LOCAL STRUCTURE OF Ba- AND F-DOMINANT MINERALS OF THE LAMPROPHYLLITE STRUCTURAL FAMILY (BASED ON VIBRATIONAL SPECTROSCOPY DATA)
- Autores: Aksenov S.M.1, Chukanov N.V.2, Kompanchenko A.A.3, Mikhailova Y.A.3, Ilyin G.S.1, Pekov I.V.4
-
Afiliações:
- Laboratory of Arctic Mineralogy and Material Sciences, Federal Research Center “Kola Science Center RAS”
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
- Geological Institute, Federal Research Center “Kola Science Center RAS”
- Faculty of Geology, Lomonosov Moscow State University
- Edição: Volume 526, Nº 2 (2026)
- Seção: MINERALOGY
- ##submission.dateSubmitted##: 15.10.2025
- ##submission.dateAccepted##: 10.11.2025
- ##submission.datePublished##: 18.11.2025
- URL: https://journals.rcsi.science/2686-7397/article/view/328106
- ID: 328106
Citar
Texto integral
Resumo
To study the features of the local structure of minerals in the lamprophyllite group, vibrational spectroscopy methods (IR and Raman) were used to investigate holotype fluorine-dominant representatives of this group (fluorobarytolamprophyllite, lileyite, and emmerichite), as well as the related mineral schüllerite. It has been shown that an increase in iron content at the L-site (L = Ti, Fe³⁺) with a coordination number of 5 is accompanied by elongation of the titanyl bond Ti=O and a decrease in the frequency of symmetric stretching vibrations of Ti=O–M1. In the case of lileyite, the decrease in the frequency of these vibrations may also be associated with partial substitution of Na at the M1-site by Ca. It has been established that the most intense band of apical Si–O stretching vibrations in the Raman spectrum of lileyite, unlike the spectra of other minerals, is split into components at 867 and 898 cm⁻¹. The most probable cause of this splitting is the mixed occupancy of the adjacent M2-site, where 55% of the occupants are divalent cations (predominantly Ca²⁺ with admixtures of Fe²⁺ and Mn²⁺).
Palavras-chave
Sobre autores
Sergey Aksenov
Laboratory of Arctic Mineralogy and Material Sciences, Federal Research Center “Kola Science Center RAS”
Autor responsável pela correspondência
Email: aks.crys@gmail.com
head of the laboratoty
Nikita Chukanov
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
Email: nikchukanov@yandex.ru
Rússia
Alena Kompanchenko
Geological Institute, Federal Research Center “Kola Science Center RAS”
Email: komp-alena@yandex.ru
Yulia Mikhailova
Geological Institute, Federal Research Center “Kola Science Center RAS”
Email: j.mikhailova@ksc.ru
Gregory Ilyin
Laboratory of Arctic Mineralogy and Material Sciences, Federal Research Center “Kola Science Center RAS”
Email: grinart7@gmail.com
Igor Pekov
Faculty of Geology, Lomonosov Moscow State University
Email: igorpekov@mail.ru
Rússia, Moscow; Moscow
Bibliografia
- Ferraris G., Gula A. Polysomatic aspects of microporous minerals - heterophyllosilicates, palysepioles and rhodesite-related structures // Rev. Mineral. Geochem. 2005. V. 57. P. 69–104.
- Rastsvetaeva R.K., Aksenov S.M. Crystal chemistry of silicates with three-layer TOT and HOH modules of layered, chainlike, and mixed types // Crystallography Reports. 2011. V. 56. P. 910–934.
- Rastsvetaeva R.K., Chukanov N.V., Aksenov S.M. The crystal chemistry of lamprophyllite-related minerals: a review // Eur. J. Mineral. 2016. V. 28. P. 915–930.
- Sokolova E., Cámara F. The seidozerite supergroup of TS-block minerals: nomenclature and classification, with change of the following names: rinkite to rinkite-(Ce), mosandrite to mosandrite-(Ce), hainite to hainite-(Y) and innelite-1T to innelite-1A // Mineral. Mag. 2017. V. 81. P. 1457–1484.
- Chukanov N.V., Kazheva O.N., Fischer R.X., Aksenov S.M. Refinement of the crystal structure of fresnoite, Ba2TiSi2O8, from Löhley (Eifel district, Germany); Gladstone–Dale compatibility, electronic polarizability and vibrational spectroscopy of minerals and inorganic compounds with pentacoordinated TiIV and a titanyl bond // Acta Cryst. B. 2023. V. 79. P. 184–194.
