INTENSE QUANTUM OF THE DEFORMATION IN DEEP CRUST, AS SEEN FROM GEOMECHANICAL MODELING IN SOUTHERN CALIFORNIA

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In a detailed analysis of the local features of the stress-strain state within the framework of the geomechanical model of Southern California, a rapidly developing high-amplitude shear deformation anomaly was identified in the upper crustal interval (at depths of up to 10 km) – the so-called “intense deformation quantum” – with a maximum increase in deformation by two orders of magnitude within 0.5 month. Such “quanta” can be integral elements of the entire deep deformation process associated with seismicity. The paper discusses the quantitative characteristics of deep deformation “quanta” and the conditions for their occurrence.

Sobre autores

V. Bondur

Institute for Scientific Research of Aerospace Monitoring “Aerocosmos”

Email: alexeevgeo@gmail.com
Russian Federation, Moscow

M. Gokhberg

Institute for Scientific Research of Aerospace Monitoring “Aerocosmos”; Schmidt Institute of Physics of the Earth, Russian Academy of Science

Email: alexeevgeo@gmail.com
Russian Federation, Moscow; Russian Federation, Moscow

I. Garagash

Institute for Scientific Research of Aerospace Monitoring “Aerocosmos”; Schmidt Institute of Physics of the Earth, Russian Academy of Science

Email: alexeevgeo@gmail.com
Russian Federation, Moscow; Russian Federation, Moscow

D. Alekseev

Institute for Scientific Research of Aerospace Monitoring “Aerocosmos”; Schmidt Institute of Physics of the Earth, Russian Academy of Science; Moscow Institute of Physics and Technology

Autor responsável pela correspondência
Email: alexeevgeo@gmail.com
Russian Federation, Moscow; Russian Federation, Moscow; Russian Federation, Moscow, Dolgoprudny

