Potential hazard of radioactive contamination of the marine environment due to possible earthquakes near the Kashiwazaki-Kariwa Nuclear Power Plant

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Based on geostrophic current fields calculated from altimetry data for the period from January 1, 2013, to December 31, 2023, numerical modeling of the advection of potentially contaminated water from the Kashiwazaki-Kariwa Nuclear Power Plant to the shores of Primorsky Krai and the fishing zone around Southern Kuril Islands was carried out using a Lagrangian approach. Dasymetric maps representing probable pathways of surface ocean contamination were constructed. For the southern Primorye region, transport pathways and three corridors related to the local current structures and mesoscale eddies were identified. The minimum advection time for Lagrangian markers simulating potentially contaminated waters to reach the Primorsky Krai coast is 138–140 days. Two possible transport routes into the Southern Kuril fishing zone were revealed, with the potential for rapid advection of contaminated markers into this zone within 58–60 days. It was demonstrated that the advection of Lagrangian markers occurs in portions and within specific time windows.

Sobre autores

M. Budyanskiy

Saint Petersburg State University; Il’ichev Pacific Oceanological Institute

Email: plaztic@mail.ru
Saint Petersburg, Russia; Vladivostok, Russia

M. Uleysky

Il’ichev Pacific Oceanological Institute

Email: plaztic@mail.ru
Vladivostok, Russia

M. Lebedeva

Saint Petersburg State University; Il’ichev Pacific Oceanological Institute

Email: plaztic@mail.ru
Saint Petersburg, Russia; Vladivostok, Russia

P. Fayman

Il’ichev Pacific Oceanological Institute

Email: plaztic@mail.ru
Vladivostok, Russia

T. Belonenko

Saint Petersburg State University

Autor responsável pela correspondência
Email: plaztic@mail.ru
Saint Petersburg, Russia