- Filina M.I., Aksenov S.M., Sorokhtina N.V., Chukanov N.V., Kononkova N.N., Belakovskiy D.I., Britvin S.N., Kogarko L.N., Chervonnyi A.D., Rastsvetaeva R.K. The new mineral fluorbarytolamprophyllite, (Ba,Sr,K)2[(Na,Fe2+)3TiF2][Ti2(Si2O7)2O2] and chemical evolution of lamprophyllite-group minerals in agpaitic syenites of the Kola Peninsula // Mineralogy and Petrology. 2019. V. 113. P. 533–553.
- Chukanov N.V., Rastsvetaeva R.K., Aksenov S.M., Blass G., Pekov I.V., Belakovskiy D.I., Tschortner J., Schüller W., Ternes B. Emmerichite, Ba2Na(Na,Fe2+)2(Fe3+,Mg)Ti2(Si2O7)2O2F2, a new lamprophyllite-group mineral from the Eifel volcanic region, Germany // New Data on Minerals. 2014. V. 49. P. 5–13.
- Aksenov S.M., Rastsvetaeva R.K., Chukanov N.V. The crystal structure of emmerichite Ва2Na3Fe3+Ti2(Si2O7)2O2F2, a new lamprophyllite-group mineral // Z. Kristallogr. 2014. V. 229. P. 1–7.
- Chukanov N.V., Pekov I.V., Rastsvetaeva R.K., Aksenov S.M., Zadov A.E., Van K.V., Blass G., Schüller W., Ternes B. Lileyite, Ba2(Na,Fe,Ca)3MgTi2(Si2O7)2O2F2, a new lamprophyllite-group mineral from the Eifel volcanic area, Germany // Eur. J. Mineral. 2012. V. 24. P. 181–188.
- Aksenov S.M., Ryanskaya A.D., Shchapova Y. V., Chukanov N.V., Vladykin N.V., Votyakov S.L., Rastsvetaeva R.K. Crystal chemistry of lamprophyllite-group minerals from the Murun alkaline complex (Russia) and pegmatites of Rocky Boy and Gordon Butte (USA): single crystal X-ray diffraction and Raman spectroscopy study // Acta Cryst. B. 2021. V. 77. P. 287–298.
- Krivovichev S.V., Armbruster T., Yakovenchuk V.N., Pakhomovsky Y.A., Men’shikov Y.P. Crystal structures of lamprophyllite-2M and lamprophyllite-2O from the Lovozero alkaline massif, Kola peninsula, Russia // Eur. J. Mineral. 2003 V. 15. P. 711–718.
- Sokolova E., Camara F. From structure topology to chemical composition. III. Titanium silicates: the crystal chemistry of barytolamprophyllite // Can. Mineral. 2008. V. 46. P. 403–412.
- Andrade M.B., Yang H., Downs R.T., Färber G., Contreira F.R.R., Evans S.H., Loehn C.W., Schumer B.N. Fluorlamprophyllite, Na3(SrNa)Ti3(Si2O7)2O2F2, a new mineral from Poços de Caldas alkaline massif, Morro Do Serrote, Minas Gerais, Brazil // Mineral. Mag. 2018. V. 82. P. 121–131.
- Rastsvetaeva R.K., Sokolova M.N., Gusev A.I. Refined Crystal Structure of Lamprophyllite // Mineral. Zh. 1990. V. 5. P. 25–28.
- Rastsvetaeva R.K., Evsyunin V.G., Konev A.A. Crystal structure of K-barytolamprophyllite // Crystallography Reports. 1995. V. 40. P. 472–474.
- Frost R.L., Scholz R., López A., Xi Y. Raman and infrared spectroscopic characterization of the silicate mineral lamprophyllite // Spectroscopy Letters. 2015. V. 48. P. 701–704.
- Chukanov N.V., Rastsvetaeva R.K., Britvin S.N., Virus A.A., Belakovskiy D.I., Pekov I.V., Aksenov S.M.,Ternes B. Schüllerite, Ba2Na(Mn,Ca)(Fe3+,Mg,Fe2+)2Ti2(Si2O7)2(O,F)4, a new mineral species from the Eifel volcanic district, Germany // Geology of Ore Deposits. 2011. V. 53. P. 767–774.
- Sokolova E., Hawthorne F.C., Abdu Y.A. From structure topology to chemical composition. XV. Titanium silicates: revision of the crystal structure and chemical formula of schüllerite, Na2Ba2Mg2Ti2(Si2O7)2O2F2, from the Eifel volcanic region, Germany // Can. Mineral. 2013. V. 51. P. 715–725.
- Ильин Г.С., Чуканов Н.В., Расцветаева Р.К., Аксенов С.М. Псевдосимметрия и особенности катионного упорядочения в гетерофиллосиликатах. 1. Уточнение кристаллической структуры шюллерита Ba2Na(Mn,Ca)(Fe3+,Mg,Fe2+)2Ti2(Si2O7)2(O,F)4 // Литосфера. 2025. Т. 25. № 2. С. 212–220.
Arquivos suplementares