Bibliografia

  1. Johnston M.J.S., Borcherdt R.D., Linde A.T., Gladwin M.T. Continuous Borehole Strain and Pore Pressure in the Near Field of the 28 September 2004 M 6.0 Parkfield, California, Earthquake: Implications for Nucleation, Fault Response, Earthquake Prediction, and Tremor // Bull. Seis. Soc. Amer. 2006. V. 96. № 4B. P. S56–S72. https://doi.org/10.1785/0120050822
  2. Hutton L.K., Woessner J., Hauksson E. Seventy-Seven Years (1932–2009) of Earthquake Monitoring in Southern California // Bull. Seismol. Soc. Am. 2010. V. 100. № 2. P. 423–446. https://doi.org/10.1785/0120090130
  3. Clayton R.W., Heaton T., Kohler M., Chandy M., Guy R., Bunn J. Community Seismic Network: a dense array to sense earthquake strong motions // Seismological Research Letters. 2015. V. 86. P. 1354–1363. https://doi.org/10.1785/0220150094
  4. Hudnut K.W., King N.E., Galetzka J.E., Stark K.F., Behr J.A., Aspiotes A., van Wyk S., Moffitt R., Dockter S., Wyatt F. Continuous GPS observations of postseismic deformation following the 16 October 1999 Hector Mine, California, earthquake (Mw7.1) // Bull. Seis. Soc. Amer. 2002. V. 92. № 4. P. 1403–1422.
  5. Mazzotti S., Lucinda L., Cassidy J., Rogers G., Halchuk S. Seismic hazard in western Canada from GPS strain rates versus earthquake catalog // J. Geophys. Res. (Solid Earth). 2011. V. 116. P. 12310. https://doi.org/10.1029/2011JB008213
  6. Cenni N., Viti M., Mantovani E. Space geodetic data (GPS) and earthquake forecasting: examples from the Italian geodetic network // Bollettino di Geofisica Teorica e Applicata. 2015. V. 56. № 2. P.129–150.
  7. Li S., Chen G., Tao T., He P., Ding K., Zou R., Li J., Wang Q. The 2019 Mw 6.4 and Mw 7.1 Ridgecrest earthquake sequence in Eastern California: rupture on a conjugate fault structure revealed by GPS and InSAR measurements // Geophys. Journ. Int. 2020. V. 221 № 3. P. 1651–1666. https://doi.org/10.1093/gji/ggaa099
  8. Chen K., Avouac J.-P. Aati S., Milliner C., Zheng F., Shi C. Cascading and pulse-like ruptures during the 2019 Ridgecrest earthquakes in the Eastern California Shear Zone // Nat. Comms. 2020. V. 11. P. 22. https://doi.org/10.1038/s41467-019-13750-w
  9. Klein E., Bock Y., Xu X., Sandwell D.T., Golriz D., Fang P., Su L. Transient deformation in California from two decades of GPS displacements: Implications for a three-dimensional kinematic reference frame // J. Geophys. Res.: Solid Earth. 2019. V. 124. № 12. P. 12189–12223.
  10. Бондур В.Г., Гохберг М.Б., Гарагаш И.А., Алексеев Д.А. Некоторые причины трудностей краткосрочного прогноза землетрясений и возможные пути решения // Доклады Российской академии наук. Науки о Земле. 2020. Т. 495. № 2. С. 46–50. https://doi.org/10.31857/S268673972012004X
  11. Бондур В.Г., Гохберг М.Б., Гарагаш И.А., Алексеев Д.А., Гапонова Е.В. Изучение формирования очага сильного землетрясения Риджкрест 2019 г. в Южной Калифорнии с использованием геомеханической модели // Доклады Российской академии наук. Науки о Земле. 2022. Т. 502. № 2. С. 49–54. https://doi.org/10.31857/S2686739722020037
  12. Бондур В.Г., Гарагаш И.А., Гохберг М.Б., Лапшин В.М., Нечаев Ю.В. Связь между вариациями напряженно-деформированного состояния земной коры и сейсмической активностью на примере Южной Калифорнии // ДАН. 2010. Т. 430. № 3. С. 400–404.
  13. Бондур В.Г., Гарагаш И.А., Гохберг М.Б. Крупномасштабное взаимодействие сейсмоактивных тектонических провинций на примере Южной Калифорнии // ДАН. 2016. Т. 466. № 5. С. 598–601. https://doi.org/10.7868/S0869565216050170
  14. Бондур В.Г., Гарагаш И.А, Гохберг М.Б., Родкин М.В. Эволюция напряженного состояния Южной Калифорнии на основе геомеханической модели и текущей сейсмичности // Физика Земли. 2016. № 1. С. 120–132. https://doi.org/10.7868/S000233371601004X
  15. Bondur V.G., Gokhberg M.B., Garagash I.A., Alekseev D.A. Revealing Short-Term Precursors of the Strong M > 7 Earthquakes in Southern California from the Simulated Stress–Strain State Patterns Exploiting Geomechanical Model and Seismic Catalog Data // Frontiers in Earth Science. 2020. P. 8: 571700. https://doi.org/10.3389/feart.2020.571700
  16. Bondur V.G., Gokhberg M.B., Garagash I.A., Alekseev D.A. Features of the modelled stress-strain state dynamics prior to the M 7.1 2019 Ridgecrest earthquake in Southern California // Rus. Journ. Earth Sci. 2022. V. 22. P. ES5002.
  17. Гарагаш И.А. Быстрые изменения напряженного состояния в зоне разлома с точки зрения механики систем с несмежными формами равновесия // Тезисы докладов IV Всероссийской конференции с международным участием “Триггерные эффекты в геосистемах”. 2017. Москва. С. 24.
  18. Linde A.T., Gladwin M.T., Johnston M.J.S., Gwyther R.L., Bilham R.G. A slow earthquake sequence on the San Andreas fault // Nature. 1996. V. 383. P. 65–68.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (343KB)
3.

Baixar (2MB)
4.

Baixar (174KB)
5.

Baixar (767KB)
6.

Baixar (541KB)
7.

Baixar (184KB)

Declaração de direitos autorais © В.Г. Бондур, М.Б. Гохберг, И.А. Гарагаш, Д.А. Алексеев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies