote Sens. 2014. V. 35. № 15. P. 5698–5721.
  18. Bergstrom R.W., Russell P.B., Hignett P. // J. Atm. Sci. 2002. V. 59. № 3. Part P. 567–577.
  19. Грин Х., Лейн В. Аэрозоли-пыли, дымы и туманы. Л.: Химия. 1969. 427 с.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (125KB)
3.

下载 (124KB)
4.

下载 (149KB)
5.

下载 (192KB)

版权所有 © Г.И. Горчаков, Р.А. Гущин, В.М. Копейкин, А.В. Карпов, Е.Г. Семутникова, О.И. Даценко, Т.Я. Пономарева, 2023

##common.cookie##