Bibliografia

  1. Арутюнян Р.В., Большов Л.А., Боровой А.А., Велихов Е.П. Системный анализ причин и последствий аварии на АЭС “Фукусима-1”. Москва: Институт проблем безопасного развития атомной энергетики РАН. 2018. 408 с. ISBN 978-5-9907220-5-7.
  2. Nishikawa T., Inoue H., Motohashi S., Ebisawa K. Lessons Learned from Kashiwazaki-Kariwa NPP after Niigataken Chuetsu-Oki Earthquake (2007) in View of SSI Effect / In Infra-structure Systems for Nuclear Energy (eds T.T.C. Hsu, C.-L. Wu and J.-L. Li). 2014. https://doi.org/10.1002/9781118536254.ch16
  3. Юрасов Г.И., Яричин В.Г. Течения Японского моря, Владивосток, 1991. С. 156–165.
  4. Yabe I., Kawaguchi Y., Wagawa T. et al. Anatomical study of Tsushima warm current system: determination of principal pathways and its variation // Prog. Oceanogr. 2021. V. 194. P. 102590. https://doi.org/10.1016/j.pocean.2021.102590
  5. Fukudome K.-I., Yoon J.-H., Ostrovskii A., Takikawa T., Han In-S. Seasonal volume transport variation in the Tsushima Warm Current through the Tsushima Straits from 10 years of ADCP observations // Journal of Oceanography. 2010. V. 66(4). P. 539–551. https://doi.org/10.1007/s10872-010-0045-5
  6. Shin H.-R., Lee J.-H., Kim C.-H., Yoon J.-H., Hirose N., Takikawa T., Cho K. Long-term variation in volume transport of the Tsushima warm current estimated from ADCP current measurement and sea level differences in the Korea/Tsushima Strait // J. Mar. Syst. 2022. V. 232. P. 103750. https://doi.org/10.1016/j.jmarsys.2022.103750
  7. Hirose N., Ostrovskii A.G. Quasi-biennial variability in the Japan Sea // J. Geophys. Res. 2000. V. 105(C6). P. 14011–14027. https://doi.org/10.1029/2000JC900046
  8. Kim D., Shin H.-R., Kim C.-H., Hirose N. Characteristics of the East Sea (Japan Sea) circulation depending on surface heat flux and its effect on Branching of the Tsushima Warm Current // Continental Shelf Research. 2020. V. 192. P. 104025. https://doi.org/10.1016/j.csr.2019.104025
  9. Takikawa T., Watanabe T., Senjyu T., Morimoto A. Wind-driven intensification of the Tsushima Warm Current along the Japanese coast detected by sea level difference in the summer monsoon of 2013 // Continental Shelf Research. 2017. V. 143. P. 217–277. https://doi.org/10.1016/j.csr.2016.06.004
  10. Wagawa T., Kawaguchi Y., Igeta Y., Honda N., Okunishi T., Yabe I. Observations of oceanic fronts and water-mass properties in the central Japan Sea: Repeated surveys from an underwater glider // Journal of Marine Systems. 2019. V. 201. P. 103242. https://doi.org/10.1016/j.jmarsys.2019.103242
  11. Wagawa T., Igeta Y., Ikeda S., Fukudome K., Hasegawa D., Tanaka T. Variation of upper-layer flow structures and water masses observed around the Noto Peninsula and Sado Island, Japan // Continental Shelf Research. 2022. V. 255. P. 104911. https://doi.org/10.1016/j.csr.2022.104911
  12. Igeta Y., Yankovsky A., Fukudome K., Ikeda S., Okei N., Ayukawa K., Kaneda A., Watanabe T. Transition of the Tsushima Warm Current Path Observed over Toyama Trough, Japan // J. Phys. Oceanogr. 2017. V. 47. P. 2721–2739. https://doi.org/10.1175/JPO-D-17-0027.1
  13. Kaneda A., Ayukawa K., Hirose N. et al. Sudden strong current generated by an eddy in the eastern part of Wakasa Bay, Japan // J. Oceanogr. 2017. V. 73. P. 181–192. https://doi.org/10.1007/s10872-016-0395-8
  14. Watanabe T., Katoh O., Yamada H. Structure of the Tsushima warm current in the northeastern Japan Sea // J. Oceanogr. 2006. V. 62. P. 527–538. https://doi.org/10.1007/s10872-006-0073-3
  15. Kawamura H., Ito T., Hirose N., Takikawa T., Yoon J.-H. Modeling of the branches of the Tsushima Warm Current in the Eastern Japan Sea // J. Oceanogr. 2009. V. 65. P. 439–454. https://doi.org/10.1007/s10872-009-0039-3
  16. Дьяков Б.С. Результаты океанологического мониторинга северо-западной части Японского моря в 2018 г. // Труды ВНИРО. 2020. № 180. С. 5–22. http://dx.doi.org/10.36038/2307-3497-2020-180-5-22
  17. Андреев А.Г. Особенности циркуляции вод в южной части Татарского пролива // Исследование Земли из космоса. 2018. № 1. С. 3–11. http://dx.doi.org/10.7868/S0205961418010013
  18. Ponomarev V., Fayman P., Prants S., Budyansky M., Uleysky M. Simulation of mesoscale circulation in the Tatar Strait of the Japan Sea // Ocean Model. 2018. V. 126. P. 43–55. http://dx.doi.org/10.1016/j.ocemod.2018.04.006
  19. Kim T., Yoon J.-H. Seasonal variation of upper layer circulation in the northern part of the East/Japan Sea // Cont. Shelf Res. 2010. V. 30. P. 1283–1301. https://doi.org/10.1016/j.csr.2010.04.006
  20. Никитин А.А., Дьяков Б.С., Капшитер А.В. Приморское течение на стандартных разрезах и спутниковых изображениях Японского моря // Исследование Земли из космоса. 2020. № 1. С. 31–43. https://doi.org/10.31857/S0205961420010078

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).