CHEMICAL PRECIPITATION CHARACTERISTICS OF URANIUM ON CALCIUM PHOSPHATES
- Autores: Gas'kova O.L1, Boguslavsky A.E1, Sofronova S.M1, Saraev A.A2, Vinokurov Z.S2,3
-
Afiliações:
- V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences
- Synchrotron Radiation Facility SKIF
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences
- Edição: Volume 524, Nº 1 (2025)
- Páginas: 166-174
- Seção: GEOECOLOGY
- ##submission.dateSubmitted##: 04.12.2025
- ##submission.datePublished##: 15.12.2025
- URL: https://journals.rcsi.science/2686-7397/article/view/356199
- DOI: https://doi.org/10.7868/S3034506525090208
- ID: 356199
Citar
Resumo
Palavras-chave
Sobre autores
O. Gas'kova
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences
Email: gaskova@igm.nsc.ru
Novosibirsk, Russia
A. Boguslavsky
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of SciencesNovosibirsk, Russia
S. Sofronova
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of SciencesNovosibirsk, Russia
A. Saraev
Synchrotron Radiation Facility SKIFKoltsovo, Russia
Z. Vinokurov
Synchrotron Radiation Facility SKIF; Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of SciencesKoltsovo, Russia; Novosibirsk, Russia
Bibliografia
- Martinez R.J., Beazley M.J., Sobecky P.A. Phosphate-mediated remediation of metals and radionuclides // Advances in Ecology. 2014. V. 2014. 786929. P. 1–14. http://dx.doi.org/10.1155/2014/786929
- Jiménez-Arroyo A., Gabitov R., Migdisov F., J. Lui, Strzelecki A., Zhao X., Guo X., Paul V., Mlsna T., Perez-Huerta A., Caporuscio F., Hongwu Xu, Roback R. Uranium uptake by phosphate minerals at hydrothermal conditions // Chemical Geology. 2023. V. 634. 121581. https://doi.org/10.1016/j.chemgeo.2023.121581
- Hilpmann S., Rossberg A., Steudtner R., Drobot B., Hübner R., Bok F., Prieur D., Bauters S., Kvashnina K.O., Stumpf T., Cherkouk A. Presence of uranium (V) during uranium (VI) reduction by Desulfosporosinus hippei DSM 8344T // Science of the Total Environment. 2023. V. 875. 162593. https://doi.org/10.1016/j.scitotenv.2023.162593
- Kvashnina K.O., Butorin S.M., Martin P., Glatzel P. Chemical state of complex uranium oxides // Physical Review Letters. 2013. V. 111. 253002. https://doi.org/10.1103/PhysRevLett.111.253002
- Ulrich K-U., Ilton E.S., Veeramani H., Sharp J.O., Bernier-Latmani R., Schofield E.J., Bargar J.R., Giammar D.E. Comparative dissolution kinetics of biogenic and chemogenic uraninite under oxidizing conditions in the presence of carbonate // Geochimica et Cosmochimica Acta. 2009. V. 73. № 20. P. 6065–6083. https://doi.org/10.1016/j.gca.2009.07.012
- Chen B., Wang J., Kong L., Mai X., Zheng N., Zhong Q., Liang J., Chen D. Adsorption of uranium from uranium mine contaminated water usingphosphate rock apatite (PRA): Isotherm, kinetic and characterization studies // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2017. V. 520. № 5. P. 612–621. https://doi.org/10.1016/j.colsurfa.2017.01.055
- Fairley N., Fernandez V., Mireille Richard‐Plouet M., Guillot-Deudon C., Walton J., Smith E., Flahaut D., Greiner M., Biesinger M., Tougaard S., Morgan D., Baltrusaitis J. Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy // Applied Surface Science Advances. 2021. V. 5. 100112. https://doi.org/10.1016/j.apsadv.2021.100112
- Gates-Reactor S., Blanton T. The powder diffraction file: a quality materials characterization database // Powder Diffraction. 2019. V. 34. № 4. P. 352–360. https://doi.org/10.1017/S0885715619000812
- Lutterotti L. Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2010. V. 268. № 3–4. 334–340. https://doi.org/10.1016/j.nimb.2009.09.053
- Momma K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data // Journal of Applied Crystallography. 2011. V. 44. P. 1272–1276. https://doi.org/10.1107/S0021889811038970
- Шваров Ю.В. HCh: Новые возможности термодинамического моделирования геохимических систем, предоставляемые Windows // Геохимия. 2008. № 8. С. 898–903.
- Ragoussi M.-E., Martinez J.S., Costa D. Second update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. Vol. 14: Chemical thermodynamics. Paris: OECD Nuclear Energy Agency, Data Bank Boulogne-Billancourt, 2021. https://doi.org/10.1787/bf86a907-en
- Tamimi F., Sheikh Z., Barralet J. Dicalcium phosphate cements: Brushite and monetite // Acta Biomaterialia. 2012. V. 8. № 2. P. 474–487. https://doi.org/10.1016/j.actbio.2011.08.005
- Солоненко А.П., Голованова О.А. Термодинамическое моделирование процессов образования ортофосфатов кальция // Бутлеровские сообщения. 2011. Т. 24. № 2. С. 106–112. http://butlerov.com/bh2011
- Солоненко А.П., Голованова О.А., Фильченко М.В., Ишутина В.С., Леонтьева Н.Н., Антоничева Н.В., Буяльская К.С., Савельева Г.Г. Физико-химическое исследование систем состава “гидроксилапатит – брушит”, полученных совместным осаждением // Вестник Омского ун-та. 2012. № 2. С. 135–142.
- Фильченко М.В., Голованова О.А., Солоненко А.П. Особенности кристаллизации в системе Ca(NO3)2–(NH4)2HPO4–NH4ОН–Н2О // Вестник ОНЗ РАН. 2011. № 3. NZ6095. https://doi.org/10.2205/2011NZ000225
- Wu W., Wang J. Adsorption removal of uranium from aqueous solution by hydroxyapatite: Recent advances and prospects // Annals of Nuclear Energy. 2024. V. 206. 110609. https://doi.org/10.1016/j.anucene.2024.110609
- Ardanova L.I., Getman E.I., Loboda S.N., Prisedsky V.V., Tkachenko T.V., Marchenko V.I., Antonovich V.P., Chivireva N.A., Chebishev K.A., Lyashenko A.S. Isomorphous substitutions of rare Earth elements for calcium in synthetic hydroxyapatites // Inorganic Chemistry. 2010. V. 49. № 22. P. 10687–10693. https://doi.org/10.1021/ic1015127
- Wu P., Zeng Y.Z., Wang C.M. Prediction of apatite lattice constants from their constituent elemental radii and artificial intelligence methods // Biomaterials. 2004. V. 25. № 6. P. 1123–1130. https://doi.org/10.1016/S0142-9612(03)00617-3
- Dale J.R. Cytochrome c maturation and redox homeostasis in uranium-reducing bacterium Shewanella putrefaciens / PhD Thesis. Georgia Institute of Technology, School of Biology, 2007. 152 p. https://www.researchgate.net/publication/27535241
Arquivos suplementares

