СОСТАВ КРИСТАЛЛИЧЕСКИХ ВКЛЮЧЕНИЙ В МАГМАТИЧЕСКОМ ОЛИВИНЕ ИЗ КИМБЕРЛИТОВ ТРУБКИ УДАЧНАЯ-ВОСТОЧНАЯ (СИБИРСКИЙ КРАТОН): НЕКОТОРЫЕ ОЦЕНКИ ТЕМПЕРАТУР КРИСТАЛЛИЗАЦИИ ТАКИХ АССОЦИАЦИЙ С ПРИМЕНЕНИЕМ ГЕОТЕРМОМЕТРОВ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В представленной работе на основе значительного фактического материала (43 пары), максимально корректно используя вариации составов минералов, применяющихся для калибровки уравнений геологических термометров, по различным термометрам (пары оливин–хромит, оливин–ильменит и ильменит–титаноматнетит) мы приводим оценки вариаций температур кристаллизации оливина магматической кристаллизации кимберлитов с Mg# 88–89 и кристаллических включений минералов группы шпинели, ильменита, рутила и флогопита в таком оливине. Оливин с Mg# 88–89 наиболее распространён по объёму среди других зон оливина магматической кристаллизации в индивидуальных зёрнах оливина из вулканокластических кимберлитов трубки Удачная-Восточная. В работе так же приводятся 96 химических анализов вышеупомянутых кристаллических включений в этом оливине.

Об авторах

А. В Головин

Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук

Новосибирск, Россия

А. А Тарасов

Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук

Email: tarasov.alexey@igm.nsc.ru
Новосибирск, Россия

Д. В Кузьмин

Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук

Новосибирск, Россия

Н. П Похиленко

Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук

академик РАН Новосибирск, Россия

Список литературы

  1. Coogan L.A., Saunders A.D., Wilson R.N. Aluminum-in-olivine thermometry of primitive basalts: Evidence of an anomalously hot mantle source for large igneous provinces // Chem. Geol. 2014. V. 368. P. 1–10.
  2. Zhang Y., Namur O., Li W., Shorttle O., Gazel E., Jennings E., Thy P., Grove T.L., Charlier B. An Extended calibration of the olivine–spinel aluminum exchange thermometer: application to the melting conditions and mantle lithologies of large igneous provinces // J. Petrol. 2023. V. 64. № 11. P. 1–28.
  3. Kavanagh J.L., Sparks R.S.J. Temperature changes in ascending kimberlite magma // Earth Planet. Sci. Lett. 2009. V. 286. № 3. P. 404–413.
  4. Pokhilenko N.P. Polymict breccia xenoliths: Evidence for the complex character of kimberlite formation // Lithos. 2009. V. 112. P. 934–941.
  5. Giuliani A., Phillips D., Kamenetsky V.S., Goemann K. Constraints on kimberlite ascent mechanisms revealed by phlogopite compositions in kimberlites and mantle xenoliths // Lithos. 2016. V. 240–243. P. 189–201.
  6. Kiseeva K., Kamenetsky V., Chayka I., Maas R., Nielsen T. Alkali-carbonate melts in the cratonic mantle evidenced by a wehrlite xenolith from the Majuagaa kimberlite, West Greenland // Geology. 2024. V. 53. P. 89–93.
  7. Fedortchouk Y., Canil D. Intensive variables in kimberlite magmas, Lac de Gras, Canada and implications for diamond survival // J. Petrol. 2004. V. 45. № 9. P. 1725–1745.
  8. Casetta F., Asenbaum R., Ashchepkov I., Abart R., Ntaflos T. Mantle-derived cargo vs liquid line of descent: reconstructing the P–T–f o2–x path of the Udachnaya–East kimberlite melts during ascent in the Siberian sub-cratonic lithosphere // J. Petrol. 2023. V. 64. № 1. P. egac122.
  9. Ballhaus C., Berry R., Green D. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle // Contrib. Mineral. Petrol. 1991. V. 107. P. 27–40.
  10. Andersen D.J., Lindsley D.H., Davidson P.M. QUILF: A pascal program to assess equilibria among Fe–Mg–Mn–Ti oxides, pyroxenes, olivine, and quartz // Comput. Geosci. 1993. V. 19. № 9. P. 1333–1350.
  11. Sauerzapf U., Lattard D., Burchard M., Engelmann R. The titanomagnetite–ilmenite equilibrium: new experimental data and thermo-oxybarometric application to the crystallization of basic to intermediate rocks // J. Petrol. 2008. V. 49. № 6. P. 1161–1185.
  12. Liu Z., Ionov D.A., Nimis P., Xu Y., He P., Golovin A.V. Thermal and compositional anomalies in a detailed xenolith-based lithospheric mantle profile of the Siberian craton and the origin of seismic midlithosphere discontinuities // Geology. 2022. V. 50. № 8. P. 891–896.
  13. Kamenetsky V.S., Kamenetsky M.B., Golovin A.V., Sharygin V.V., Maas R. Ultrafresh salty kimberlite of the Udachnaya-East pipe (Yakutia, Russia): A petrological oddity or fortuitous discovery? // Lithos. 2012. V. 152. P. 173–186.
  14. Abersteiner A., Kamenetsky V.S., Golovin A.V., Kamenetsky M., Goemann K. Was crustal contamination involved in the formation of the serpentine-free Udachnaya-East kimberlite? New insights into parental melts, liquidus assemblage and effects of alteration // J. Petrol. 2018. V. 59. № 8. P. 1467–1492.
  15. Golovin A.V. Unusual mineralogy of kimberlites: alkali carbonates, sulfates, and chlorides among groundmass minerals from unserpentinized coherent kimberlite of the Udachnaya-East pipe, Siberian craton // Minerals. 2025. V. 15. № 6. P. 586.
  16. Kamenetsky V.S., Kamenetsky M.B., Sobolev A.V., Golovin A.V., Demouchy S., Faure K., Sharygin V.V., Kuzmin D.V. Olivine in the Udachnaya-East Kimberlite (Yakutia, Russia): types, compositions and origins // J. Petrol. 2008. V. 49. № 4. P. 823–839.
  17. Abersteiner A., Kamenetsky V.S., Goemann K., Golovin A., Kamenetsky M. Olivine in kimberlites: magma evolution from deep mantle to eruption // J. Petrol. 2022. V. 63. № 7. P. egac055.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).